- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Anna Wachowicz-Pyzik; Anna Sowiżdżał; Tomasz Maćkowski; Michał Stefaniuk;doi: 10.3390/su16010037
For many years, geothermal energy has been successfully used for both energy as well as balneological, healing, and recreational purposes. It should be emphasized that, along with the great interest in geothermal investments, the development of other economic sectors (i.e., tourism, cosmetology, food production, and many other sectors related directly or indirectly to geothermal waters) are also noted in this paper. That kind of development is seen both in regions where centers using geothermal energy are created, as well as in their immediate vicinity. An important aspect of the use of geothermal energy is also its positive impact on the environment by reducing the emission of pollutants that could end up in the environment as a result of using conventional energy sources, namely coal or natural gas. Given the high level of air pollution in Poland, according to data from the European Environment Agency, 12 Polish cities are among the 20 most polluted cities in Europe (data for 2021–2022), and this aspect seems to be key for achieving sustainability while maintaining economic balance. In this article, a new approach to the development of geothermal water utilization in the context of identifying and meeting the social needs of local communities in the Mogilno–Łódź Trough region is described.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su16010037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su16010037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:MDPI AG Authors: Kacper Domagała; Tomasz Maćkowski; Michał Stefaniuk; Beata Reicher;doi: 10.3390/en14133942
Important factors controlling the effective utilization of geothermal energy are favorable reservoir properties of rock formations, which determine both the availability and the transfer opportunities of reservoir fluids. Hence, crucial to the successful utilization of a given reservoir is the preliminary recognition of distribution of reservoir parameters as it enables the researchers to select the prospective areas for localization of future geothermal installations and to decide on their characters. The objectives of this paper are analyses and discussion of the properties of quartz sandstones buried down to a depth interval from about 3000 to under 5000 m below surface. These sandstones belong to Ediacaran–Lowery Cambrian Łeba, Kluki and Żarnowiec formations. The source data from the Słupsk IG-1 provided the basis for 1D reconstruction of burial depth and paleothermal conditions as well as enabled the authors to validate of the results of 2D models. Then, porosity distribution within the reservoir formation was determined using the modelings of both the mechanical and chemical compactions along the 70 km-long B’-B part of the A’-A cross-section Bornholm-Słupsk IG-1 well. The results confirmed the low porosities and permeabilities as well as high temperatures of the analyzed rock formations in the Słupsk IG-1 well area. Towards the coast of the Baltic Sea, the porosity increases to more than 5%, while the temperature decreases, but is still relatively high, at about 130 °C. This suggests the application of an enhanced geothermal system or hot dry rocks system as principal methods for using geothermal energy.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/13/3942/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14133942&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/13/3942/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14133942&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Anna Wachowicz-Pyzik; Anna Sowiżdżał; Tomasz Maćkowski; Michał Stefaniuk;doi: 10.3390/su16010037
For many years, geothermal energy has been successfully used for both energy as well as balneological, healing, and recreational purposes. It should be emphasized that, along with the great interest in geothermal investments, the development of other economic sectors (i.e., tourism, cosmetology, food production, and many other sectors related directly or indirectly to geothermal waters) are also noted in this paper. That kind of development is seen both in regions where centers using geothermal energy are created, as well as in their immediate vicinity. An important aspect of the use of geothermal energy is also its positive impact on the environment by reducing the emission of pollutants that could end up in the environment as a result of using conventional energy sources, namely coal or natural gas. Given the high level of air pollution in Poland, according to data from the European Environment Agency, 12 Polish cities are among the 20 most polluted cities in Europe (data for 2021–2022), and this aspect seems to be key for achieving sustainability while maintaining economic balance. In this article, a new approach to the development of geothermal water utilization in the context of identifying and meeting the social needs of local communities in the Mogilno–Łódź Trough region is described.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su16010037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su16010037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:MDPI AG Authors: Kacper Domagała; Tomasz Maćkowski; Michał Stefaniuk; Beata Reicher;doi: 10.3390/en14133942
Important factors controlling the effective utilization of geothermal energy are favorable reservoir properties of rock formations, which determine both the availability and the transfer opportunities of reservoir fluids. Hence, crucial to the successful utilization of a given reservoir is the preliminary recognition of distribution of reservoir parameters as it enables the researchers to select the prospective areas for localization of future geothermal installations and to decide on their characters. The objectives of this paper are analyses and discussion of the properties of quartz sandstones buried down to a depth interval from about 3000 to under 5000 m below surface. These sandstones belong to Ediacaran–Lowery Cambrian Łeba, Kluki and Żarnowiec formations. The source data from the Słupsk IG-1 provided the basis for 1D reconstruction of burial depth and paleothermal conditions as well as enabled the authors to validate of the results of 2D models. Then, porosity distribution within the reservoir formation was determined using the modelings of both the mechanical and chemical compactions along the 70 km-long B’-B part of the A’-A cross-section Bornholm-Słupsk IG-1 well. The results confirmed the low porosities and permeabilities as well as high temperatures of the analyzed rock formations in the Słupsk IG-1 well area. Towards the coast of the Baltic Sea, the porosity increases to more than 5%, while the temperature decreases, but is still relatively high, at about 130 °C. This suggests the application of an enhanced geothermal system or hot dry rocks system as principal methods for using geothermal energy.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/13/3942/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14133942&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/13/3942/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14133942&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu