- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2024 Netherlands, United StatesPublisher:Springer Science and Business Media LLC Funded by:NIH | Proteomic Stable Isotope ...NIH| Proteomic Stable Isotope Probing as a Novel Approach for Linking Prebiotics with Active Gut MicrobiotaDongyu Wang; Pieter Candry; Kristopher A. Hunt; Zachary Flinkstrom; Zheng Shi; Yunlong Liu; Neil Q. Wofford; Michael J. McInerney; Ralph S. Tanner; Kara B. De Leόn; Jizhong Zhou; Mari-Karoliina H. Winkler; David A. Stahl; Chongle Pan;AbstractClimate changes significantly impact greenhouse gas emissions from wetland soil. Specifically, wetland soil may be exposed to oxygen (O2) during droughts, or to sulfate (SO42-) as a result of sea level rise. How these stressors – separately and together – impact microbial food webs driving carbon cycling in the wetlands is still not understood. To investigate this, we integrated geochemical analysis, proteogenomics, and stoichiometric modeling to characterize the impact of elevated SO42- and O2 levels on microbial methane (CH4) and carbon dioxide (CO2) emissions. The results uncovered the adaptive responses of this community to changes in SO42- and O2 availability and identified altered microbial guilds and metabolic processes driving CH4 and CO2 emissions. Elevated SO42- reduced CH4 emissions, with hydrogenotrophic methanogenesis more suppressed than acetoclastic. Elevated O2 shifted the greenhouse gas emissions from CH4 to CO2. The metabolic effects of combined SO42- and O2 exposures on CH4 and CO2 emissions were similar to those of O2 exposure alone. The reduction in CH4 emission by increased SO42- and O2 was much greater than the concomitant increase in CO2 emission. Thus, greater SO42- and O2 exposure in wetlands is expected to reduce the aggregate warming effect of CH4 and CO2. Metaproteomics and stoichiometric modeling revealed a unique subnetwork involving carbon metabolism that converts lactate and SO42- to produce acetate, H2S, and CO2 when SO42- is elevated under oxic conditions. This study provides greater quantitative resolution of key metabolic processes necessary for the prediction of CH4 and CO2 emissions from wetlands under future climate scenarios.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2024License: CC BYFull-Text: https://escholarship.org/uc/item/2k28m0wxData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of CaliforniaWageningen Staff PublicationsArticle . 2024License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41522-024-00525-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2024License: CC BYFull-Text: https://escholarship.org/uc/item/2k28m0wxData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of CaliforniaWageningen Staff PublicationsArticle . 2024License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41522-024-00525-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Bao Nguyen Quoc; Stephany Wei; Maxwell Armenta; Robert Bucher; Pardi Sukapanpotharam; David A. Stahl; H. David Stensel; Mari-Karoliina H. Winkler;pmid: 33039834
The relationship between ammonia oxidation rate, nitrifiers population, and modelled aerobic zone volume in different granule sizes was investigated using aerobic granular sludge from a pilot-scale reactor. The pilot was fed with centrate and secondary effluent amended with acetate as the main carbon source. The maximum specific ammonia oxidation rates and community composition of different aerobic granular sludge size fractions were evaluated by batch tests, quantitative PCR, and genomic analysis. Small (331µm) granules had a 4.72 ± 0.09 times higher maximum specific ammonia oxidizing rate per 1 gVSS, and a 4.05 ± 0.17 times higher specific amoA gene copy number than large (2225µm) granules per 1 gram of wet biomass. However, when related to surface area, small granules had 1.43 ± 0.01 times lower maximum specific ammonia oxidation rate and a 1.66 ± 0.04 times lower specific amoA gene copy number per unit surface than large granules. Experimental results aligned with modeling results in which smaller granules had a higher specific aerobic zone volume to biomass and lower specific aerobic zone volume to surface area. Aerobic granular sludge reactors having the same average diameter of granules may have very different proportions of granule size fractions and hence possess different nitrification rates. Therefore, instead of the commonly reported average granule diameter, a new method was proposed to determine the aerobic volume density per sample, which correlated well with the nitrification rate. This work provides a roadmap to control nitrification capacity by two methods: (a) crushing larger granules into smaller fractions, or (b) increasing the mixed liquor suspended solid concentration to increase the total aerobic zone volume of the system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2020.116445&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu52 citations 52 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2020.116445&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 NetherlandsPublisher:Elsevier BV M-K.H Winkler; K.F. Ettwig; T.P.W. Vannecke; K. Stultiens; A. Bogdan; B. Kartal; E.I.P. Volcke;Anaerobic nitrogen removal technologies offer advantages in terms of energy and cost savings over conventional nitrification-denitrification systems. A mathematical model was constructed to evaluate the influence of process operation on the coexistence of nitrite dependent anaerobic methane oxidizing bacteria (n-damo) and anaerobic ammonium oxidizing bacteria (anammox) in a single granule. The nitrite and methane affinity constants of n-damo bacteria were measured experimentally. The biomass yield of n-damo bacteria was derived from experimental data and a thermodynamic state analysis. Through simulations, it was found that the possible survival of n-damo besides anammox bacteria was sensitive to the nitrite/ammonium influent ratio. If ammonium was supplied in excess, n-damo bacteria were outcompeted. At low biomass concentration, n-damo bacteria lost the competition against anammox bacteria. When the biomass loading closely matched the biomass concentration needed for full nutrient removal, strong substrate competition occurred resulting in oscillating removal rates. The simulation results further reveal that smaller granules enabled higher simultaneous ammonium and methane removal efficiencies. The implementation of simultaneous anaerobic methane and ammonium removal will decrease greenhouse gas emissions, but an economic analysis showed that adding anaerobic methane removal to a partial nitritation/anammox process may increase the aeration costs with over 20%. Finally, some considerations were given regarding the practical implementation of the process.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2015.01.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 71 citations 71 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2015.01.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2024 Netherlands, United StatesPublisher:Springer Science and Business Media LLC Funded by:NIH | Proteomic Stable Isotope ...NIH| Proteomic Stable Isotope Probing as a Novel Approach for Linking Prebiotics with Active Gut MicrobiotaDongyu Wang; Pieter Candry; Kristopher A. Hunt; Zachary Flinkstrom; Zheng Shi; Yunlong Liu; Neil Q. Wofford; Michael J. McInerney; Ralph S. Tanner; Kara B. De Leόn; Jizhong Zhou; Mari-Karoliina H. Winkler; David A. Stahl; Chongle Pan;AbstractClimate changes significantly impact greenhouse gas emissions from wetland soil. Specifically, wetland soil may be exposed to oxygen (O2) during droughts, or to sulfate (SO42-) as a result of sea level rise. How these stressors – separately and together – impact microbial food webs driving carbon cycling in the wetlands is still not understood. To investigate this, we integrated geochemical analysis, proteogenomics, and stoichiometric modeling to characterize the impact of elevated SO42- and O2 levels on microbial methane (CH4) and carbon dioxide (CO2) emissions. The results uncovered the adaptive responses of this community to changes in SO42- and O2 availability and identified altered microbial guilds and metabolic processes driving CH4 and CO2 emissions. Elevated SO42- reduced CH4 emissions, with hydrogenotrophic methanogenesis more suppressed than acetoclastic. Elevated O2 shifted the greenhouse gas emissions from CH4 to CO2. The metabolic effects of combined SO42- and O2 exposures on CH4 and CO2 emissions were similar to those of O2 exposure alone. The reduction in CH4 emission by increased SO42- and O2 was much greater than the concomitant increase in CO2 emission. Thus, greater SO42- and O2 exposure in wetlands is expected to reduce the aggregate warming effect of CH4 and CO2. Metaproteomics and stoichiometric modeling revealed a unique subnetwork involving carbon metabolism that converts lactate and SO42- to produce acetate, H2S, and CO2 when SO42- is elevated under oxic conditions. This study provides greater quantitative resolution of key metabolic processes necessary for the prediction of CH4 and CO2 emissions from wetlands under future climate scenarios.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2024License: CC BYFull-Text: https://escholarship.org/uc/item/2k28m0wxData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of CaliforniaWageningen Staff PublicationsArticle . 2024License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41522-024-00525-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2024License: CC BYFull-Text: https://escholarship.org/uc/item/2k28m0wxData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of CaliforniaWageningen Staff PublicationsArticle . 2024License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41522-024-00525-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Bao Nguyen Quoc; Stephany Wei; Maxwell Armenta; Robert Bucher; Pardi Sukapanpotharam; David A. Stahl; H. David Stensel; Mari-Karoliina H. Winkler;pmid: 33039834
The relationship between ammonia oxidation rate, nitrifiers population, and modelled aerobic zone volume in different granule sizes was investigated using aerobic granular sludge from a pilot-scale reactor. The pilot was fed with centrate and secondary effluent amended with acetate as the main carbon source. The maximum specific ammonia oxidation rates and community composition of different aerobic granular sludge size fractions were evaluated by batch tests, quantitative PCR, and genomic analysis. Small (331µm) granules had a 4.72 ± 0.09 times higher maximum specific ammonia oxidizing rate per 1 gVSS, and a 4.05 ± 0.17 times higher specific amoA gene copy number than large (2225µm) granules per 1 gram of wet biomass. However, when related to surface area, small granules had 1.43 ± 0.01 times lower maximum specific ammonia oxidation rate and a 1.66 ± 0.04 times lower specific amoA gene copy number per unit surface than large granules. Experimental results aligned with modeling results in which smaller granules had a higher specific aerobic zone volume to biomass and lower specific aerobic zone volume to surface area. Aerobic granular sludge reactors having the same average diameter of granules may have very different proportions of granule size fractions and hence possess different nitrification rates. Therefore, instead of the commonly reported average granule diameter, a new method was proposed to determine the aerobic volume density per sample, which correlated well with the nitrification rate. This work provides a roadmap to control nitrification capacity by two methods: (a) crushing larger granules into smaller fractions, or (b) increasing the mixed liquor suspended solid concentration to increase the total aerobic zone volume of the system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2020.116445&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu52 citations 52 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2020.116445&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 NetherlandsPublisher:Elsevier BV M-K.H Winkler; K.F. Ettwig; T.P.W. Vannecke; K. Stultiens; A. Bogdan; B. Kartal; E.I.P. Volcke;Anaerobic nitrogen removal technologies offer advantages in terms of energy and cost savings over conventional nitrification-denitrification systems. A mathematical model was constructed to evaluate the influence of process operation on the coexistence of nitrite dependent anaerobic methane oxidizing bacteria (n-damo) and anaerobic ammonium oxidizing bacteria (anammox) in a single granule. The nitrite and methane affinity constants of n-damo bacteria were measured experimentally. The biomass yield of n-damo bacteria was derived from experimental data and a thermodynamic state analysis. Through simulations, it was found that the possible survival of n-damo besides anammox bacteria was sensitive to the nitrite/ammonium influent ratio. If ammonium was supplied in excess, n-damo bacteria were outcompeted. At low biomass concentration, n-damo bacteria lost the competition against anammox bacteria. When the biomass loading closely matched the biomass concentration needed for full nutrient removal, strong substrate competition occurred resulting in oscillating removal rates. The simulation results further reveal that smaller granules enabled higher simultaneous ammonium and methane removal efficiencies. The implementation of simultaneous anaerobic methane and ammonium removal will decrease greenhouse gas emissions, but an economic analysis showed that adding anaerobic methane removal to a partial nitritation/anammox process may increase the aeration costs with over 20%. Finally, some considerations were given regarding the practical implementation of the process.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2015.01.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 71 citations 71 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2015.01.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu