- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2024 United KingdomPublisher:Springer Science and Business Media LLC Authors: Iain Staffell; Stefan Pfenninger; Nathan Johnson;handle: 10044/1/109787
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2024License: CC BYFull-Text: http://hdl.handle.net/10044/1/109787Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-023-01448-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2024License: CC BYFull-Text: http://hdl.handle.net/10044/1/109787Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-023-01448-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 NetherlandsPublisher:IOP Publishing Funded by:EC | JustWind4All, NWO | New Energy and mobility O...EC| JustWind4All ,NWO| New Energy and mobility Outlook for the Netherlands (NEON)Hidde Vos; Francesco Lombardi; Rishikesh Joshi; Roland Schmehl; Stefan Pfenninger;Abstract Novel wind technologies, in particular airborne wind energy (AWE) and floating offshore wind turbines, have the potential to unlock untapped wind resources and contribute to power system stability in unique ways. So far, the techno-economic potential of both technologies has only been investigated at a small scale, whereas the most significant benefits will likely play out on a system scale. Given the urgency of the energy transition, the possible contribution of these novel technologies should be addressed. Therefore, we investigate the main system-level trade-offs in integrating AWE systems and floating wind turbines into a highly renewable future energy system. To do so, we develop a modelling workflow that integrates wind resource assessment and future cost and performance estimations into a large-scale energy system model, which finds cost-optimal system designs that are operationally feasible with hourly temporal resolution across ten countries in the North Sea region. Acknowledging the uncertainty on AWE systems’ future costs and performance and floating wind turbines, we examine a broad range of cost and technology development scenarios and identify which insights are consistent across different possible futures. We find that onshore AWE outperforms conventional onshore wind regarding system-wide benefits due to higher wind resource availability and distinctive hourly generation profiles, which are sometimes complementary to conventional onshore turbines. The achievable power density per ground surface area is the main limiting factor in large-scale onshore AWE deployment. Offshore AWE, in contrast, provides system benefits similar to those of offshore wind alternatives. Therefore, deployment is primarily driven by cost competitiveness. Floating wind turbines achieve higher performance than conventional wind turbines, so they can cost more and remain competitive. AWE, in particular, might be able to play a significant role in a climate-neutral European energy supply and thus warrants further study.
Environmental Resear... arrow_drop_down Environmental Research: EnergyArticle . 2024 . Peer-reviewedData sources: European Union Open Data PortalDelft University of Technology: Institutional RepositoryArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2753-3751/ad3fbc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Environmental Resear... arrow_drop_down Environmental Research: EnergyArticle . 2024 . Peer-reviewedData sources: European Union Open Data PortalDelft University of Technology: Institutional RepositoryArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2753-3751/ad3fbc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 NetherlandsPublisher:Elsevier BV Jannis Langer; Sergio Simanjuntak; Stefan Pfenninger; Antonio Jarquin Laguna; George Lavidas; Henk Polinder; Jaco Quist; Harkunti Pertiwi Rahayu; Kornelis Blok;The current focus of offshore wind industry and academia lies on regions with strong winds, neglecting areas with mild resources. Photovoltaics' cost reductions have shown that even mild resources can be harnessed economically, especially where electricity prices are high. Here, we study the technical and economic potential of offshore wind power in Indonesia as an example of mild-resource areas, using bias-corrected ERA5 data, turbine-specific power curves, and a detailed cost model. We show that low-wind-speed turbines could produce up to 6,816 TWh/year, which is 25 times Indonesia's electricity generation in 2018 and 3 times the projected 2050 generation, and up to 166 PWh/year globally. Although not yet competitive against current offshore turbines, low-wind turbines could become a crucial piece of the global climate mitigation effort in regions with vast marine areas and high electricity prices. As low-wind-speed turbines are not yet on the market, we recommend prioritizing their development.
iScience arrow_drop_down Delft University of Technology: Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.isci.2022.104945&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 7visibility views 7 download downloads 8 Powered bymore_vert iScience arrow_drop_down Delft University of Technology: Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.isci.2022.104945&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 NetherlandsPublisher:IOP Publishing Authors: Stefan Pfenninger;Abstract Energy system models do not represent natural processes but are assumption-laden representations of complex engineered systems, making validation practically impossible. Post-normal science argues that in such cases, it is important to communicate embedded values and uncertainties, rather than establishing whether a model is ‘true’ or ‘correct’. Here, we examine how open energy modelling can achieve this aim by thinking about what ‘a model’ is and how it can be broken up into manageable parts. Collaboration on such building blocks—whether they are primarily code or primarily data—could become a bigger focus area for the energy modelling community. This collaboration may also include harmonisation and intercomparison of building blocks, rather than full models themselves. The aim is understandability, which will make life easier for modellers themselves (by making it easier to develop and apply problem-specific models) as well as for users far away from the modelling process (by making it easier to understand what is qualitatively happening in a model—without putting undue burden on the modellers to document every detail).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2516-1083/ad371e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2516-1083/ad371e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Embargo end date: 01 Jan 2017 Germany, Germany, Switzerland, United KingdomPublisher:Elsevier BV Funded by:EC | DESERTECTIONEC| DESERTECTIONPfenninger, S; DeCarolis, J; Hirth, L; Quoilin, S; Staffell, I;handle: 10044/1/56796
Energy Policy, 101 ISSN:0301-4215
Hertie School Resear... arrow_drop_down Hertie School Research RepositoryArticle . 2016License: CC BYData sources: Hertie School Research RepositoryImperial College London: SpiralArticle . 2016License: CC BYFull-Text: http://hdl.handle.net/10044/1/56796Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2016Data sources: Spiral - Imperial College Digital Repositoryhttp://dx.doi.org/https://doi....Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2016.11.046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 266 citations 266 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Hertie School Resear... arrow_drop_down Hertie School Research RepositoryArticle . 2016License: CC BYData sources: Hertie School Research RepositoryImperial College London: SpiralArticle . 2016License: CC BYFull-Text: http://hdl.handle.net/10044/1/56796Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2016Data sources: Spiral - Imperial College Digital Repositoryhttp://dx.doi.org/https://doi....Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2016.11.046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Springer Science and Business Media LLC Martin Wild; Stefan Pfenninger; Doris Folini; Bob van der Zwaan; Bob van der Zwaan; Bob van der Zwaan; Bart Sweerts; Bart Sweerts; Su Yang; Su Yang;In the version of this Article originally published, the units of ‘Total electricity yield’ and ‘Potential electricity gain’ in Table 1 were incorrectly presented as GWh yr–1; they should have been TWh yr–1. These errors have now been corrected.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-019-0445-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-019-0445-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 ItalyPublisher:Elsevier BV Authors: Lombardi, Francesco; Pickering, Bryn; Colombo, Emanuela; Pfenninger, Stefan;handle: 11311/1152608
Summary Designing highly renewable power systems involves a number of contested decisions, such as where to locate generation and transmission capacity. Yet, it is common to use a single result from a cost-minimizing energy system model to inform planning. This neglects many more alternative results, which might, for example, avoid problematic concentrations of technology capacity in any one region. To explore such alternatives, we develop a method to generate spatially explicit, practically optimal results (SPORES). Applying SPORES to Italy, we find that only photovoltaic and storage technologies are vital components for decarbonizing the power system by 2050; other decisions, such as locating wind power, allow flexibility of choice. Most alternative configurations are insensitive to cost and demand uncertainty, while dealing with adverse weather requires excess renewable generation and storage capacities. For policymakers, the approach can provide spatially detailed power system transformation options that enable decisions that are socially and politically acceptable.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.joule.2020.08.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 84 citations 84 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.joule.2020.08.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Embargo end date: 01 Jan 2016 Switzerland, United KingdomPublisher:Elsevier BV Funded by:UKRI | UK Energy Research Centre..., EC | DESERTECTIONUKRI| UK Energy Research Centre Phase 3 ,EC| DESERTECTIONAuthors: Pfenninger, Stefan; Staffell, Iain;handle: 10044/1/39122
Solar PV is rapidly growing globally, creating difficult questions around how to efficiently integrate it into national electricity grids. Its time-varying power output is difficult to model credibly because it depends on complex and variable weather systems, leading to difficulty in understanding its potential and limitations. We demonstrate how the MERRA and MERRA-2 global meteorological reanalyses as well as the Meteosat-based CM-SAF SARAH satellite dataset can be used to produce hourly PV simulations across Europe. To validate these simulations, we gather metered time series from more than 1000 PV systems as well as national aggregate output reported by transmission network operators. We find slightly better accuracy from satellite data, but greater stability from reanalysis data. We correct for systematic bias by matching our simulations to the mean bias in modeling individual sites, then examine the long-term patterns, variability and correlation with power demand across Europe, using thirty years of simulated outputs. The results quantify how the increasing deployment of PV substantially changes net power demand and affects system adequacy and ramping requirements, with heterogeneous impacts across different European countries. The simulation code and the hourly simulations for all European countries are available freely via an interactive web platform, www.renewables.ninja. ISSN:0360-5442 ISSN:1873-6785 Energy, 114
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2016License: CC BYFull-Text: http://hdl.handle.net/10044/1/39122Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2016Data sources: Spiral - Imperial College Digital Repositoryhttp://dx.doi.org/https://doi....Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2016.08.060&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1K citations 1,094 popularity Top 0.01% influence Top 0.1% impulse Top 0.1% Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2016License: CC BYFull-Text: http://hdl.handle.net/10044/1/39122Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2016Data sources: Spiral - Imperial College Digital Repositoryhttp://dx.doi.org/https://doi....Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2016.08.060&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Embargo end date: 01 Jan 2021 Switzerland, NetherlandsPublisher:IOP Publishing Funded by:EC | SENTINELEC| SENTINELAuthors: Stefan Pfenninger; Stefan Pfenninger; Jan Wohland; David Brayshaw;Abstract To reach its goal of net greenhouse gas neutrality by 2050, the European Union seeks to massively expand wind and solar power. Relying on weather-dependent power generation, however, poses substantial risks if climate variability is not adequately understood and accounted for in energy system design. Here we quantify European wind and solar generation variability over the last century, finding that both vary on a multidecadal scale, but wind more strongly. We identify hotspots and study dominant patterns of (co-)variability, finding that solar generation varies mostly uniformly across Europe while the leading wind variability modes reveal cross-border balancing potential. Combined wind and solar power generation in the current European system exhibits multidecadal variability of around 5% and can be further reduced through European cooperation or locally optimized wind shares, albeit the latter comes at the expense of significantly enhancing seasonal to interannual variability. Improved spatial planning therefore offers multiple options to mitigate long-term renewable generation variability but requires careful assessments of the trade-offs between climate-induced variations on different timescales.
CORE arrow_drop_down Environmental Research LettersArticle . 2021 . Peer-reviewedData sources: European Union Open Data PortalDelft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abff89&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 17visibility views 17 download downloads 8 Powered bymore_vert CORE arrow_drop_down Environmental Research LettersArticle . 2021 . Peer-reviewedData sources: European Union Open Data PortalDelft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abff89&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Springer Science and Business Media LLC Authors: Stefan Pfenninger;doi: 10.1038/542393a
pmid: 28230147
Public trust demands greater openness from those whose research is used to set policy, argues Stefan Pfenninger.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/542393a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 96 citations 96 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/542393a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2024 United KingdomPublisher:Springer Science and Business Media LLC Authors: Iain Staffell; Stefan Pfenninger; Nathan Johnson;handle: 10044/1/109787
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2024License: CC BYFull-Text: http://hdl.handle.net/10044/1/109787Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-023-01448-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2024License: CC BYFull-Text: http://hdl.handle.net/10044/1/109787Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-023-01448-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 NetherlandsPublisher:IOP Publishing Funded by:EC | JustWind4All, NWO | New Energy and mobility O...EC| JustWind4All ,NWO| New Energy and mobility Outlook for the Netherlands (NEON)Hidde Vos; Francesco Lombardi; Rishikesh Joshi; Roland Schmehl; Stefan Pfenninger;Abstract Novel wind technologies, in particular airborne wind energy (AWE) and floating offshore wind turbines, have the potential to unlock untapped wind resources and contribute to power system stability in unique ways. So far, the techno-economic potential of both technologies has only been investigated at a small scale, whereas the most significant benefits will likely play out on a system scale. Given the urgency of the energy transition, the possible contribution of these novel technologies should be addressed. Therefore, we investigate the main system-level trade-offs in integrating AWE systems and floating wind turbines into a highly renewable future energy system. To do so, we develop a modelling workflow that integrates wind resource assessment and future cost and performance estimations into a large-scale energy system model, which finds cost-optimal system designs that are operationally feasible with hourly temporal resolution across ten countries in the North Sea region. Acknowledging the uncertainty on AWE systems’ future costs and performance and floating wind turbines, we examine a broad range of cost and technology development scenarios and identify which insights are consistent across different possible futures. We find that onshore AWE outperforms conventional onshore wind regarding system-wide benefits due to higher wind resource availability and distinctive hourly generation profiles, which are sometimes complementary to conventional onshore turbines. The achievable power density per ground surface area is the main limiting factor in large-scale onshore AWE deployment. Offshore AWE, in contrast, provides system benefits similar to those of offshore wind alternatives. Therefore, deployment is primarily driven by cost competitiveness. Floating wind turbines achieve higher performance than conventional wind turbines, so they can cost more and remain competitive. AWE, in particular, might be able to play a significant role in a climate-neutral European energy supply and thus warrants further study.
Environmental Resear... arrow_drop_down Environmental Research: EnergyArticle . 2024 . Peer-reviewedData sources: European Union Open Data PortalDelft University of Technology: Institutional RepositoryArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2753-3751/ad3fbc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Environmental Resear... arrow_drop_down Environmental Research: EnergyArticle . 2024 . Peer-reviewedData sources: European Union Open Data PortalDelft University of Technology: Institutional RepositoryArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2753-3751/ad3fbc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 NetherlandsPublisher:Elsevier BV Jannis Langer; Sergio Simanjuntak; Stefan Pfenninger; Antonio Jarquin Laguna; George Lavidas; Henk Polinder; Jaco Quist; Harkunti Pertiwi Rahayu; Kornelis Blok;The current focus of offshore wind industry and academia lies on regions with strong winds, neglecting areas with mild resources. Photovoltaics' cost reductions have shown that even mild resources can be harnessed economically, especially where electricity prices are high. Here, we study the technical and economic potential of offshore wind power in Indonesia as an example of mild-resource areas, using bias-corrected ERA5 data, turbine-specific power curves, and a detailed cost model. We show that low-wind-speed turbines could produce up to 6,816 TWh/year, which is 25 times Indonesia's electricity generation in 2018 and 3 times the projected 2050 generation, and up to 166 PWh/year globally. Although not yet competitive against current offshore turbines, low-wind turbines could become a crucial piece of the global climate mitigation effort in regions with vast marine areas and high electricity prices. As low-wind-speed turbines are not yet on the market, we recommend prioritizing their development.
iScience arrow_drop_down Delft University of Technology: Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.isci.2022.104945&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 7visibility views 7 download downloads 8 Powered bymore_vert iScience arrow_drop_down Delft University of Technology: Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.isci.2022.104945&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 NetherlandsPublisher:IOP Publishing Authors: Stefan Pfenninger;Abstract Energy system models do not represent natural processes but are assumption-laden representations of complex engineered systems, making validation practically impossible. Post-normal science argues that in such cases, it is important to communicate embedded values and uncertainties, rather than establishing whether a model is ‘true’ or ‘correct’. Here, we examine how open energy modelling can achieve this aim by thinking about what ‘a model’ is and how it can be broken up into manageable parts. Collaboration on such building blocks—whether they are primarily code or primarily data—could become a bigger focus area for the energy modelling community. This collaboration may also include harmonisation and intercomparison of building blocks, rather than full models themselves. The aim is understandability, which will make life easier for modellers themselves (by making it easier to develop and apply problem-specific models) as well as for users far away from the modelling process (by making it easier to understand what is qualitatively happening in a model—without putting undue burden on the modellers to document every detail).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2516-1083/ad371e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2516-1083/ad371e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Embargo end date: 01 Jan 2017 Germany, Germany, Switzerland, United KingdomPublisher:Elsevier BV Funded by:EC | DESERTECTIONEC| DESERTECTIONPfenninger, S; DeCarolis, J; Hirth, L; Quoilin, S; Staffell, I;handle: 10044/1/56796
Energy Policy, 101 ISSN:0301-4215
Hertie School Resear... arrow_drop_down Hertie School Research RepositoryArticle . 2016License: CC BYData sources: Hertie School Research RepositoryImperial College London: SpiralArticle . 2016License: CC BYFull-Text: http://hdl.handle.net/10044/1/56796Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2016Data sources: Spiral - Imperial College Digital Repositoryhttp://dx.doi.org/https://doi....Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2016.11.046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 266 citations 266 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Hertie School Resear... arrow_drop_down Hertie School Research RepositoryArticle . 2016License: CC BYData sources: Hertie School Research RepositoryImperial College London: SpiralArticle . 2016License: CC BYFull-Text: http://hdl.handle.net/10044/1/56796Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2016Data sources: Spiral - Imperial College Digital Repositoryhttp://dx.doi.org/https://doi....Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2016.11.046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Springer Science and Business Media LLC Martin Wild; Stefan Pfenninger; Doris Folini; Bob van der Zwaan; Bob van der Zwaan; Bob van der Zwaan; Bart Sweerts; Bart Sweerts; Su Yang; Su Yang;In the version of this Article originally published, the units of ‘Total electricity yield’ and ‘Potential electricity gain’ in Table 1 were incorrectly presented as GWh yr–1; they should have been TWh yr–1. These errors have now been corrected.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-019-0445-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-019-0445-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 ItalyPublisher:Elsevier BV Authors: Lombardi, Francesco; Pickering, Bryn; Colombo, Emanuela; Pfenninger, Stefan;handle: 11311/1152608
Summary Designing highly renewable power systems involves a number of contested decisions, such as where to locate generation and transmission capacity. Yet, it is common to use a single result from a cost-minimizing energy system model to inform planning. This neglects many more alternative results, which might, for example, avoid problematic concentrations of technology capacity in any one region. To explore such alternatives, we develop a method to generate spatially explicit, practically optimal results (SPORES). Applying SPORES to Italy, we find that only photovoltaic and storage technologies are vital components for decarbonizing the power system by 2050; other decisions, such as locating wind power, allow flexibility of choice. Most alternative configurations are insensitive to cost and demand uncertainty, while dealing with adverse weather requires excess renewable generation and storage capacities. For policymakers, the approach can provide spatially detailed power system transformation options that enable decisions that are socially and politically acceptable.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.joule.2020.08.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 84 citations 84 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.joule.2020.08.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Embargo end date: 01 Jan 2016 Switzerland, United KingdomPublisher:Elsevier BV Funded by:UKRI | UK Energy Research Centre..., EC | DESERTECTIONUKRI| UK Energy Research Centre Phase 3 ,EC| DESERTECTIONAuthors: Pfenninger, Stefan; Staffell, Iain;handle: 10044/1/39122
Solar PV is rapidly growing globally, creating difficult questions around how to efficiently integrate it into national electricity grids. Its time-varying power output is difficult to model credibly because it depends on complex and variable weather systems, leading to difficulty in understanding its potential and limitations. We demonstrate how the MERRA and MERRA-2 global meteorological reanalyses as well as the Meteosat-based CM-SAF SARAH satellite dataset can be used to produce hourly PV simulations across Europe. To validate these simulations, we gather metered time series from more than 1000 PV systems as well as national aggregate output reported by transmission network operators. We find slightly better accuracy from satellite data, but greater stability from reanalysis data. We correct for systematic bias by matching our simulations to the mean bias in modeling individual sites, then examine the long-term patterns, variability and correlation with power demand across Europe, using thirty years of simulated outputs. The results quantify how the increasing deployment of PV substantially changes net power demand and affects system adequacy and ramping requirements, with heterogeneous impacts across different European countries. The simulation code and the hourly simulations for all European countries are available freely via an interactive web platform, www.renewables.ninja. ISSN:0360-5442 ISSN:1873-6785 Energy, 114
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2016License: CC BYFull-Text: http://hdl.handle.net/10044/1/39122Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2016Data sources: Spiral - Imperial College Digital Repositoryhttp://dx.doi.org/https://doi....Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2016.08.060&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1K citations 1,094 popularity Top 0.01% influence Top 0.1% impulse Top 0.1% Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2016License: CC BYFull-Text: http://hdl.handle.net/10044/1/39122Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2016Data sources: Spiral - Imperial College Digital Repositoryhttp://dx.doi.org/https://doi....Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2016.08.060&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Embargo end date: 01 Jan 2021 Switzerland, NetherlandsPublisher:IOP Publishing Funded by:EC | SENTINELEC| SENTINELAuthors: Stefan Pfenninger; Stefan Pfenninger; Jan Wohland; David Brayshaw;Abstract To reach its goal of net greenhouse gas neutrality by 2050, the European Union seeks to massively expand wind and solar power. Relying on weather-dependent power generation, however, poses substantial risks if climate variability is not adequately understood and accounted for in energy system design. Here we quantify European wind and solar generation variability over the last century, finding that both vary on a multidecadal scale, but wind more strongly. We identify hotspots and study dominant patterns of (co-)variability, finding that solar generation varies mostly uniformly across Europe while the leading wind variability modes reveal cross-border balancing potential. Combined wind and solar power generation in the current European system exhibits multidecadal variability of around 5% and can be further reduced through European cooperation or locally optimized wind shares, albeit the latter comes at the expense of significantly enhancing seasonal to interannual variability. Improved spatial planning therefore offers multiple options to mitigate long-term renewable generation variability but requires careful assessments of the trade-offs between climate-induced variations on different timescales.
CORE arrow_drop_down Environmental Research LettersArticle . 2021 . Peer-reviewedData sources: European Union Open Data PortalDelft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abff89&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 17visibility views 17 download downloads 8 Powered bymore_vert CORE arrow_drop_down Environmental Research LettersArticle . 2021 . Peer-reviewedData sources: European Union Open Data PortalDelft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abff89&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Springer Science and Business Media LLC Authors: Stefan Pfenninger;doi: 10.1038/542393a
pmid: 28230147
Public trust demands greater openness from those whose research is used to set policy, argues Stefan Pfenninger.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/542393a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 96 citations 96 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/542393a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu