- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2017 FrancePublisher:Wiley Lepetit, Thomas; Harel, Sylvie; Arzel, Ludovic; Ouvrard, Guy; Barreau, Nicolas;doi: 10.1002/pip.2924
AbstractRecent breakthroughs in Cu(In,Ga)Se2 (CIGS) thin film solar cell energy conversion efficiency are related to the application of a potassium fluoride post‐deposition treatment (KF‐PDT) to the completed absorber. Using X‐ray photoelectron spectroscopy and Raman scattering, we compare CIGS layers prior and after the KF‐PDT in the case of a deterioration and an improvement of the solar cells photovoltaic performance. The purpose is to study and model the modification of the surface in both cases and address some of the required characteristics of the absorber, grown on soda lime glass by 3‐stage process, in order to take advantage of the treatment. We show that, in both cases, KF‐PDT induces the formation of GaF3, which is removed during the subsequent chemical bath deposition of CdS, explaining the Ga depleted absorber surface, already reported in literature. However, the presence or not of an ordered defect compound (ODC), correlated with the third stage duration during the CIGS growth, is shown to be crucial in the modifications of the surface induced by the treatment. When an ODC is present prior the treatment, KF‐PDT leads to the formation of a surface layer of In2Se3 containing K, and the photovoltaic performance of completed solar cells are improved. When no ODC is present prior KF‐PDT, no trace of K is found at the absorber surface after the treatment, copper (Cu) segregates into detrimental CuxSe phases, high amount of elemental Se is formed, and the photovoltaic performance are lowered. The role of the ODC during the KF‐PDT is finally discussed.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverProgress in Photovoltaics Research and ApplicationsArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversité de Nantes: HAL-UNIV-NANTESArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.2924&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu59 citations 59 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverProgress in Photovoltaics Research and ApplicationsArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversité de Nantes: HAL-UNIV-NANTESArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.2924&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 FrancePublisher:Wiley Lepetit, Thomas; Harel, Sylvie; Arzel, Ludovic; Ouvrard, Guy; Barreau, Nicolas;doi: 10.1002/pip.2924
AbstractRecent breakthroughs in Cu(In,Ga)Se2 (CIGS) thin film solar cell energy conversion efficiency are related to the application of a potassium fluoride post‐deposition treatment (KF‐PDT) to the completed absorber. Using X‐ray photoelectron spectroscopy and Raman scattering, we compare CIGS layers prior and after the KF‐PDT in the case of a deterioration and an improvement of the solar cells photovoltaic performance. The purpose is to study and model the modification of the surface in both cases and address some of the required characteristics of the absorber, grown on soda lime glass by 3‐stage process, in order to take advantage of the treatment. We show that, in both cases, KF‐PDT induces the formation of GaF3, which is removed during the subsequent chemical bath deposition of CdS, explaining the Ga depleted absorber surface, already reported in literature. However, the presence or not of an ordered defect compound (ODC), correlated with the third stage duration during the CIGS growth, is shown to be crucial in the modifications of the surface induced by the treatment. When an ODC is present prior the treatment, KF‐PDT leads to the formation of a surface layer of In2Se3 containing K, and the photovoltaic performance of completed solar cells are improved. When no ODC is present prior KF‐PDT, no trace of K is found at the absorber surface after the treatment, copper (Cu) segregates into detrimental CuxSe phases, high amount of elemental Se is formed, and the photovoltaic performance are lowered. The role of the ODC during the KF‐PDT is finally discussed.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverProgress in Photovoltaics Research and ApplicationsArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversité de Nantes: HAL-UNIV-NANTESArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.2924&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu59 citations 59 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverProgress in Photovoltaics Research and ApplicationsArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversité de Nantes: HAL-UNIV-NANTESArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.2924&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 FrancePublisher:Wiley Buffiere, Marie; Barreau, Nicolas; Arzel, Ludovic; Zabierowski, Pawel; Kessler, John;doi: 10.1002/pip.2451
AbstractChemical bath deposited (CBD)Zn(S,O,OH) is among the alternatives to (CBD)CdS buffer layers in Cu(In,Ga)Se2(CIGSe)‐based devices. Nevertheless, the performances reached by devices buffered with (CBD)Zn(S,O,OH) vary strongly from one sample to another and from one laboratory to another, indicating that parameters of minority impact with (CBD)CdS‐buffered devices have major influence when buffered with (CBD)Zn(S,O,OH). Moreover, the literature reports, but not systematically, the requirement of substituting the standard resistive intrinsic ZnO by (Zn,Mg)O and/or soaking the devices in ultraviolet‐containing light in order to reach optimal device operation. The present study investigates the impact of the three following parameters on the optoelectronic behavior of the Cu(In,Ga)Se2/(CBD)Zn(S,O,OH)/i‐ZnO‐based solar cells: (i) CIGSe surface composition; (ii) (CBD)Zn(S,O,OH) layer thickness; and (iii) i‐ZnO layer resistivity. The first conclusion of this study is that all of these parameters are observed to influence the electrical metastabilities of the devices. The second conclusion is that the light soaking time needed to achieve optimal photovoltaic parameters is decreased by (i) using absorbers with Cu content close to stoichiometry, (ii) increasing the buffer layer thickness, and (iii) increasing the resistivity of i‐ZnO. By optimizing these trends, stable and highly efficient Zn(S,O,OH)‐buffered CIGSe solar cells have been fabricated. Copyright © 2014 John Wiley & Sons, Ltd.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2015Data sources: INRIA a CCSD electronic archive serverProgress in Photovoltaics Research and ApplicationsArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefProgress in Photovoltaics Research and ApplicationsArticle . 2015Data sources: WUT Base of KnowledgeUniversité de Nantes: HAL-UNIV-NANTESArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.2451&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2015Data sources: INRIA a CCSD electronic archive serverProgress in Photovoltaics Research and ApplicationsArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefProgress in Photovoltaics Research and ApplicationsArticle . 2015Data sources: WUT Base of KnowledgeUniversité de Nantes: HAL-UNIV-NANTESArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.2451&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 FrancePublisher:Wiley Buffiere, Marie; Barreau, Nicolas; Arzel, Ludovic; Zabierowski, Pawel; Kessler, John;doi: 10.1002/pip.2451
AbstractChemical bath deposited (CBD)Zn(S,O,OH) is among the alternatives to (CBD)CdS buffer layers in Cu(In,Ga)Se2(CIGSe)‐based devices. Nevertheless, the performances reached by devices buffered with (CBD)Zn(S,O,OH) vary strongly from one sample to another and from one laboratory to another, indicating that parameters of minority impact with (CBD)CdS‐buffered devices have major influence when buffered with (CBD)Zn(S,O,OH). Moreover, the literature reports, but not systematically, the requirement of substituting the standard resistive intrinsic ZnO by (Zn,Mg)O and/or soaking the devices in ultraviolet‐containing light in order to reach optimal device operation. The present study investigates the impact of the three following parameters on the optoelectronic behavior of the Cu(In,Ga)Se2/(CBD)Zn(S,O,OH)/i‐ZnO‐based solar cells: (i) CIGSe surface composition; (ii) (CBD)Zn(S,O,OH) layer thickness; and (iii) i‐ZnO layer resistivity. The first conclusion of this study is that all of these parameters are observed to influence the electrical metastabilities of the devices. The second conclusion is that the light soaking time needed to achieve optimal photovoltaic parameters is decreased by (i) using absorbers with Cu content close to stoichiometry, (ii) increasing the buffer layer thickness, and (iii) increasing the resistivity of i‐ZnO. By optimizing these trends, stable and highly efficient Zn(S,O,OH)‐buffered CIGSe solar cells have been fabricated. Copyright © 2014 John Wiley & Sons, Ltd.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2015Data sources: INRIA a CCSD electronic archive serverProgress in Photovoltaics Research and ApplicationsArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefProgress in Photovoltaics Research and ApplicationsArticle . 2015Data sources: WUT Base of KnowledgeUniversité de Nantes: HAL-UNIV-NANTESArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.2451&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2015Data sources: INRIA a CCSD electronic archive serverProgress in Photovoltaics Research and ApplicationsArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefProgress in Photovoltaics Research and ApplicationsArticle . 2015Data sources: WUT Base of KnowledgeUniversité de Nantes: HAL-UNIV-NANTESArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.2451&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2019 France, FrancePublisher:EDP Sciences Lorthioir, Justine; Arzel, Ludovic; Ginestar, Stéphane; Assmann, Lionel; Barreau, Nicolas;An alternative to conventional Cu(In,Ga)Se2 module structure is proposed and experimentally investigated. This alternative module structure, which consists in applying metallic buses to connect monolithically adjacent cells in series, is likely to offer the opportunity of minimizing both optical and electrical losses observed in conventional module structure compared to small area cells. The fabrication process of such alternative modules is presented. The performances achieved are discussed in comparison with a standard small-area-cell elaborated simultaneously. Despite slightly lower output voltage per cell, the alternative module structure demonstrates an efficiency of 17.2% (with 81% fill factor), against 16.4% (with 75% fill factor) for the standard cell. This promising result opens new routes to decrease the gap observed between small-area-cells and industrial modules.
Hyper Article en Lig... arrow_drop_down Université de Nantes: HAL-UNIV-NANTESArticle . 2019Full-Text: https://hal.science/hal-02271134Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/epjpv/2019003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Université de Nantes: HAL-UNIV-NANTESArticle . 2019Full-Text: https://hal.science/hal-02271134Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/epjpv/2019003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2019 France, FrancePublisher:EDP Sciences Lorthioir, Justine; Arzel, Ludovic; Ginestar, Stéphane; Assmann, Lionel; Barreau, Nicolas;An alternative to conventional Cu(In,Ga)Se2 module structure is proposed and experimentally investigated. This alternative module structure, which consists in applying metallic buses to connect monolithically adjacent cells in series, is likely to offer the opportunity of minimizing both optical and electrical losses observed in conventional module structure compared to small area cells. The fabrication process of such alternative modules is presented. The performances achieved are discussed in comparison with a standard small-area-cell elaborated simultaneously. Despite slightly lower output voltage per cell, the alternative module structure demonstrates an efficiency of 17.2% (with 81% fill factor), against 16.4% (with 75% fill factor) for the standard cell. This promising result opens new routes to decrease the gap observed between small-area-cells and industrial modules.
Hyper Article en Lig... arrow_drop_down Université de Nantes: HAL-UNIV-NANTESArticle . 2019Full-Text: https://hal.science/hal-02271134Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/epjpv/2019003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Université de Nantes: HAL-UNIV-NANTESArticle . 2019Full-Text: https://hal.science/hal-02271134Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/epjpv/2019003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2006 FrancePublisher:Elsevier BV Barreau, Nicolas; Deudon, C.; Lafond, A.; Gall, S.; Kessler, John;Abstract The structural and optical properties of NaxCu1−xIn5S8 powders, with x = 0 , 0.25, 0.5, 0.75 and 1, are determined. It is shown that all of the samples have the same crystalline structure, which indicates the existence of a solid solution over the whole range of x (i.e. 0 ⩽ x ⩽ 1 ). The increase of the optical band gap of these compounds is found to be linear between x = 0 ( E g = 1.5 0 eV ) and x = 0.7 5 (1.85 eV), whereas for x = 1 (i.e. NaIn5S8) Eg is found to be 2.40 eV, which is much higher than the value expected from the linear slope. Such an evolution shows that the copper and the sodium weigh differently on the optical properties of the material. In thin film solar cells with indium sulfide buffer layer, NaxCu1−xIn5S8 compounds are formed at the Cu(In,Ga)Se2/In2S3 interface. The impact of their properties, here determined, on these thin film solar cells is discussed.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2006Data sources: INRIA a CCSD electronic archive serverSolar Energy Materials and Solar CellsArticle . 2006 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversité de Nantes: HAL-UNIV-NANTESArticle . 2006Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2005.11.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2006Data sources: INRIA a CCSD electronic archive serverSolar Energy Materials and Solar CellsArticle . 2006 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversité de Nantes: HAL-UNIV-NANTESArticle . 2006Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2005.11.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2006 FrancePublisher:Elsevier BV Barreau, Nicolas; Deudon, C.; Lafond, A.; Gall, S.; Kessler, John;Abstract The structural and optical properties of NaxCu1−xIn5S8 powders, with x = 0 , 0.25, 0.5, 0.75 and 1, are determined. It is shown that all of the samples have the same crystalline structure, which indicates the existence of a solid solution over the whole range of x (i.e. 0 ⩽ x ⩽ 1 ). The increase of the optical band gap of these compounds is found to be linear between x = 0 ( E g = 1.5 0 eV ) and x = 0.7 5 (1.85 eV), whereas for x = 1 (i.e. NaIn5S8) Eg is found to be 2.40 eV, which is much higher than the value expected from the linear slope. Such an evolution shows that the copper and the sodium weigh differently on the optical properties of the material. In thin film solar cells with indium sulfide buffer layer, NaxCu1−xIn5S8 compounds are formed at the Cu(In,Ga)Se2/In2S3 interface. The impact of their properties, here determined, on these thin film solar cells is discussed.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2006Data sources: INRIA a CCSD electronic archive serverSolar Energy Materials and Solar CellsArticle . 2006 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversité de Nantes: HAL-UNIV-NANTESArticle . 2006Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2005.11.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2006Data sources: INRIA a CCSD electronic archive serverSolar Energy Materials and Solar CellsArticle . 2006 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversité de Nantes: HAL-UNIV-NANTESArticle . 2006Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2005.11.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 FrancePublisher:Elsevier BV Barreau, Nicolas; Lahnemann, J.; Couzinie-Devy, F.; Assmann, L.; Patricia, Bertoncini; Kessler, John;The amount of copper excess provided during the Cu(In,Ga)Se2 (CIGSe) 3-stage co-evaporation process is among the most operator subjective. In the present paper the influence of this parameter on the properties of the CIGSe films as well as on the behaviour of the related solar cells is investigated. It is observed that both the In/Ga lateral intermixing and the grain size are enhanced when the excess of copper is increased. Contrary to what could be expected, these changes only weakly affect the performance of the solar cells. Increasing the copper excess also yields a rougher CIGSe morphology. This latter evolution is observed to be the most important factor influencing the device behaviour. Through accurate analysis of quantum efficiency, it is concluded that, in the case of the standard cell structure, there exists a threshold in copper excess, beyond which the cell performance is significantly reduced.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2009Data sources: INRIA a CCSD electronic archive serverSolar Energy Materials and Solar CellsArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversité de Nantes: HAL-UNIV-NANTESArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2009.08.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2009Data sources: INRIA a CCSD electronic archive serverSolar Energy Materials and Solar CellsArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversité de Nantes: HAL-UNIV-NANTESArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2009.08.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 FrancePublisher:Elsevier BV Barreau, Nicolas; Lahnemann, J.; Couzinie-Devy, F.; Assmann, L.; Patricia, Bertoncini; Kessler, John;The amount of copper excess provided during the Cu(In,Ga)Se2 (CIGSe) 3-stage co-evaporation process is among the most operator subjective. In the present paper the influence of this parameter on the properties of the CIGSe films as well as on the behaviour of the related solar cells is investigated. It is observed that both the In/Ga lateral intermixing and the grain size are enhanced when the excess of copper is increased. Contrary to what could be expected, these changes only weakly affect the performance of the solar cells. Increasing the copper excess also yields a rougher CIGSe morphology. This latter evolution is observed to be the most important factor influencing the device behaviour. Through accurate analysis of quantum efficiency, it is concluded that, in the case of the standard cell structure, there exists a threshold in copper excess, beyond which the cell performance is significantly reduced.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2009Data sources: INRIA a CCSD electronic archive serverSolar Energy Materials and Solar CellsArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversité de Nantes: HAL-UNIV-NANTESArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2009.08.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2009Data sources: INRIA a CCSD electronic archive serverSolar Energy Materials and Solar CellsArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversité de Nantes: HAL-UNIV-NANTESArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2009.08.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 FrancePublisher:Wiley Bommersbach, P.; Arzel, Ludovic; Tomassini, M.; Gautron, E.; Leyder, C.; Urien, M.; Dupuy, D.; Barreau, Nicolas;doi: 10.1002/pip.1193
ABSTRACTThe present study aims at investigating the influence of Ar sputtering gas pressure on the properties of molybdenum back contact (deposited on soda‐lime glass) and consequences on co‐evaporated Cu(In,Ga)Se2(CIGSe) absorber layer and related solar cell. Films 300 nm thick have been grown with argon pressure between 0·75 and 11·25 mTorr; these films have been characterized by several techniques showing that the increase of the sputtering pressure yields wider amorphous areas, containing oxygen and sodium, between the molybdenum grains, thus higher sheet resistance. The volume ratio of these amorphous areas is referenced to as “porosity”. The structural and morphological properties of co‐evaporated CIGSe have not been reliably observed influenced by the molybdenum porosity; the only noticeable change is the sodium content of the absorber, which increases with the porosity of the back contact. The impact of the amount of sodium on the device performance has been observed to be very important. On the one hand, as already reported, sodium is beneficial for the open‐circuit voltage. On the other hand, a too high amount of sodium is detrimental for the fill factor (hindered shunt resistance), thus the cell efficiency; this latter observation is interpreted as a change in the grain boundary electrical properties. Copyright © 2011 John Wiley & Sons, Ltd.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverProgress in Photovoltaics Research and ApplicationsArticle . 2011 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversité de Nantes: HAL-UNIV-NANTESArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.1193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverProgress in Photovoltaics Research and ApplicationsArticle . 2011 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversité de Nantes: HAL-UNIV-NANTESArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.1193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 FrancePublisher:Wiley Bommersbach, P.; Arzel, Ludovic; Tomassini, M.; Gautron, E.; Leyder, C.; Urien, M.; Dupuy, D.; Barreau, Nicolas;doi: 10.1002/pip.1193
ABSTRACTThe present study aims at investigating the influence of Ar sputtering gas pressure on the properties of molybdenum back contact (deposited on soda‐lime glass) and consequences on co‐evaporated Cu(In,Ga)Se2(CIGSe) absorber layer and related solar cell. Films 300 nm thick have been grown with argon pressure between 0·75 and 11·25 mTorr; these films have been characterized by several techniques showing that the increase of the sputtering pressure yields wider amorphous areas, containing oxygen and sodium, between the molybdenum grains, thus higher sheet resistance. The volume ratio of these amorphous areas is referenced to as “porosity”. The structural and morphological properties of co‐evaporated CIGSe have not been reliably observed influenced by the molybdenum porosity; the only noticeable change is the sodium content of the absorber, which increases with the porosity of the back contact. The impact of the amount of sodium on the device performance has been observed to be very important. On the one hand, as already reported, sodium is beneficial for the open‐circuit voltage. On the other hand, a too high amount of sodium is detrimental for the fill factor (hindered shunt resistance), thus the cell efficiency; this latter observation is interpreted as a change in the grain boundary electrical properties. Copyright © 2011 John Wiley & Sons, Ltd.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverProgress in Photovoltaics Research and ApplicationsArticle . 2011 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversité de Nantes: HAL-UNIV-NANTESArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.1193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverProgress in Photovoltaics Research and ApplicationsArticle . 2011 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversité de Nantes: HAL-UNIV-NANTESArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.1193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 NetherlandsPublisher:Elsevier BV Theelen, M.; Hendrikx, R.; Barreau, N.; Steijvers, H.; Böttger, A.;Unencapsulated CIGS solar cells were simultaneously exposed to damp heat and illumination. In-situ monitoring of their electrical parameters demonstrated a rapid decrease of the efficiency, mainly driven by changes in the series and shunt resistances. The non-degraded and degraded solar cells were studied by SIMS and XRD to investigate the material changes leading to efficiency loss. SIMS showed the migration of sodium and potassium, likely leading to changes in the shunt resistance and output voltage. Extensive XRD measurements showed that molybdenum oxide was formed and that the in-plane stress in the ZnO:Al film increased. The stress increase is most likely due to the incorporation of species like hydroxide in the grain boundaries. These phenomena could lead to the observed increased series resistance in the solar cells.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefDANS (Data Archiving and Networked Services)Article . 2016Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2016.07.051&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefDANS (Data Archiving and Networked Services)Article . 2016Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2016.07.051&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 NetherlandsPublisher:Elsevier BV Theelen, M.; Hendrikx, R.; Barreau, N.; Steijvers, H.; Böttger, A.;Unencapsulated CIGS solar cells were simultaneously exposed to damp heat and illumination. In-situ monitoring of their electrical parameters demonstrated a rapid decrease of the efficiency, mainly driven by changes in the series and shunt resistances. The non-degraded and degraded solar cells were studied by SIMS and XRD to investigate the material changes leading to efficiency loss. SIMS showed the migration of sodium and potassium, likely leading to changes in the shunt resistance and output voltage. Extensive XRD measurements showed that molybdenum oxide was formed and that the in-plane stress in the ZnO:Al film increased. The stress increase is most likely due to the incorporation of species like hydroxide in the grain boundaries. These phenomena could lead to the observed increased series resistance in the solar cells.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefDANS (Data Archiving and Networked Services)Article . 2016Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2016.07.051&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefDANS (Data Archiving and Networked Services)Article . 2016Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2016.07.051&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Netherlands, FrancePublisher:AIP Publishing Theelen, M.; Liakopoulou, A.; Hans, V.; Daume, F.; Steijvers, H.; Barreau, N.; Vroon, Z.; Zeman, M.;doi: 10.1063/1.4979963
Two types of Cu(In,Ga)Se2 (CIGS) solar cells, both designed for implementation in CIGS modules, were subjected to temperatures between 25 ºC and 105 ºC. Simultaneous exposure to AM1.5 illumination allowed the measurement of their electrical parameters at these temperatures. These two types of solar cells, produced with different deposition routes on soda lime glass (SLG) and polyimide (PI) substrates, showed large variations in the temperature dependency of their electrical parameters. It was shown that the temperature dependency of the open circuit voltage (Voc) was dependent on its room temperature value: a high Voc at 25 °C led to a slower loss of Voc when the temperature was increased. For the Voc, the normalised temperature dependency varied between −0.28%/°C and −0.47%/°C, which is in agreement with the literature. The temperature dependency of the short circuit current density (Jsc) showed more surprising results: while the PI samples had the expected positive temperature dependency (0.03 to 0.32%/°C), the SLG samples showed a small negative impact of increasing temperature (−0.01 to −0.05%/°C). A correlation between the temperature dependencies of the Jsc and the ideality factor n was observed. Therefore, this difference in the temperature dependence of the Jsc could be caused by increased recombination for the SLG samples. Furthermore, the temperature coefficients of the fill factor (negative), efficiency (negative), and the series (slightly negative) and shunt (negative) resistances were calculated.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverDANS (Data Archiving and Networked Services)Article . 2017Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.4979963&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverDANS (Data Archiving and Networked Services)Article . 2017Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.4979963&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Netherlands, FrancePublisher:AIP Publishing Theelen, M.; Liakopoulou, A.; Hans, V.; Daume, F.; Steijvers, H.; Barreau, N.; Vroon, Z.; Zeman, M.;doi: 10.1063/1.4979963
Two types of Cu(In,Ga)Se2 (CIGS) solar cells, both designed for implementation in CIGS modules, were subjected to temperatures between 25 ºC and 105 ºC. Simultaneous exposure to AM1.5 illumination allowed the measurement of their electrical parameters at these temperatures. These two types of solar cells, produced with different deposition routes on soda lime glass (SLG) and polyimide (PI) substrates, showed large variations in the temperature dependency of their electrical parameters. It was shown that the temperature dependency of the open circuit voltage (Voc) was dependent on its room temperature value: a high Voc at 25 °C led to a slower loss of Voc when the temperature was increased. For the Voc, the normalised temperature dependency varied between −0.28%/°C and −0.47%/°C, which is in agreement with the literature. The temperature dependency of the short circuit current density (Jsc) showed more surprising results: while the PI samples had the expected positive temperature dependency (0.03 to 0.32%/°C), the SLG samples showed a small negative impact of increasing temperature (−0.01 to −0.05%/°C). A correlation between the temperature dependencies of the Jsc and the ideality factor n was observed. Therefore, this difference in the temperature dependence of the Jsc could be caused by increased recombination for the SLG samples. Furthermore, the temperature coefficients of the fill factor (negative), efficiency (negative), and the series (slightly negative) and shunt (negative) resistances were calculated.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverDANS (Data Archiving and Networked Services)Article . 2017Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.4979963&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverDANS (Data Archiving and Networked Services)Article . 2017Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.4979963&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 FrancePublisher:Elsevier BV Authors: Barreau, Nicolas;Cu(In,Ga)Se-2-based solar cells buffered with indium sulfide grown by numerous techniques have reached efficiencies comparable to those achieved by standard devices buffered with (CBD)CdS. The present paper firstly recalls some of the properties of the indium sulfide single crystal and Points Out the disagreements concerning the thin films properties inventoried in the literature. Secondly, the influence of the presence of some "foreign elements" within file indium sulfide on its properties is presented. It is shown that these "foreign elements", even at low concentration levels, are possibly at the origin or the thin films properties deviations compared to the single crystal. The impact of these contaminants on the solar cells performance is finally discussed.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2009Data sources: INRIA a CCSD electronic archive serverUniversité de Nantes: HAL-UNIV-NANTESArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2008.08.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu162 citations 162 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2009Data sources: INRIA a CCSD electronic archive serverUniversité de Nantes: HAL-UNIV-NANTESArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2008.08.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 FrancePublisher:Elsevier BV Authors: Barreau, Nicolas;Cu(In,Ga)Se-2-based solar cells buffered with indium sulfide grown by numerous techniques have reached efficiencies comparable to those achieved by standard devices buffered with (CBD)CdS. The present paper firstly recalls some of the properties of the indium sulfide single crystal and Points Out the disagreements concerning the thin films properties inventoried in the literature. Secondly, the influence of the presence of some "foreign elements" within file indium sulfide on its properties is presented. It is shown that these "foreign elements", even at low concentration levels, are possibly at the origin or the thin films properties deviations compared to the single crystal. The impact of these contaminants on the solar cells performance is finally discussed.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2009Data sources: INRIA a CCSD electronic archive serverUniversité de Nantes: HAL-UNIV-NANTESArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2008.08.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu162 citations 162 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2009Data sources: INRIA a CCSD electronic archive serverUniversité de Nantes: HAL-UNIV-NANTESArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2008.08.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 FrancePublisher:Wiley Naghavi, Negar; Abou-Ras, D.; Allsop, N.; Barreau, Nicolas; Bucheler, S.; Ennaoui, A.; Fischer, C.H.; Guillen, C.; Hariskos, D.; Herrero, J.; Klenk, R.; Kushiya, K.; Lincot, D.; Menner, R.; Nakada, T.; Platzer-Bjorkman, C.; Spiering, S.; Tiwari, A.N.; Torndahl, T.;doi: 10.1002/pip.955
AbstractThe aim of the present contribution is to give a review on the recent work concerning Cd‐free buffer and window layers in chalcopyrite solar cells using various deposition techniques as well as on their adaptation to chalcopyrite‐type absorbers such as Cu(In,Ga)Se2, CuInS2, or Cu(In,Ga)(S,Se)2. The corresponding solar‐cell performances, the expected technological problems, and current attempts for their commercialization will be discussed. The most important deposition techniques developed in this paper are chemical bath deposition, atomic layer deposition, ILGAR deposition, evaporation, and spray deposition. These deposition methods were employed essentially for buffers based on the following three materials: In2S3, ZnS, Zn1 − xMgxO. Copyright © 2010 John Wiley & Sons, Ltd.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2010Data sources: INRIA a CCSD electronic archive serverProgress in Photovoltaics Research and ApplicationsArticle . 2010 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversité de Nantes: HAL-UNIV-NANTESArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.955&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu319 citations 319 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2010Data sources: INRIA a CCSD electronic archive serverProgress in Photovoltaics Research and ApplicationsArticle . 2010 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversité de Nantes: HAL-UNIV-NANTESArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.955&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 FrancePublisher:Wiley Naghavi, Negar; Abou-Ras, D.; Allsop, N.; Barreau, Nicolas; Bucheler, S.; Ennaoui, A.; Fischer, C.H.; Guillen, C.; Hariskos, D.; Herrero, J.; Klenk, R.; Kushiya, K.; Lincot, D.; Menner, R.; Nakada, T.; Platzer-Bjorkman, C.; Spiering, S.; Tiwari, A.N.; Torndahl, T.;doi: 10.1002/pip.955
AbstractThe aim of the present contribution is to give a review on the recent work concerning Cd‐free buffer and window layers in chalcopyrite solar cells using various deposition techniques as well as on their adaptation to chalcopyrite‐type absorbers such as Cu(In,Ga)Se2, CuInS2, or Cu(In,Ga)(S,Se)2. The corresponding solar‐cell performances, the expected technological problems, and current attempts for their commercialization will be discussed. The most important deposition techniques developed in this paper are chemical bath deposition, atomic layer deposition, ILGAR deposition, evaporation, and spray deposition. These deposition methods were employed essentially for buffers based on the following three materials: In2S3, ZnS, Zn1 − xMgxO. Copyright © 2010 John Wiley & Sons, Ltd.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2010Data sources: INRIA a CCSD electronic archive serverProgress in Photovoltaics Research and ApplicationsArticle . 2010 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversité de Nantes: HAL-UNIV-NANTESArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.955&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu319 citations 319 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2010Data sources: INRIA a CCSD electronic archive serverProgress in Photovoltaics Research and ApplicationsArticle . 2010 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversité de Nantes: HAL-UNIV-NANTESArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.955&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2017 FrancePublisher:Wiley Lepetit, Thomas; Harel, Sylvie; Arzel, Ludovic; Ouvrard, Guy; Barreau, Nicolas;doi: 10.1002/pip.2924
AbstractRecent breakthroughs in Cu(In,Ga)Se2 (CIGS) thin film solar cell energy conversion efficiency are related to the application of a potassium fluoride post‐deposition treatment (KF‐PDT) to the completed absorber. Using X‐ray photoelectron spectroscopy and Raman scattering, we compare CIGS layers prior and after the KF‐PDT in the case of a deterioration and an improvement of the solar cells photovoltaic performance. The purpose is to study and model the modification of the surface in both cases and address some of the required characteristics of the absorber, grown on soda lime glass by 3‐stage process, in order to take advantage of the treatment. We show that, in both cases, KF‐PDT induces the formation of GaF3, which is removed during the subsequent chemical bath deposition of CdS, explaining the Ga depleted absorber surface, already reported in literature. However, the presence or not of an ordered defect compound (ODC), correlated with the third stage duration during the CIGS growth, is shown to be crucial in the modifications of the surface induced by the treatment. When an ODC is present prior the treatment, KF‐PDT leads to the formation of a surface layer of In2Se3 containing K, and the photovoltaic performance of completed solar cells are improved. When no ODC is present prior KF‐PDT, no trace of K is found at the absorber surface after the treatment, copper (Cu) segregates into detrimental CuxSe phases, high amount of elemental Se is formed, and the photovoltaic performance are lowered. The role of the ODC during the KF‐PDT is finally discussed.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverProgress in Photovoltaics Research and ApplicationsArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversité de Nantes: HAL-UNIV-NANTESArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.2924&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu59 citations 59 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverProgress in Photovoltaics Research and ApplicationsArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversité de Nantes: HAL-UNIV-NANTESArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.2924&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 FrancePublisher:Wiley Lepetit, Thomas; Harel, Sylvie; Arzel, Ludovic; Ouvrard, Guy; Barreau, Nicolas;doi: 10.1002/pip.2924
AbstractRecent breakthroughs in Cu(In,Ga)Se2 (CIGS) thin film solar cell energy conversion efficiency are related to the application of a potassium fluoride post‐deposition treatment (KF‐PDT) to the completed absorber. Using X‐ray photoelectron spectroscopy and Raman scattering, we compare CIGS layers prior and after the KF‐PDT in the case of a deterioration and an improvement of the solar cells photovoltaic performance. The purpose is to study and model the modification of the surface in both cases and address some of the required characteristics of the absorber, grown on soda lime glass by 3‐stage process, in order to take advantage of the treatment. We show that, in both cases, KF‐PDT induces the formation of GaF3, which is removed during the subsequent chemical bath deposition of CdS, explaining the Ga depleted absorber surface, already reported in literature. However, the presence or not of an ordered defect compound (ODC), correlated with the third stage duration during the CIGS growth, is shown to be crucial in the modifications of the surface induced by the treatment. When an ODC is present prior the treatment, KF‐PDT leads to the formation of a surface layer of In2Se3 containing K, and the photovoltaic performance of completed solar cells are improved. When no ODC is present prior KF‐PDT, no trace of K is found at the absorber surface after the treatment, copper (Cu) segregates into detrimental CuxSe phases, high amount of elemental Se is formed, and the photovoltaic performance are lowered. The role of the ODC during the KF‐PDT is finally discussed.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverProgress in Photovoltaics Research and ApplicationsArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversité de Nantes: HAL-UNIV-NANTESArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.2924&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu59 citations 59 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverProgress in Photovoltaics Research and ApplicationsArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversité de Nantes: HAL-UNIV-NANTESArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.2924&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 FrancePublisher:Wiley Buffiere, Marie; Barreau, Nicolas; Arzel, Ludovic; Zabierowski, Pawel; Kessler, John;doi: 10.1002/pip.2451
AbstractChemical bath deposited (CBD)Zn(S,O,OH) is among the alternatives to (CBD)CdS buffer layers in Cu(In,Ga)Se2(CIGSe)‐based devices. Nevertheless, the performances reached by devices buffered with (CBD)Zn(S,O,OH) vary strongly from one sample to another and from one laboratory to another, indicating that parameters of minority impact with (CBD)CdS‐buffered devices have major influence when buffered with (CBD)Zn(S,O,OH). Moreover, the literature reports, but not systematically, the requirement of substituting the standard resistive intrinsic ZnO by (Zn,Mg)O and/or soaking the devices in ultraviolet‐containing light in order to reach optimal device operation. The present study investigates the impact of the three following parameters on the optoelectronic behavior of the Cu(In,Ga)Se2/(CBD)Zn(S,O,OH)/i‐ZnO‐based solar cells: (i) CIGSe surface composition; (ii) (CBD)Zn(S,O,OH) layer thickness; and (iii) i‐ZnO layer resistivity. The first conclusion of this study is that all of these parameters are observed to influence the electrical metastabilities of the devices. The second conclusion is that the light soaking time needed to achieve optimal photovoltaic parameters is decreased by (i) using absorbers with Cu content close to stoichiometry, (ii) increasing the buffer layer thickness, and (iii) increasing the resistivity of i‐ZnO. By optimizing these trends, stable and highly efficient Zn(S,O,OH)‐buffered CIGSe solar cells have been fabricated. Copyright © 2014 John Wiley & Sons, Ltd.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2015Data sources: INRIA a CCSD electronic archive serverProgress in Photovoltaics Research and ApplicationsArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefProgress in Photovoltaics Research and ApplicationsArticle . 2015Data sources: WUT Base of KnowledgeUniversité de Nantes: HAL-UNIV-NANTESArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.2451&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2015Data sources: INRIA a CCSD electronic archive serverProgress in Photovoltaics Research and ApplicationsArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefProgress in Photovoltaics Research and ApplicationsArticle . 2015Data sources: WUT Base of KnowledgeUniversité de Nantes: HAL-UNIV-NANTESArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.2451&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 FrancePublisher:Wiley Buffiere, Marie; Barreau, Nicolas; Arzel, Ludovic; Zabierowski, Pawel; Kessler, John;doi: 10.1002/pip.2451
AbstractChemical bath deposited (CBD)Zn(S,O,OH) is among the alternatives to (CBD)CdS buffer layers in Cu(In,Ga)Se2(CIGSe)‐based devices. Nevertheless, the performances reached by devices buffered with (CBD)Zn(S,O,OH) vary strongly from one sample to another and from one laboratory to another, indicating that parameters of minority impact with (CBD)CdS‐buffered devices have major influence when buffered with (CBD)Zn(S,O,OH). Moreover, the literature reports, but not systematically, the requirement of substituting the standard resistive intrinsic ZnO by (Zn,Mg)O and/or soaking the devices in ultraviolet‐containing light in order to reach optimal device operation. The present study investigates the impact of the three following parameters on the optoelectronic behavior of the Cu(In,Ga)Se2/(CBD)Zn(S,O,OH)/i‐ZnO‐based solar cells: (i) CIGSe surface composition; (ii) (CBD)Zn(S,O,OH) layer thickness; and (iii) i‐ZnO layer resistivity. The first conclusion of this study is that all of these parameters are observed to influence the electrical metastabilities of the devices. The second conclusion is that the light soaking time needed to achieve optimal photovoltaic parameters is decreased by (i) using absorbers with Cu content close to stoichiometry, (ii) increasing the buffer layer thickness, and (iii) increasing the resistivity of i‐ZnO. By optimizing these trends, stable and highly efficient Zn(S,O,OH)‐buffered CIGSe solar cells have been fabricated. Copyright © 2014 John Wiley & Sons, Ltd.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2015Data sources: INRIA a CCSD electronic archive serverProgress in Photovoltaics Research and ApplicationsArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefProgress in Photovoltaics Research and ApplicationsArticle . 2015Data sources: WUT Base of KnowledgeUniversité de Nantes: HAL-UNIV-NANTESArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.2451&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2015Data sources: INRIA a CCSD electronic archive serverProgress in Photovoltaics Research and ApplicationsArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefProgress in Photovoltaics Research and ApplicationsArticle . 2015Data sources: WUT Base of KnowledgeUniversité de Nantes: HAL-UNIV-NANTESArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.2451&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2019 France, FrancePublisher:EDP Sciences Lorthioir, Justine; Arzel, Ludovic; Ginestar, Stéphane; Assmann, Lionel; Barreau, Nicolas;An alternative to conventional Cu(In,Ga)Se2 module structure is proposed and experimentally investigated. This alternative module structure, which consists in applying metallic buses to connect monolithically adjacent cells in series, is likely to offer the opportunity of minimizing both optical and electrical losses observed in conventional module structure compared to small area cells. The fabrication process of such alternative modules is presented. The performances achieved are discussed in comparison with a standard small-area-cell elaborated simultaneously. Despite slightly lower output voltage per cell, the alternative module structure demonstrates an efficiency of 17.2% (with 81% fill factor), against 16.4% (with 75% fill factor) for the standard cell. This promising result opens new routes to decrease the gap observed between small-area-cells and industrial modules.
Hyper Article en Lig... arrow_drop_down Université de Nantes: HAL-UNIV-NANTESArticle . 2019Full-Text: https://hal.science/hal-02271134Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/epjpv/2019003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Université de Nantes: HAL-UNIV-NANTESArticle . 2019Full-Text: https://hal.science/hal-02271134Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/epjpv/2019003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2019 France, FrancePublisher:EDP Sciences Lorthioir, Justine; Arzel, Ludovic; Ginestar, Stéphane; Assmann, Lionel; Barreau, Nicolas;An alternative to conventional Cu(In,Ga)Se2 module structure is proposed and experimentally investigated. This alternative module structure, which consists in applying metallic buses to connect monolithically adjacent cells in series, is likely to offer the opportunity of minimizing both optical and electrical losses observed in conventional module structure compared to small area cells. The fabrication process of such alternative modules is presented. The performances achieved are discussed in comparison with a standard small-area-cell elaborated simultaneously. Despite slightly lower output voltage per cell, the alternative module structure demonstrates an efficiency of 17.2% (with 81% fill factor), against 16.4% (with 75% fill factor) for the standard cell. This promising result opens new routes to decrease the gap observed between small-area-cells and industrial modules.
Hyper Article en Lig... arrow_drop_down Université de Nantes: HAL-UNIV-NANTESArticle . 2019Full-Text: https://hal.science/hal-02271134Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/epjpv/2019003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Université de Nantes: HAL-UNIV-NANTESArticle . 2019Full-Text: https://hal.science/hal-02271134Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/epjpv/2019003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2006 FrancePublisher:Elsevier BV Barreau, Nicolas; Deudon, C.; Lafond, A.; Gall, S.; Kessler, John;Abstract The structural and optical properties of NaxCu1−xIn5S8 powders, with x = 0 , 0.25, 0.5, 0.75 and 1, are determined. It is shown that all of the samples have the same crystalline structure, which indicates the existence of a solid solution over the whole range of x (i.e. 0 ⩽ x ⩽ 1 ). The increase of the optical band gap of these compounds is found to be linear between x = 0 ( E g = 1.5 0 eV ) and x = 0.7 5 (1.85 eV), whereas for x = 1 (i.e. NaIn5S8) Eg is found to be 2.40 eV, which is much higher than the value expected from the linear slope. Such an evolution shows that the copper and the sodium weigh differently on the optical properties of the material. In thin film solar cells with indium sulfide buffer layer, NaxCu1−xIn5S8 compounds are formed at the Cu(In,Ga)Se2/In2S3 interface. The impact of their properties, here determined, on these thin film solar cells is discussed.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2006Data sources: INRIA a CCSD electronic archive serverSolar Energy Materials and Solar CellsArticle . 2006 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversité de Nantes: HAL-UNIV-NANTESArticle . 2006Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2005.11.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2006Data sources: INRIA a CCSD electronic archive serverSolar Energy Materials and Solar CellsArticle . 2006 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversité de Nantes: HAL-UNIV-NANTESArticle . 2006Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2005.11.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2006 FrancePublisher:Elsevier BV Barreau, Nicolas; Deudon, C.; Lafond, A.; Gall, S.; Kessler, John;Abstract The structural and optical properties of NaxCu1−xIn5S8 powders, with x = 0 , 0.25, 0.5, 0.75 and 1, are determined. It is shown that all of the samples have the same crystalline structure, which indicates the existence of a solid solution over the whole range of x (i.e. 0 ⩽ x ⩽ 1 ). The increase of the optical band gap of these compounds is found to be linear between x = 0 ( E g = 1.5 0 eV ) and x = 0.7 5 (1.85 eV), whereas for x = 1 (i.e. NaIn5S8) Eg is found to be 2.40 eV, which is much higher than the value expected from the linear slope. Such an evolution shows that the copper and the sodium weigh differently on the optical properties of the material. In thin film solar cells with indium sulfide buffer layer, NaxCu1−xIn5S8 compounds are formed at the Cu(In,Ga)Se2/In2S3 interface. The impact of their properties, here determined, on these thin film solar cells is discussed.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2006Data sources: INRIA a CCSD electronic archive serverSolar Energy Materials and Solar CellsArticle . 2006 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversité de Nantes: HAL-UNIV-NANTESArticle . 2006Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2005.11.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2006Data sources: INRIA a CCSD electronic archive serverSolar Energy Materials and Solar CellsArticle . 2006 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversité de Nantes: HAL-UNIV-NANTESArticle . 2006Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2005.11.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 FrancePublisher:Elsevier BV Barreau, Nicolas; Lahnemann, J.; Couzinie-Devy, F.; Assmann, L.; Patricia, Bertoncini; Kessler, John;The amount of copper excess provided during the Cu(In,Ga)Se2 (CIGSe) 3-stage co-evaporation process is among the most operator subjective. In the present paper the influence of this parameter on the properties of the CIGSe films as well as on the behaviour of the related solar cells is investigated. It is observed that both the In/Ga lateral intermixing and the grain size are enhanced when the excess of copper is increased. Contrary to what could be expected, these changes only weakly affect the performance of the solar cells. Increasing the copper excess also yields a rougher CIGSe morphology. This latter evolution is observed to be the most important factor influencing the device behaviour. Through accurate analysis of quantum efficiency, it is concluded that, in the case of the standard cell structure, there exists a threshold in copper excess, beyond which the cell performance is significantly reduced.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2009Data sources: INRIA a CCSD electronic archive serverSolar Energy Materials and Solar CellsArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversité de Nantes: HAL-UNIV-NANTESArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2009.08.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2009Data sources: INRIA a CCSD electronic archive serverSolar Energy Materials and Solar CellsArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversité de Nantes: HAL-UNIV-NANTESArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2009.08.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 FrancePublisher:Elsevier BV Barreau, Nicolas; Lahnemann, J.; Couzinie-Devy, F.; Assmann, L.; Patricia, Bertoncini; Kessler, John;The amount of copper excess provided during the Cu(In,Ga)Se2 (CIGSe) 3-stage co-evaporation process is among the most operator subjective. In the present paper the influence of this parameter on the properties of the CIGSe films as well as on the behaviour of the related solar cells is investigated. It is observed that both the In/Ga lateral intermixing and the grain size are enhanced when the excess of copper is increased. Contrary to what could be expected, these changes only weakly affect the performance of the solar cells. Increasing the copper excess also yields a rougher CIGSe morphology. This latter evolution is observed to be the most important factor influencing the device behaviour. Through accurate analysis of quantum efficiency, it is concluded that, in the case of the standard cell structure, there exists a threshold in copper excess, beyond which the cell performance is significantly reduced.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2009Data sources: INRIA a CCSD electronic archive serverSolar Energy Materials and Solar CellsArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversité de Nantes: HAL-UNIV-NANTESArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2009.08.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2009Data sources: INRIA a CCSD electronic archive serverSolar Energy Materials and Solar CellsArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversité de Nantes: HAL-UNIV-NANTESArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2009.08.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 FrancePublisher:Wiley Bommersbach, P.; Arzel, Ludovic; Tomassini, M.; Gautron, E.; Leyder, C.; Urien, M.; Dupuy, D.; Barreau, Nicolas;doi: 10.1002/pip.1193
ABSTRACTThe present study aims at investigating the influence of Ar sputtering gas pressure on the properties of molybdenum back contact (deposited on soda‐lime glass) and consequences on co‐evaporated Cu(In,Ga)Se2(CIGSe) absorber layer and related solar cell. Films 300 nm thick have been grown with argon pressure between 0·75 and 11·25 mTorr; these films have been characterized by several techniques showing that the increase of the sputtering pressure yields wider amorphous areas, containing oxygen and sodium, between the molybdenum grains, thus higher sheet resistance. The volume ratio of these amorphous areas is referenced to as “porosity”. The structural and morphological properties of co‐evaporated CIGSe have not been reliably observed influenced by the molybdenum porosity; the only noticeable change is the sodium content of the absorber, which increases with the porosity of the back contact. The impact of the amount of sodium on the device performance has been observed to be very important. On the one hand, as already reported, sodium is beneficial for the open‐circuit voltage. On the other hand, a too high amount of sodium is detrimental for the fill factor (hindered shunt resistance), thus the cell efficiency; this latter observation is interpreted as a change in the grain boundary electrical properties. Copyright © 2011 John Wiley & Sons, Ltd.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverProgress in Photovoltaics Research and ApplicationsArticle . 2011 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversité de Nantes: HAL-UNIV-NANTESArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.1193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverProgress in Photovoltaics Research and ApplicationsArticle . 2011 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversité de Nantes: HAL-UNIV-NANTESArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.1193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 FrancePublisher:Wiley Bommersbach, P.; Arzel, Ludovic; Tomassini, M.; Gautron, E.; Leyder, C.; Urien, M.; Dupuy, D.; Barreau, Nicolas;doi: 10.1002/pip.1193
ABSTRACTThe present study aims at investigating the influence of Ar sputtering gas pressure on the properties of molybdenum back contact (deposited on soda‐lime glass) and consequences on co‐evaporated Cu(In,Ga)Se2(CIGSe) absorber layer and related solar cell. Films 300 nm thick have been grown with argon pressure between 0·75 and 11·25 mTorr; these films have been characterized by several techniques showing that the increase of the sputtering pressure yields wider amorphous areas, containing oxygen and sodium, between the molybdenum grains, thus higher sheet resistance. The volume ratio of these amorphous areas is referenced to as “porosity”. The structural and morphological properties of co‐evaporated CIGSe have not been reliably observed influenced by the molybdenum porosity; the only noticeable change is the sodium content of the absorber, which increases with the porosity of the back contact. The impact of the amount of sodium on the device performance has been observed to be very important. On the one hand, as already reported, sodium is beneficial for the open‐circuit voltage. On the other hand, a too high amount of sodium is detrimental for the fill factor (hindered shunt resistance), thus the cell efficiency; this latter observation is interpreted as a change in the grain boundary electrical properties. Copyright © 2011 John Wiley & Sons, Ltd.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverProgress in Photovoltaics Research and ApplicationsArticle . 2011 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversité de Nantes: HAL-UNIV-NANTESArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.1193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverProgress in Photovoltaics Research and ApplicationsArticle . 2011 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversité de Nantes: HAL-UNIV-NANTESArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.1193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 NetherlandsPublisher:Elsevier BV Theelen, M.; Hendrikx, R.; Barreau, N.; Steijvers, H.; Böttger, A.;Unencapsulated CIGS solar cells were simultaneously exposed to damp heat and illumination. In-situ monitoring of their electrical parameters demonstrated a rapid decrease of the efficiency, mainly driven by changes in the series and shunt resistances. The non-degraded and degraded solar cells were studied by SIMS and XRD to investigate the material changes leading to efficiency loss. SIMS showed the migration of sodium and potassium, likely leading to changes in the shunt resistance and output voltage. Extensive XRD measurements showed that molybdenum oxide was formed and that the in-plane stress in the ZnO:Al film increased. The stress increase is most likely due to the incorporation of species like hydroxide in the grain boundaries. These phenomena could lead to the observed increased series resistance in the solar cells.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefDANS (Data Archiving and Networked Services)Article . 2016Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2016.07.051&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefDANS (Data Archiving and Networked Services)Article . 2016Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2016.07.051&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 NetherlandsPublisher:Elsevier BV Theelen, M.; Hendrikx, R.; Barreau, N.; Steijvers, H.; Böttger, A.;Unencapsulated CIGS solar cells were simultaneously exposed to damp heat and illumination. In-situ monitoring of their electrical parameters demonstrated a rapid decrease of the efficiency, mainly driven by changes in the series and shunt resistances. The non-degraded and degraded solar cells were studied by SIMS and XRD to investigate the material changes leading to efficiency loss. SIMS showed the migration of sodium and potassium, likely leading to changes in the shunt resistance and output voltage. Extensive XRD measurements showed that molybdenum oxide was formed and that the in-plane stress in the ZnO:Al film increased. The stress increase is most likely due to the incorporation of species like hydroxide in the grain boundaries. These phenomena could lead to the observed increased series resistance in the solar cells.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefDANS (Data Archiving and Networked Services)Article . 2016Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2016.07.051&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefDANS (Data Archiving and Networked Services)Article . 2016Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2016.07.051&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Netherlands, FrancePublisher:AIP Publishing Theelen, M.; Liakopoulou, A.; Hans, V.; Daume, F.; Steijvers, H.; Barreau, N.; Vroon, Z.; Zeman, M.;doi: 10.1063/1.4979963
Two types of Cu(In,Ga)Se2 (CIGS) solar cells, both designed for implementation in CIGS modules, were subjected to temperatures between 25 ºC and 105 ºC. Simultaneous exposure to AM1.5 illumination allowed the measurement of their electrical parameters at these temperatures. These two types of solar cells, produced with different deposition routes on soda lime glass (SLG) and polyimide (PI) substrates, showed large variations in the temperature dependency of their electrical parameters. It was shown that the temperature dependency of the open circuit voltage (Voc) was dependent on its room temperature value: a high Voc at 25 °C led to a slower loss of Voc when the temperature was increased. For the Voc, the normalised temperature dependency varied between −0.28%/°C and −0.47%/°C, which is in agreement with the literature. The temperature dependency of the short circuit current density (Jsc) showed more surprising results: while the PI samples had the expected positive temperature dependency (0.03 to 0.32%/°C), the SLG samples showed a small negative impact of increasing temperature (−0.01 to −0.05%/°C). A correlation between the temperature dependencies of the Jsc and the ideality factor n was observed. Therefore, this difference in the temperature dependence of the Jsc could be caused by increased recombination for the SLG samples. Furthermore, the temperature coefficients of the fill factor (negative), efficiency (negative), and the series (slightly negative) and shunt (negative) resistances were calculated.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverDANS (Data Archiving and Networked Services)Article . 2017Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.4979963&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverDANS (Data Archiving and Networked Services)Article . 2017Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.4979963&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Netherlands, FrancePublisher:AIP Publishing Theelen, M.; Liakopoulou, A.; Hans, V.; Daume, F.; Steijvers, H.; Barreau, N.; Vroon, Z.; Zeman, M.;doi: 10.1063/1.4979963
Two types of Cu(In,Ga)Se2 (CIGS) solar cells, both designed for implementation in CIGS modules, were subjected to temperatures between 25 ºC and 105 ºC. Simultaneous exposure to AM1.5 illumination allowed the measurement of their electrical parameters at these temperatures. These two types of solar cells, produced with different deposition routes on soda lime glass (SLG) and polyimide (PI) substrates, showed large variations in the temperature dependency of their electrical parameters. It was shown that the temperature dependency of the open circuit voltage (Voc) was dependent on its room temperature value: a high Voc at 25 °C led to a slower loss of Voc when the temperature was increased. For the Voc, the normalised temperature dependency varied between −0.28%/°C and −0.47%/°C, which is in agreement with the literature. The temperature dependency of the short circuit current density (Jsc) showed more surprising results: while the PI samples had the expected positive temperature dependency (0.03 to 0.32%/°C), the SLG samples showed a small negative impact of increasing temperature (−0.01 to −0.05%/°C). A correlation between the temperature dependencies of the Jsc and the ideality factor n was observed. Therefore, this difference in the temperature dependence of the Jsc could be caused by increased recombination for the SLG samples. Furthermore, the temperature coefficients of the fill factor (negative), efficiency (negative), and the series (slightly negative) and shunt (negative) resistances were calculated.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverDANS (Data Archiving and Networked Services)Article . 2017Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.4979963&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverDANS (Data Archiving and Networked Services)Article . 2017Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.4979963&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 FrancePublisher:Elsevier BV Authors: Barreau, Nicolas;Cu(In,Ga)Se-2-based solar cells buffered with indium sulfide grown by numerous techniques have reached efficiencies comparable to those achieved by standard devices buffered with (CBD)CdS. The present paper firstly recalls some of the properties of the indium sulfide single crystal and Points Out the disagreements concerning the thin films properties inventoried in the literature. Secondly, the influence of the presence of some "foreign elements" within file indium sulfide on its properties is presented. It is shown that these "foreign elements", even at low concentration levels, are possibly at the origin or the thin films properties deviations compared to the single crystal. The impact of these contaminants on the solar cells performance is finally discussed.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2009Data sources: INRIA a CCSD electronic archive serverUniversité de Nantes: HAL-UNIV-NANTESArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2008.08.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu162 citations 162 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2009Data sources: INRIA a CCSD electronic archive serverUniversité de Nantes: HAL-UNIV-NANTESArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2008.08.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 FrancePublisher:Elsevier BV Authors: Barreau, Nicolas;Cu(In,Ga)Se-2-based solar cells buffered with indium sulfide grown by numerous techniques have reached efficiencies comparable to those achieved by standard devices buffered with (CBD)CdS. The present paper firstly recalls some of the properties of the indium sulfide single crystal and Points Out the disagreements concerning the thin films properties inventoried in the literature. Secondly, the influence of the presence of some "foreign elements" within file indium sulfide on its properties is presented. It is shown that these "foreign elements", even at low concentration levels, are possibly at the origin or the thin films properties deviations compared to the single crystal. The impact of these contaminants on the solar cells performance is finally discussed.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2009Data sources: INRIA a CCSD electronic archive serverUniversité de Nantes: HAL-UNIV-NANTESArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2008.08.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu162 citations 162 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2009Data sources: INRIA a CCSD electronic archive serverUniversité de Nantes: HAL-UNIV-NANTESArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2008.08.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 FrancePublisher:Wiley Naghavi, Negar; Abou-Ras, D.; Allsop, N.; Barreau, Nicolas; Bucheler, S.; Ennaoui, A.; Fischer, C.H.; Guillen, C.; Hariskos, D.; Herrero, J.; Klenk, R.; Kushiya, K.; Lincot, D.; Menner, R.; Nakada, T.; Platzer-Bjorkman, C.; Spiering, S.; Tiwari, A.N.; Torndahl, T.;doi: 10.1002/pip.955
AbstractThe aim of the present contribution is to give a review on the recent work concerning Cd‐free buffer and window layers in chalcopyrite solar cells using various deposition techniques as well as on their adaptation to chalcopyrite‐type absorbers such as Cu(In,Ga)Se2, CuInS2, or Cu(In,Ga)(S,Se)2. The corresponding solar‐cell performances, the expected technological problems, and current attempts for their commercialization will be discussed. The most important deposition techniques developed in this paper are chemical bath deposition, atomic layer deposition, ILGAR deposition, evaporation, and spray deposition. These deposition methods were employed essentially for buffers based on the following three materials: In2S3, ZnS, Zn1 − xMgxO. Copyright © 2010 John Wiley & Sons, Ltd.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2010Data sources: INRIA a CCSD electronic archive serverProgress in Photovoltaics Research and ApplicationsArticle . 2010 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversité de Nantes: HAL-UNIV-NANTESArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.955&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu319 citations 319 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2010Data sources: INRIA a CCSD electronic archive serverProgress in Photovoltaics Research and ApplicationsArticle . 2010 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversité de Nantes: HAL-UNIV-NANTESArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.955&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 FrancePublisher:Wiley Naghavi, Negar; Abou-Ras, D.; Allsop, N.; Barreau, Nicolas; Bucheler, S.; Ennaoui, A.; Fischer, C.H.; Guillen, C.; Hariskos, D.; Herrero, J.; Klenk, R.; Kushiya, K.; Lincot, D.; Menner, R.; Nakada, T.; Platzer-Bjorkman, C.; Spiering, S.; Tiwari, A.N.; Torndahl, T.;doi: 10.1002/pip.955
AbstractThe aim of the present contribution is to give a review on the recent work concerning Cd‐free buffer and window layers in chalcopyrite solar cells using various deposition techniques as well as on their adaptation to chalcopyrite‐type absorbers such as Cu(In,Ga)Se2, CuInS2, or Cu(In,Ga)(S,Se)2. The corresponding solar‐cell performances, the expected technological problems, and current attempts for their commercialization will be discussed. The most important deposition techniques developed in this paper are chemical bath deposition, atomic layer deposition, ILGAR deposition, evaporation, and spray deposition. These deposition methods were employed essentially for buffers based on the following three materials: In2S3, ZnS, Zn1 − xMgxO. Copyright © 2010 John Wiley & Sons, Ltd.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2010Data sources: INRIA a CCSD electronic archive serverProgress in Photovoltaics Research and ApplicationsArticle . 2010 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversité de Nantes: HAL-UNIV-NANTESArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.955&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu319 citations 319 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2010Data sources: INRIA a CCSD electronic archive serverProgress in Photovoltaics Research and ApplicationsArticle . 2010 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversité de Nantes: HAL-UNIV-NANTESArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.955&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu