- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Institute of Electrical and Electronics Engineers (IEEE) Waleed Bin Yousuf; Tariq Mairaj Rasool Khan; Syed Talha Tariq; Moez ul-Hassan; Aqueel Shah;Insulated aerial bundled cables (ABCs) are preferred over conventional bare conductor cables in electrical distribution system as ABCs are more safe, less prone to electricity pilferage and offers higher reliability. However, the degradation phenomenon of ABCs is sudden as compared to conventional cables especially in coastal areas. Sudden failures of ABCs in coastal areas make the maintenance planning challenging. Hence, accurate reliability estimation is required which can enable timely maintenance planning and in turn reducing the chances of failures. A novel reliability model is reported in this work which is derived from historical failure data of particular type of ABCs coupled with the degradation models. The models are based upon the actual environmental conditions experienced by the cables under study. The actual loading data as well as environmental data of two sites of varying distance from Seashore are used to develop the respective reliability models. The reliability prediction from proposed reliability model is then validated using time to failure computation through comparison of historical infrared thermography based Non-destructive testing (NDT) data, acquired at the sites under study, with reference to NDT measurements acquired from the ruptured/failed cable. The validation indicates the efficacy of the proposed reliability model.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Power DeliveryArticle . 2022 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrd.2021.3112081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Power DeliveryArticle . 2022 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrd.2021.3112081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Institute of Electrical and Electronics Engineers (IEEE) Waleed Bin Yousuf; Tariq Mairaj Rasool Khan; Syed Talha Tariq; Moez ul-Hassan; Aqueel Shah;Insulated aerial bundled cables (ABCs) are preferred over conventional bare conductor cables in electrical distribution system as ABCs are more safe, less prone to electricity pilferage and offers higher reliability. However, the degradation phenomenon of ABCs is sudden as compared to conventional cables especially in coastal areas. Sudden failures of ABCs in coastal areas make the maintenance planning challenging. Hence, accurate reliability estimation is required which can enable timely maintenance planning and in turn reducing the chances of failures. A novel reliability model is reported in this work which is derived from historical failure data of particular type of ABCs coupled with the degradation models. The models are based upon the actual environmental conditions experienced by the cables under study. The actual loading data as well as environmental data of two sites of varying distance from Seashore are used to develop the respective reliability models. The reliability prediction from proposed reliability model is then validated using time to failure computation through comparison of historical infrared thermography based Non-destructive testing (NDT) data, acquired at the sites under study, with reference to NDT measurements acquired from the ruptured/failed cable. The validation indicates the efficacy of the proposed reliability model.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Power DeliveryArticle . 2022 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrd.2021.3112081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Power DeliveryArticle . 2022 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrd.2021.3112081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu