- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV T. Abrams; E.A. Unterberg; A.G. McLean; D.L. Rudakov; W.R. Wampler; M. Knolker; C. Lasnier; A.W. Leonard; P.C. Stangeby; D.M. Thomas; H.Q. Wang;A refined version of the Fundamenksi-Moulton 'free-streaming' model (FSM) for the dynamics of divertor density, particle flux, and heat flux during edge localized modes (ELMs) is presented. This model depends only on inter-ELM pedestal and divertor conditions and, crucially, incorporates particle recycling: a FSM with recycling model, FSRM. The effective particle recycling coefficient, Reff, is the only empirical fitting parameter in the FSRM. The predictions of the FSRM are systematically tested against a DIII-D database of ELM ion and energy fluence measurements and are shown to be consistent with the model across a wide range of pedestal and divertor conditions using a constant value of 0.96 for Reff . Predictions for W sputtering during ELMs are developed based on the FSRM. It is concluded that energetic free-streaming D+ ions and C6+ impurities are the dominant contributors to the intra-ELM gross erosion of W in the DIII-D divertor, i.e., recycling ions and impurities have relatively little impact on the total W sputtering rate. These calculations are also shown to be consistent with spectroscopic measurements of W gross erosion for three different pedestal conditions after incorporating the strong electron density dependence of the WI 400.8 nm ionizations/photon (S/XB) coefficient. Keywords: Tungsten sputtering, Tungsten Erosion, WI spectroscopy, Edge Localized Modes, Recycling
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2018.10.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2018.10.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV T. Abrams; E.A. Unterberg; A.G. McLean; D.L. Rudakov; W.R. Wampler; M. Knolker; C. Lasnier; A.W. Leonard; P.C. Stangeby; D.M. Thomas; H.Q. Wang;A refined version of the Fundamenksi-Moulton 'free-streaming' model (FSM) for the dynamics of divertor density, particle flux, and heat flux during edge localized modes (ELMs) is presented. This model depends only on inter-ELM pedestal and divertor conditions and, crucially, incorporates particle recycling: a FSM with recycling model, FSRM. The effective particle recycling coefficient, Reff, is the only empirical fitting parameter in the FSRM. The predictions of the FSRM are systematically tested against a DIII-D database of ELM ion and energy fluence measurements and are shown to be consistent with the model across a wide range of pedestal and divertor conditions using a constant value of 0.96 for Reff . Predictions for W sputtering during ELMs are developed based on the FSRM. It is concluded that energetic free-streaming D+ ions and C6+ impurities are the dominant contributors to the intra-ELM gross erosion of W in the DIII-D divertor, i.e., recycling ions and impurities have relatively little impact on the total W sputtering rate. These calculations are also shown to be consistent with spectroscopic measurements of W gross erosion for three different pedestal conditions after incorporating the strong electron density dependence of the WI 400.8 nm ionizations/photon (S/XB) coefficient. Keywords: Tungsten sputtering, Tungsten Erosion, WI spectroscopy, Edge Localized Modes, Recycling
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2018.10.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2018.10.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu