- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Netherlands, France, Spain, Italy, SpainPublisher:The Royal Society Richard O. Bierregaard; Duarte S. Viana; Duarte S. Viana; Paolo Becciu; Christina Kassara; Kamran Safi; Kamran Safi; Nicolas Lecomte; Hiroyoshi Higuchi; Noriyuki Yamaguchi; Gil Bohrer; Flavio Monti; Jordi Figuerola; Wouter M. G. Vansteelant; Wouter M. G. Vansteelant; Martin Wikelski; Martin Wikelski; Jean-François Therrien; Nikos Tsiopelas; Ivan Pokrovsky; Ivan Pokrovsky; Elham Nourani; Elham Nourani; Andrea Sforzi; Sinos Giokas; Olivier Duriez; Laura Gangoso; Laura Gangoso; Laura Gangoso; Olga Kulikova; Olga Kulikova;pmid: 34493076
pmc: PMC8424339
Flying over the open sea is energetically costly for terrestrial birds. Despite this, over-water journeys of many birds, sometimes hundreds of kilometres long, are uncovered by bio-logging technology. To understand how these birds afford their flights over the open sea, we investigated the role of atmospheric conditions, specifically wind and uplift, in subsidizing over-water flight at a global scale. We first established that ΔT, the temperature difference between sea surface and air, is a meaningful proxy for uplift over water. Using this proxy, we showed that the spatio-temporal patterns of sea-crossing in terrestrial migratory birds are associated with favourable uplift conditions. We then analysed route selection over the open sea for five facultative soaring species, representative of all major migratory flyways. The birds maximized wind support when selecting their sea-crossing routes and selected greater uplift when suitable wind support was available. They also preferred routes with low long-term uncertainty in wind conditions. Our findings suggest that, in addition to wind, uplift may play a key role in the energy seascape for bird migration that in turn determines strategies and associated costs for birds crossing ecological barriers such as the open sea.
IRIS Cnr arrow_drop_down Universiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the Royal Society B Biological SciencesArticleLicense: CC BYData sources: UnpayWallRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAProceedings of the Royal Society B Biological SciencesArticle . 2021License: CC BYData sources: Universiteit van Amsterdam Digital Academic RepositoryServeur académique lausannoisArticle . 2021License: CC BYData sources: Serveur académique lausannoisProceedings of the Royal Society B Biological SciencesArticle . 2021 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2021Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic GraphInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2021.1603&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 35visibility views 35 download downloads 49 Powered bymore_vert IRIS Cnr arrow_drop_down Universiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the Royal Society B Biological SciencesArticleLicense: CC BYData sources: UnpayWallRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAProceedings of the Royal Society B Biological SciencesArticle . 2021License: CC BYData sources: Universiteit van Amsterdam Digital Academic RepositoryServeur académique lausannoisArticle . 2021License: CC BYData sources: Serveur académique lausannoisProceedings of the Royal Society B Biological SciencesArticle . 2021 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2021Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic GraphInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2021.1603&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Netherlands, France, Spain, Italy, SpainPublisher:The Royal Society Richard O. Bierregaard; Duarte S. Viana; Duarte S. Viana; Paolo Becciu; Christina Kassara; Kamran Safi; Kamran Safi; Nicolas Lecomte; Hiroyoshi Higuchi; Noriyuki Yamaguchi; Gil Bohrer; Flavio Monti; Jordi Figuerola; Wouter M. G. Vansteelant; Wouter M. G. Vansteelant; Martin Wikelski; Martin Wikelski; Jean-François Therrien; Nikos Tsiopelas; Ivan Pokrovsky; Ivan Pokrovsky; Elham Nourani; Elham Nourani; Andrea Sforzi; Sinos Giokas; Olivier Duriez; Laura Gangoso; Laura Gangoso; Laura Gangoso; Olga Kulikova; Olga Kulikova;pmid: 34493076
pmc: PMC8424339
Flying over the open sea is energetically costly for terrestrial birds. Despite this, over-water journeys of many birds, sometimes hundreds of kilometres long, are uncovered by bio-logging technology. To understand how these birds afford their flights over the open sea, we investigated the role of atmospheric conditions, specifically wind and uplift, in subsidizing over-water flight at a global scale. We first established that ΔT, the temperature difference between sea surface and air, is a meaningful proxy for uplift over water. Using this proxy, we showed that the spatio-temporal patterns of sea-crossing in terrestrial migratory birds are associated with favourable uplift conditions. We then analysed route selection over the open sea for five facultative soaring species, representative of all major migratory flyways. The birds maximized wind support when selecting their sea-crossing routes and selected greater uplift when suitable wind support was available. They also preferred routes with low long-term uncertainty in wind conditions. Our findings suggest that, in addition to wind, uplift may play a key role in the energy seascape for bird migration that in turn determines strategies and associated costs for birds crossing ecological barriers such as the open sea.
IRIS Cnr arrow_drop_down Universiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the Royal Society B Biological SciencesArticleLicense: CC BYData sources: UnpayWallRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAProceedings of the Royal Society B Biological SciencesArticle . 2021License: CC BYData sources: Universiteit van Amsterdam Digital Academic RepositoryServeur académique lausannoisArticle . 2021License: CC BYData sources: Serveur académique lausannoisProceedings of the Royal Society B Biological SciencesArticle . 2021 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2021Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic GraphInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2021.1603&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 35visibility views 35 download downloads 49 Powered bymore_vert IRIS Cnr arrow_drop_down Universiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the Royal Society B Biological SciencesArticleLicense: CC BYData sources: UnpayWallRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAProceedings of the Royal Society B Biological SciencesArticle . 2021License: CC BYData sources: Universiteit van Amsterdam Digital Academic RepositoryServeur académique lausannoisArticle . 2021License: CC BYData sources: Serveur académique lausannoisProceedings of the Royal Society B Biological SciencesArticle . 2021 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2021Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic GraphInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2021.1603&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 United StatesPublisher:Wiley Diana V. Solovyeva; Tyrone F. Donnelly; Rebecca Bentzen; Joseph R. Liebezeit; Martin D. Robards; Laura Koloski; Christopher J. Latty; David H. Ward; Megan L. Boldenow; Paul F. Woodard; H. Grant Gilchrist; Mikhail Soloviev; Jennie Rausch; Laura McKinnon; Steve Kendall; Erica Nol; H. River Gates; H. River Gates; Samantha E. Franks; Johanna Perz; Joël Bêty; Nicolas Lecomte; Sarah T. Saalfeld; Jean-François Lamarre; Stephen C. Brown; David B. Lank; Marie-Andrée Giroux; Marie-Andrée Giroux; Lisa V. Kennedy; Andrew D. Johnson; Emily L. Weiser; Richard B. Lanctot; Nathan R. Senner; Nathan R. Senner; Kenneth F. Abraham; Scott A. Flemming; Brett K. Sandercock; Willow B. English; Paul A. Smith; Eunbi Kwon; Eunbi Kwon; Rodney W. Brook;doi: 10.1111/ibi.12571
handle: 10919/99313
The Arctic is experiencing rapidly warming conditions, increasing predator abundance, and diminishing population cycles of keystone species such as lemmings. However, it is still not known how many Arctic animals will respond to a changing climate with altered trophic interactions. We studied clutch size, incubation duration and nest survival of 17 taxa of Arctic‐breeding shorebirds at 16 field sites over 7 years. We predicted that physiological benefits of higher temperatures and earlier snowmelt would increase reproductive effort and nest survival, and we expected increasing predator abundance and decreasing abundance of alternative prey (arvicoline rodents) to have a negative effect on reproduction. Although we observed wide ranges of conditions during our study, we found no effects of covariates on reproductive traits in 12 of 17 taxa. In the remaining taxa, most relationships agreed with our predictions. Earlier snowmelt increased the probability of laying a full clutch from 0.61 to 0.91 for Western Sandpipers, and shortened incubation by 1.42 days forarcticolaDunlin and 0.77 days for Red Phalaropes. Higher temperatures increased the probability of a full clutch from 0.60 to 0.93 for Western Sandpipers and from 0.76 to 0.97 for Red‐necked Phalaropes, and increased daily nest survival rates from 0.9634 to 0.9890 for Semipalmated Sandpipers and 0.9546 to 0.9880 for Western Sandpipers. Higher abundance of predators (foxes) reduced daily nest survival rates only in Western Sandpipers (0.9821–0.9031). In contrast to our predictions, the probability of a full clutch was lowest (0.83) for Semipalmated Sandpipers at moderate abundance of alternative prey, rather than low abundance (0.90). Our findings suggest that in the short‐term, climate warming may have neutral or positive effects on the nesting cycle of most Arctic‐breeding shorebirds.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ibi.12571&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ibi.12571&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 United StatesPublisher:Wiley Diana V. Solovyeva; Tyrone F. Donnelly; Rebecca Bentzen; Joseph R. Liebezeit; Martin D. Robards; Laura Koloski; Christopher J. Latty; David H. Ward; Megan L. Boldenow; Paul F. Woodard; H. Grant Gilchrist; Mikhail Soloviev; Jennie Rausch; Laura McKinnon; Steve Kendall; Erica Nol; H. River Gates; H. River Gates; Samantha E. Franks; Johanna Perz; Joël Bêty; Nicolas Lecomte; Sarah T. Saalfeld; Jean-François Lamarre; Stephen C. Brown; David B. Lank; Marie-Andrée Giroux; Marie-Andrée Giroux; Lisa V. Kennedy; Andrew D. Johnson; Emily L. Weiser; Richard B. Lanctot; Nathan R. Senner; Nathan R. Senner; Kenneth F. Abraham; Scott A. Flemming; Brett K. Sandercock; Willow B. English; Paul A. Smith; Eunbi Kwon; Eunbi Kwon; Rodney W. Brook;doi: 10.1111/ibi.12571
handle: 10919/99313
The Arctic is experiencing rapidly warming conditions, increasing predator abundance, and diminishing population cycles of keystone species such as lemmings. However, it is still not known how many Arctic animals will respond to a changing climate with altered trophic interactions. We studied clutch size, incubation duration and nest survival of 17 taxa of Arctic‐breeding shorebirds at 16 field sites over 7 years. We predicted that physiological benefits of higher temperatures and earlier snowmelt would increase reproductive effort and nest survival, and we expected increasing predator abundance and decreasing abundance of alternative prey (arvicoline rodents) to have a negative effect on reproduction. Although we observed wide ranges of conditions during our study, we found no effects of covariates on reproductive traits in 12 of 17 taxa. In the remaining taxa, most relationships agreed with our predictions. Earlier snowmelt increased the probability of laying a full clutch from 0.61 to 0.91 for Western Sandpipers, and shortened incubation by 1.42 days forarcticolaDunlin and 0.77 days for Red Phalaropes. Higher temperatures increased the probability of a full clutch from 0.60 to 0.93 for Western Sandpipers and from 0.76 to 0.97 for Red‐necked Phalaropes, and increased daily nest survival rates from 0.9634 to 0.9890 for Semipalmated Sandpipers and 0.9546 to 0.9880 for Western Sandpipers. Higher abundance of predators (foxes) reduced daily nest survival rates only in Western Sandpipers (0.9821–0.9031). In contrast to our predictions, the probability of a full clutch was lowest (0.83) for Semipalmated Sandpipers at moderate abundance of alternative prey, rather than low abundance (0.90). Our findings suggest that in the short‐term, climate warming may have neutral or positive effects on the nesting cycle of most Arctic‐breeding shorebirds.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ibi.12571&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ibi.12571&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Wiley Funded by:NSERCNSERCAuthors: Christine Fehlner-Gardiner; Catherine Bouchard; Catherine Bouchard; Nicolas Lecomte; +6 AuthorsChristine Fehlner-Gardiner; Catherine Bouchard; Catherine Bouchard; Nicolas Lecomte; Patrick A. Leighton; Erin E. Rees; Erin E. Rees; Denise Bélanger; Audrey Simon; Guy Beauchamp;doi: 10.1111/zph.12848
pmid: 33987941
AbstractRabies occurs throughout the Arctic, representing an ongoing public health concern for residents of northern communities. The Arctic fox (Vulpes lagopus) is the main reservoir of the Arctic rabies virus variant, yet little is known about the epidemiology of Arctic rabies, such as the ecological mechanisms driving where and when epizootics in fox populations occur. In this study, we provide the first portrait of the spatio‐temporal spread of rabies across northern Canada. We also explore the impact of seasonal and multiannual dynamics in Arctic fox populations and climatic factors on rabies transmission dynamics. We analysed data on rabies cases collected through passive surveillance systems in the Yukon, Northwest Territories, Nunavut, Nunavik and Labrador from 1953 to 2014. In addition, we analysed a large and unique database of trapped foxes tested for rabies in the Northwest Territories and Nunavut from 1974 to 1984 as part of active surveillance studies. Rabies cases occurred in all Arctic regions of Canada and were relatively synchronous among foxes and dogs (Canis familiaris). This study highlights the spread of Arctic rabies virus variant across northern Canada, with contrasting rabies dynamics between different yet connected areas. Population fluctuations of Arctic fox populations could drive rabies transmission dynamics in a complex way across northern Canada. Furthermore, this study suggests different impacts of climate and sea ice cover on the onset of rabies epizootics in northern Canada. These results lay the groundwork for the development of epidemiological models to better predict the spatio‐temporal dynamics of rabies occurrence in both wild and domestic carnivores, leading to better estimates of human exposure and transmission risk.
Zoonoses and Public ... arrow_drop_down Zoonoses and Public HealthArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/zph.12848&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Zoonoses and Public ... arrow_drop_down Zoonoses and Public HealthArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/zph.12848&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Wiley Funded by:NSERCNSERCAuthors: Christine Fehlner-Gardiner; Catherine Bouchard; Catherine Bouchard; Nicolas Lecomte; +6 AuthorsChristine Fehlner-Gardiner; Catherine Bouchard; Catherine Bouchard; Nicolas Lecomte; Patrick A. Leighton; Erin E. Rees; Erin E. Rees; Denise Bélanger; Audrey Simon; Guy Beauchamp;doi: 10.1111/zph.12848
pmid: 33987941
AbstractRabies occurs throughout the Arctic, representing an ongoing public health concern for residents of northern communities. The Arctic fox (Vulpes lagopus) is the main reservoir of the Arctic rabies virus variant, yet little is known about the epidemiology of Arctic rabies, such as the ecological mechanisms driving where and when epizootics in fox populations occur. In this study, we provide the first portrait of the spatio‐temporal spread of rabies across northern Canada. We also explore the impact of seasonal and multiannual dynamics in Arctic fox populations and climatic factors on rabies transmission dynamics. We analysed data on rabies cases collected through passive surveillance systems in the Yukon, Northwest Territories, Nunavut, Nunavik and Labrador from 1953 to 2014. In addition, we analysed a large and unique database of trapped foxes tested for rabies in the Northwest Territories and Nunavut from 1974 to 1984 as part of active surveillance studies. Rabies cases occurred in all Arctic regions of Canada and were relatively synchronous among foxes and dogs (Canis familiaris). This study highlights the spread of Arctic rabies virus variant across northern Canada, with contrasting rabies dynamics between different yet connected areas. Population fluctuations of Arctic fox populations could drive rabies transmission dynamics in a complex way across northern Canada. Furthermore, this study suggests different impacts of climate and sea ice cover on the onset of rabies epizootics in northern Canada. These results lay the groundwork for the development of epidemiological models to better predict the spatio‐temporal dynamics of rabies occurrence in both wild and domestic carnivores, leading to better estimates of human exposure and transmission risk.
Zoonoses and Public ... arrow_drop_down Zoonoses and Public HealthArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/zph.12848&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Zoonoses and Public ... arrow_drop_down Zoonoses and Public HealthArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/zph.12848&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 NorwayPublisher:Wiley Funded by:NSERC, NSF | DISSERTATION RESEARCH: Th...NSERC ,NSF| DISSERTATION RESEARCH: The Impacts of Global Climate Change on the Annual Cycle of Long-Distance Migratory BirdsEveling A. Tavera; David B. Lank; David C. Douglas; Brett K. Sandercock; Richard B. Lanctot; Niels M. Schmidt; Jeroen Reneerkens; David H. Ward; Joël Bêty; Eunbi Kwon; Nicolas Lecomte; Cheri Gratto‐Trevor; Paul A. Smith; Willow B. English; Sarah T. Saalfeld; Stephen C. Brown; H. River Gates; Erica Nol; Joseph R. Liebezeit; Rebecca L. McGuire; Laura McKinnon; Steve Kendall; Martin Robards; Megan Boldenow; David C. Payer; Jennie Rausch; Diana V. Solovyeva; Jordyn A. Stalwick; Kirsty E. B. Gurney;doi: 10.1111/gcb.17335
pmid: 38771086
AbstractGlobal climate change has altered the timing of seasonal events (i.e., phenology) for a diverse range of biota. Within and among species, however, the degree to which alterations in phenology match climate variability differ substantially. To better understand factors driving these differences, we evaluated variation in timing of nesting of eight Arctic‐breeding shorebird species at 18 sites over a 23‐year period. We used the Normalized Difference Vegetation Index as a proxy to determine the start of spring (SOS) growing season and quantified relationships between SOS and nest initiation dates as a measure of phenological responsiveness. Among species, we tested four life history traits (migration distance, seasonal timing of breeding, female body mass, expected female reproductive effort) as species‐level predictors of responsiveness. For one species (Semipalmated Sandpiper), we also evaluated whether responsiveness varied across sites. Although no species in our study completely tracked annual variation in SOS, phenological responses were strongest for Western Sandpipers, Pectoral Sandpipers, and Red Phalaropes. Migration distance was the strongest additional predictor of responsiveness, with longer‐distance migrant species generally tracking variation in SOS more closely than species that migrate shorter distances. Semipalmated Sandpipers are a widely distributed species, but adjustments in timing of nesting relative to variability in SOS did not vary across sites, suggesting that different breeding populations of this species were equally responsive to climate cues despite differing migration strategies. Our results unexpectedly show that long‐distance migrants are more sensitive to local environmental conditions, which may help them to adapt to ongoing changes in climate.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2024License: CC BY NC NDData sources: University of Groningen Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2024License: CC BY NC NDData sources: University of Groningen Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 NorwayPublisher:Wiley Funded by:NSERC, NSF | DISSERTATION RESEARCH: Th...NSERC ,NSF| DISSERTATION RESEARCH: The Impacts of Global Climate Change on the Annual Cycle of Long-Distance Migratory BirdsEveling A. Tavera; David B. Lank; David C. Douglas; Brett K. Sandercock; Richard B. Lanctot; Niels M. Schmidt; Jeroen Reneerkens; David H. Ward; Joël Bêty; Eunbi Kwon; Nicolas Lecomte; Cheri Gratto‐Trevor; Paul A. Smith; Willow B. English; Sarah T. Saalfeld; Stephen C. Brown; H. River Gates; Erica Nol; Joseph R. Liebezeit; Rebecca L. McGuire; Laura McKinnon; Steve Kendall; Martin Robards; Megan Boldenow; David C. Payer; Jennie Rausch; Diana V. Solovyeva; Jordyn A. Stalwick; Kirsty E. B. Gurney;doi: 10.1111/gcb.17335
pmid: 38771086
AbstractGlobal climate change has altered the timing of seasonal events (i.e., phenology) for a diverse range of biota. Within and among species, however, the degree to which alterations in phenology match climate variability differ substantially. To better understand factors driving these differences, we evaluated variation in timing of nesting of eight Arctic‐breeding shorebird species at 18 sites over a 23‐year period. We used the Normalized Difference Vegetation Index as a proxy to determine the start of spring (SOS) growing season and quantified relationships between SOS and nest initiation dates as a measure of phenological responsiveness. Among species, we tested four life history traits (migration distance, seasonal timing of breeding, female body mass, expected female reproductive effort) as species‐level predictors of responsiveness. For one species (Semipalmated Sandpiper), we also evaluated whether responsiveness varied across sites. Although no species in our study completely tracked annual variation in SOS, phenological responses were strongest for Western Sandpipers, Pectoral Sandpipers, and Red Phalaropes. Migration distance was the strongest additional predictor of responsiveness, with longer‐distance migrant species generally tracking variation in SOS more closely than species that migrate shorter distances. Semipalmated Sandpipers are a widely distributed species, but adjustments in timing of nesting relative to variability in SOS did not vary across sites, suggesting that different breeding populations of this species were equally responsive to climate cues despite differing migration strategies. Our results unexpectedly show that long‐distance migrants are more sensitive to local environmental conditions, which may help them to adapt to ongoing changes in climate.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2024License: CC BY NC NDData sources: University of Groningen Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2024License: CC BY NC NDData sources: University of Groningen Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 Australia, Germany, Argentina, France, Australia, France, Netherlands, Argentina, FrancePublisher:American Association for the Advancement of Science (AAAS) Bart Kempenaers; Mihai Valcu; Natalya A. Sokolova; Marcelo Bertellotti; H. River Gates; Jan A. van Gils; Brian J. McCaffery; Richard Ottvall; Rebecca L. McGuire; Daniel R. Ruthrauff; Jean-François Lamarre; Ricardo Augusto Serpa Cerboncini; Sarah E. Jamieson; Glenda D. Hevia; Jeroen Reneerkens; Jeroen Reneerkens; José A. Alves; José A. Alves; Eldar Rakhimberdiev; Eldar Rakhimberdiev; James A. Johnson; Olivier Gilg; Rose J. Swift; Martijn van de Pol; Joe Liebezeit; Eduardo S. A. Santos; Paul A. Smith; Loïc Bollache; Nicolas Meyer; Mikhail Soloviev; Jennie Rausch; Rob van Bemmelen; Richard B. Lanctot; Matthew Johnson; Verónica L. D’Amico; Jannik Hansen; Glen S. Brown; Niels Martin Schmidt; Stephen C. Brown; Sara T Saalfeld; Erica Nol; David C. Payer; Audrey R. Taylor; Johannes Lang; Martin Bulla; Martin Bulla; Martin Bulla; Nathan R. Senner; Daniel H. Catlin; David H. Ward; Klaus-Michael Exo; Megan L. Boldenow; Aleksandr Sokolov; Joël Bêty; Nicolas Lecomte; Juan Fernandez-Elipe; Tomáš Albrecht; Tomáš Albrecht; Eunbi Kwon; Paula Machin; Diana V. Solovyeva; Jesse R. Conklin; Emily L. Weiser; Benoît Sittler; Marie-Andrée Giroux; Theunis Piersma; Theunis Piersma;pmid: 31196986
Kubelka et al . (Reports, 9 November 2018, p. 680) claim that climate change has disrupted patterns of nest predation in shorebirds. They report that predation rates have increased since the 1950s, especially in the Arctic. We describe methodological problems with their analyses and argue that there is no solid statistical support for their claims.
Science arrow_drop_down INRAP: HAL (Institut national de recherches archéologiques préventives)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)Université de Franche-Comté (UFC): HALArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)INRAP: HAL (Institut national de recherches archéologiques préventives)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)Université de Franche-Comté (UFC): HALArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aaw8529&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Science arrow_drop_down INRAP: HAL (Institut national de recherches archéologiques préventives)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)Université de Franche-Comté (UFC): HALArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)INRAP: HAL (Institut national de recherches archéologiques préventives)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)Université de Franche-Comté (UFC): HALArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aaw8529&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 Australia, Germany, Argentina, France, Australia, France, Netherlands, Argentina, FrancePublisher:American Association for the Advancement of Science (AAAS) Bart Kempenaers; Mihai Valcu; Natalya A. Sokolova; Marcelo Bertellotti; H. River Gates; Jan A. van Gils; Brian J. McCaffery; Richard Ottvall; Rebecca L. McGuire; Daniel R. Ruthrauff; Jean-François Lamarre; Ricardo Augusto Serpa Cerboncini; Sarah E. Jamieson; Glenda D. Hevia; Jeroen Reneerkens; Jeroen Reneerkens; José A. Alves; José A. Alves; Eldar Rakhimberdiev; Eldar Rakhimberdiev; James A. Johnson; Olivier Gilg; Rose J. Swift; Martijn van de Pol; Joe Liebezeit; Eduardo S. A. Santos; Paul A. Smith; Loïc Bollache; Nicolas Meyer; Mikhail Soloviev; Jennie Rausch; Rob van Bemmelen; Richard B. Lanctot; Matthew Johnson; Verónica L. D’Amico; Jannik Hansen; Glen S. Brown; Niels Martin Schmidt; Stephen C. Brown; Sara T Saalfeld; Erica Nol; David C. Payer; Audrey R. Taylor; Johannes Lang; Martin Bulla; Martin Bulla; Martin Bulla; Nathan R. Senner; Daniel H. Catlin; David H. Ward; Klaus-Michael Exo; Megan L. Boldenow; Aleksandr Sokolov; Joël Bêty; Nicolas Lecomte; Juan Fernandez-Elipe; Tomáš Albrecht; Tomáš Albrecht; Eunbi Kwon; Paula Machin; Diana V. Solovyeva; Jesse R. Conklin; Emily L. Weiser; Benoît Sittler; Marie-Andrée Giroux; Theunis Piersma; Theunis Piersma;pmid: 31196986
Kubelka et al . (Reports, 9 November 2018, p. 680) claim that climate change has disrupted patterns of nest predation in shorebirds. They report that predation rates have increased since the 1950s, especially in the Arctic. We describe methodological problems with their analyses and argue that there is no solid statistical support for their claims.
Science arrow_drop_down INRAP: HAL (Institut national de recherches archéologiques préventives)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)Université de Franche-Comté (UFC): HALArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)INRAP: HAL (Institut national de recherches archéologiques préventives)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)Université de Franche-Comté (UFC): HALArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aaw8529&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Science arrow_drop_down INRAP: HAL (Institut national de recherches archéologiques préventives)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)Université de Franche-Comté (UFC): HALArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)INRAP: HAL (Institut national de recherches archéologiques préventives)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)Université de Franche-Comté (UFC): HALArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aaw8529&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2012 NorwayPublisher:Public Library of Science (PLoS) Funded by:NSERCNSERCSokolov, Vasily; Ehrich, Dorothee; Yoccoz, Nigel; Sokolov, Alexander; Lecomte, Nicolas;The ratio of habitat generalists to specialists in birds has been suggested as a good indicator of ecosystem changes due to e.g. climate change and other anthropogenic perturbations. Most studies focusing on this functional component of biodiversity originate, however, from temperate regions. The Eurasian Arctic tundra is currently experiencing an unprecedented combination of climate change, change in grazing pressure by domestic reindeer and growing human activity.Here we monitored bird communities in a tundra landscape harbouring shrub and open habitats in order to analyse bird habitat relationships and quantify habitat specialization. We used ordination methods to analyse habitat associations and estimated the proportions of specialists in each of the main habitats. Correspondence Analysis identified three main bird communities, inhabiting upland, lowland and dense willow shrubs. We documented a stable structure of communities despite large multiannual variations of bird density (from 90 to 175 pairs/km(2)). Willow shrub thickets were a hotspot for bird density, but not for species richness. The thickets hosted many specialized species whose main distribution area was south of the tundra.If current arctic changes result in a shrubification of the landscape as many studies suggested, we would expect an increase in the overall bird abundance together with an increase of local specialists, since they are associated with willow thickets. The majority of these species have a southern origin and their increase in abundance would represent a strengthening of the boreal component in the southern tundra, perhaps at the expense of species typical of the subarctic zone, which appear to be generalists within this zone.
PLoS ONE arrow_drop_down Munin - Open Research ArchiveArticle . 2012 . Peer-reviewedData sources: Munin - Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0050335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert PLoS ONE arrow_drop_down Munin - Open Research ArchiveArticle . 2012 . Peer-reviewedData sources: Munin - Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0050335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2012 NorwayPublisher:Public Library of Science (PLoS) Funded by:NSERCNSERCSokolov, Vasily; Ehrich, Dorothee; Yoccoz, Nigel; Sokolov, Alexander; Lecomte, Nicolas;The ratio of habitat generalists to specialists in birds has been suggested as a good indicator of ecosystem changes due to e.g. climate change and other anthropogenic perturbations. Most studies focusing on this functional component of biodiversity originate, however, from temperate regions. The Eurasian Arctic tundra is currently experiencing an unprecedented combination of climate change, change in grazing pressure by domestic reindeer and growing human activity.Here we monitored bird communities in a tundra landscape harbouring shrub and open habitats in order to analyse bird habitat relationships and quantify habitat specialization. We used ordination methods to analyse habitat associations and estimated the proportions of specialists in each of the main habitats. Correspondence Analysis identified three main bird communities, inhabiting upland, lowland and dense willow shrubs. We documented a stable structure of communities despite large multiannual variations of bird density (from 90 to 175 pairs/km(2)). Willow shrub thickets were a hotspot for bird density, but not for species richness. The thickets hosted many specialized species whose main distribution area was south of the tundra.If current arctic changes result in a shrubification of the landscape as many studies suggested, we would expect an increase in the overall bird abundance together with an increase of local specialists, since they are associated with willow thickets. The majority of these species have a southern origin and their increase in abundance would represent a strengthening of the boreal component in the southern tundra, perhaps at the expense of species typical of the subarctic zone, which appear to be generalists within this zone.
PLoS ONE arrow_drop_down Munin - Open Research ArchiveArticle . 2012 . Peer-reviewedData sources: Munin - Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0050335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert PLoS ONE arrow_drop_down Munin - Open Research ArchiveArticle . 2012 . Peer-reviewedData sources: Munin - Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0050335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 Norway, Netherlands, NetherlandsPublisher:Wiley Funded by:NSERCNSERCAurélie Chagnon‐Lafortune; Éliane Duchesne; Pierre Legagneux; Laura McKinnon; Jeroen Reneerkens; Nicolas Casajus; Kenneth F. Abraham; Élise Bolduc; Glen S. Brown; Stephen C. Brown; H. River Gates; Olivier Gilg; Marie‐Andrée Giroux; Kirsty Gurney; Steve Kendall; Eunbi Kwon; Richard B. Lanctot; David B. Lank; Nicolas Lecomte; Maria Leung; Joseph R. Liebezeit; R. I. Guy Morrison; Erica Nol; David C. Payer; Donald Reid; Daniel Ruthrauff; Sarah T. Saalfeld; Brett K. Sandercock; Paul A. Smith; Niels Martin Schmidt; Ingrid Tulp; David H. Ward; Toke T. Høye; Dominique Berteaux; Joël Bêty;doi: 10.1111/gcb.17356
pmid: 38853470
AbstractSeasonally abundant arthropods are a crucial food source for many migratory birds that breed in the Arctic. In cold environments, the growth and emergence of arthropods are particularly tied to temperature. Thus, the phenology of arthropods is anticipated to undergo a rapid change in response to a warming climate, potentially leading to a trophic mismatch between migratory insectivorous birds and their prey. Using data from 19 sites spanning a wide temperature gradient from the Subarctic to the High Arctic, we investigated the effects of temperature on the phenology and biomass of arthropods available to shorebirds during their short breeding season at high latitudes. We hypothesized that prolonged exposure to warmer summer temperatures would generate earlier peaks in arthropod biomass, as well as higher peak and seasonal biomass. Across the temperature gradient encompassed by our study sites (>10°C in average summer temperatures), we found a 3‐day shift in average peak date for every increment of 80 cumulative thawing degree‐days. Interestingly, we found a linear relationship between temperature and arthropod biomass only below temperature thresholds. Higher temperatures were associated with higher peak and seasonal biomass below 106 and 177 cumulative thawing degree‐days, respectively, between June 5 and July 15. Beyond these thresholds, no relationship was observed between temperature and arthropod biomass. Our results suggest that prolonged exposure to elevated temperatures can positively influence prey availability for some arctic birds. This positive effect could, in part, stem from changes in arthropod assemblages and may reduce the risk of trophic mismatch.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2024License: CC BY NC NDData sources: University of Groningen Research PortalWageningen Staff PublicationsArticle . 2024License: CC BY NC NDData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17356&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2024License: CC BY NC NDData sources: University of Groningen Research PortalWageningen Staff PublicationsArticle . 2024License: CC BY NC NDData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17356&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 Norway, Netherlands, NetherlandsPublisher:Wiley Funded by:NSERCNSERCAurélie Chagnon‐Lafortune; Éliane Duchesne; Pierre Legagneux; Laura McKinnon; Jeroen Reneerkens; Nicolas Casajus; Kenneth F. Abraham; Élise Bolduc; Glen S. Brown; Stephen C. Brown; H. River Gates; Olivier Gilg; Marie‐Andrée Giroux; Kirsty Gurney; Steve Kendall; Eunbi Kwon; Richard B. Lanctot; David B. Lank; Nicolas Lecomte; Maria Leung; Joseph R. Liebezeit; R. I. Guy Morrison; Erica Nol; David C. Payer; Donald Reid; Daniel Ruthrauff; Sarah T. Saalfeld; Brett K. Sandercock; Paul A. Smith; Niels Martin Schmidt; Ingrid Tulp; David H. Ward; Toke T. Høye; Dominique Berteaux; Joël Bêty;doi: 10.1111/gcb.17356
pmid: 38853470
AbstractSeasonally abundant arthropods are a crucial food source for many migratory birds that breed in the Arctic. In cold environments, the growth and emergence of arthropods are particularly tied to temperature. Thus, the phenology of arthropods is anticipated to undergo a rapid change in response to a warming climate, potentially leading to a trophic mismatch between migratory insectivorous birds and their prey. Using data from 19 sites spanning a wide temperature gradient from the Subarctic to the High Arctic, we investigated the effects of temperature on the phenology and biomass of arthropods available to shorebirds during their short breeding season at high latitudes. We hypothesized that prolonged exposure to warmer summer temperatures would generate earlier peaks in arthropod biomass, as well as higher peak and seasonal biomass. Across the temperature gradient encompassed by our study sites (>10°C in average summer temperatures), we found a 3‐day shift in average peak date for every increment of 80 cumulative thawing degree‐days. Interestingly, we found a linear relationship between temperature and arthropod biomass only below temperature thresholds. Higher temperatures were associated with higher peak and seasonal biomass below 106 and 177 cumulative thawing degree‐days, respectively, between June 5 and July 15. Beyond these thresholds, no relationship was observed between temperature and arthropod biomass. Our results suggest that prolonged exposure to elevated temperatures can positively influence prey availability for some arctic birds. This positive effect could, in part, stem from changes in arthropod assemblages and may reduce the risk of trophic mismatch.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2024License: CC BY NC NDData sources: University of Groningen Research PortalWageningen Staff PublicationsArticle . 2024License: CC BY NC NDData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17356&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2024License: CC BY NC NDData sources: University of Groningen Research PortalWageningen Staff PublicationsArticle . 2024License: CC BY NC NDData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17356&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Finland, Norway, Norway, Sweden, Denmark, NorwayPublisher:Wiley Funded by:AKA | Exposing the long-term dy..., EC | INTERACT, AKA | Biotic interactions in a ... +3 projectsAKA| Exposing the long-term dynamics of Arctic ecosystems by novel and transdisciplinary techniques ,EC| INTERACT ,AKA| Biotic interactions in a changing Arctic ,NSERC ,AKA| Consequences of climate-driven changes in background below- and aboveground herbivory for tree growth, forest productivity, and ecosystem functions ,RCN| Functional traits across primary producer groups and their effects on tundra ecosystem processesNils Hein; Aleksandr Sokolov; Josée-Anne Otis; Katherine H.I. Drotos; Olivier Gilg; Mikhail V. Kozlov; Niklas Beckers; Evgenya Vyguzova; Dorothee Ehrich; Maia Olsen; Catherine Villeneuve; Bess Hardwick; Nicolas Lecomte; Vitali Zverev; Philipp Marr; Tomas Roslin; Tomas Roslin; Vladimir Gilg; Don-Jean Léandri-Breton; Maarten J.J.E. Loonen; Isabel C. Barrio; Tommi Andersson; Michelle Pyle; Jean-Claude Kresse; Christine Urbanowicz; Spencer K. Monckton; Kristian M. Jakobsen; Ruben E. Roos; Brigitte Sabard; Tone Birkemoe; Joël Bêty; Melissa H. DeSiervo; Daria Rozhkova; Jesse Jorna; Niels Martin Schmidt; Anna M. Solecki; Eero J. Vesterinen; Eero J. Vesterinen; Eero J. Vesterinen; Natalia Sokolova; Katrine Raundrup; Toke T. Høye; Paul E. Aspholm; Camille Jodouin; Tuomas Kankaanpää;AbstractClimatic impacts are especially pronounced in the Arctic, which as a region is warming twice as fast as the rest of the globe. Here, we investigate how mean climatic conditions and rates of climatic change impact parasitoid insect communities in 16 localities across the Arctic. We focus on parasitoids in a widespread habitat, Dryas heathlands, and describe parasitoid community composition in terms of larval host use (i.e., parasitoid use of herbivorous Lepidoptera vs. pollinating Diptera) and functional groups differing in their closeness of host associations (koinobionts vs. idiobionts). Of the latter, we expect idiobionts—as being less fine‐tuned to host development—to be generally less tolerant to cold temperatures, since they are confined to attacking hosts pupating and overwintering in relatively exposed locations. To further test our findings, we assess whether similar climatic variables are associated with host abundances in a 22 year time series from Northeast Greenland. We find sites which have experienced a temperature rise in summer while retaining cold winters to be dominated by parasitoids of Lepidoptera, with the reverse being true for the parasitoids of Diptera. The rate of summer temperature rise is further associated with higher levels of herbivory, suggesting higher availability of lepidopteran hosts and changes in ecosystem functioning. We also detect a matching signal over time, as higher summer temperatures, coupled with cold early winter soils, are related to high herbivory by lepidopteran larvae, and to declines in the abundance of dipteran pollinators. Collectively, our results suggest that in parts of the warming Arctic, Dryas is being simultaneously exposed to increased herbivory and reduced pollination. Our findings point to potential drastic and rapid consequences of climate change on multitrophic‐level community structure and on ecosystem functioning and highlight the value of collaborative, systematic sampling effort.
SLU publication data... arrow_drop_down Global Change BiologyArticle . 2020License: CC BY NC NDData sources: University of Groningen Research PortalHELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiMunin - Open Research ArchiveArticle . 2020 . Peer-reviewedData sources: Munin - Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15297&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 33 citations 33 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert SLU publication data... arrow_drop_down Global Change BiologyArticle . 2020License: CC BY NC NDData sources: University of Groningen Research PortalHELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiMunin - Open Research ArchiveArticle . 2020 . Peer-reviewedData sources: Munin - Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15297&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Finland, Norway, Norway, Sweden, Denmark, NorwayPublisher:Wiley Funded by:AKA | Exposing the long-term dy..., EC | INTERACT, AKA | Biotic interactions in a ... +3 projectsAKA| Exposing the long-term dynamics of Arctic ecosystems by novel and transdisciplinary techniques ,EC| INTERACT ,AKA| Biotic interactions in a changing Arctic ,NSERC ,AKA| Consequences of climate-driven changes in background below- and aboveground herbivory for tree growth, forest productivity, and ecosystem functions ,RCN| Functional traits across primary producer groups and their effects on tundra ecosystem processesNils Hein; Aleksandr Sokolov; Josée-Anne Otis; Katherine H.I. Drotos; Olivier Gilg; Mikhail V. Kozlov; Niklas Beckers; Evgenya Vyguzova; Dorothee Ehrich; Maia Olsen; Catherine Villeneuve; Bess Hardwick; Nicolas Lecomte; Vitali Zverev; Philipp Marr; Tomas Roslin; Tomas Roslin; Vladimir Gilg; Don-Jean Léandri-Breton; Maarten J.J.E. Loonen; Isabel C. Barrio; Tommi Andersson; Michelle Pyle; Jean-Claude Kresse; Christine Urbanowicz; Spencer K. Monckton; Kristian M. Jakobsen; Ruben E. Roos; Brigitte Sabard; Tone Birkemoe; Joël Bêty; Melissa H. DeSiervo; Daria Rozhkova; Jesse Jorna; Niels Martin Schmidt; Anna M. Solecki; Eero J. Vesterinen; Eero J. Vesterinen; Eero J. Vesterinen; Natalia Sokolova; Katrine Raundrup; Toke T. Høye; Paul E. Aspholm; Camille Jodouin; Tuomas Kankaanpää;AbstractClimatic impacts are especially pronounced in the Arctic, which as a region is warming twice as fast as the rest of the globe. Here, we investigate how mean climatic conditions and rates of climatic change impact parasitoid insect communities in 16 localities across the Arctic. We focus on parasitoids in a widespread habitat, Dryas heathlands, and describe parasitoid community composition in terms of larval host use (i.e., parasitoid use of herbivorous Lepidoptera vs. pollinating Diptera) and functional groups differing in their closeness of host associations (koinobionts vs. idiobionts). Of the latter, we expect idiobionts—as being less fine‐tuned to host development—to be generally less tolerant to cold temperatures, since they are confined to attacking hosts pupating and overwintering in relatively exposed locations. To further test our findings, we assess whether similar climatic variables are associated with host abundances in a 22 year time series from Northeast Greenland. We find sites which have experienced a temperature rise in summer while retaining cold winters to be dominated by parasitoids of Lepidoptera, with the reverse being true for the parasitoids of Diptera. The rate of summer temperature rise is further associated with higher levels of herbivory, suggesting higher availability of lepidopteran hosts and changes in ecosystem functioning. We also detect a matching signal over time, as higher summer temperatures, coupled with cold early winter soils, are related to high herbivory by lepidopteran larvae, and to declines in the abundance of dipteran pollinators. Collectively, our results suggest that in parts of the warming Arctic, Dryas is being simultaneously exposed to increased herbivory and reduced pollination. Our findings point to potential drastic and rapid consequences of climate change on multitrophic‐level community structure and on ecosystem functioning and highlight the value of collaborative, systematic sampling effort.
SLU publication data... arrow_drop_down Global Change BiologyArticle . 2020License: CC BY NC NDData sources: University of Groningen Research PortalHELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiMunin - Open Research ArchiveArticle . 2020 . Peer-reviewedData sources: Munin - Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15297&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 33 citations 33 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert SLU publication data... arrow_drop_down Global Change BiologyArticle . 2020License: CC BY NC NDData sources: University of Groningen Research PortalHELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiMunin - Open Research ArchiveArticle . 2020 . Peer-reviewedData sources: Munin - Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15297&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Norwegian Polar Institute Denise Bélanger; Audrey Simon; Olivia Tardy; Patrick A. Leighton; Nicolas Lecomte; Amy Hurford;Rabies is a major issue for human and animal health in the Arctic, yet little is known about its epidemiology. In particular, there is an ongoing debate regarding how Arctic rabies persists in its primary reservoir host, the Arctic fox (Vulpes lagopus), which exists in the ecosystem at very low population densities. To shed light on the mechanisms of rabies persistence in the Arctic, we built a susceptible–exposed–infectious–recovered (SEIR) epidemiological model of rabies virus transmission in an Arctic fox population interacting with red foxes (Vulpes vulpes), a rabies host that is increasingly present in the Arctic. The model suggests that rabies cannot be maintained in resource-poor areas of the Arctic, characterized by low Arctic fox density, even in the presence of continuous reintroduction of the virus by infected Arctic foxes from neighbouring regions. However, in populations of relatively high Arctic fox density, rabies persists under conditions of higher transmission rate, prolonged infectious period and for a broad range of incubation periods. Introducing the strong cyclical dynamics of Arctic prey availability makes simulated rabies outbreaks less regular but more intense, with an onset that does not neatly track peaks in Arctic fox density. Finally, interaction between Arctic and red foxes increases the frequency and/or the intensity of rabies outbreaks in the Arctic fox population. Our work suggests that disruption of prey cycles and increasing interactions between Arctic and red foxes due to climate change and northern development may significantly change the epidemiology of rabies across the Arctic.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.33265/polar.v38.3366&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.33265/polar.v38.3366&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Norwegian Polar Institute Denise Bélanger; Audrey Simon; Olivia Tardy; Patrick A. Leighton; Nicolas Lecomte; Amy Hurford;Rabies is a major issue for human and animal health in the Arctic, yet little is known about its epidemiology. In particular, there is an ongoing debate regarding how Arctic rabies persists in its primary reservoir host, the Arctic fox (Vulpes lagopus), which exists in the ecosystem at very low population densities. To shed light on the mechanisms of rabies persistence in the Arctic, we built a susceptible–exposed–infectious–recovered (SEIR) epidemiological model of rabies virus transmission in an Arctic fox population interacting with red foxes (Vulpes vulpes), a rabies host that is increasingly present in the Arctic. The model suggests that rabies cannot be maintained in resource-poor areas of the Arctic, characterized by low Arctic fox density, even in the presence of continuous reintroduction of the virus by infected Arctic foxes from neighbouring regions. However, in populations of relatively high Arctic fox density, rabies persists under conditions of higher transmission rate, prolonged infectious period and for a broad range of incubation periods. Introducing the strong cyclical dynamics of Arctic prey availability makes simulated rabies outbreaks less regular but more intense, with an onset that does not neatly track peaks in Arctic fox density. Finally, interaction between Arctic and red foxes increases the frequency and/or the intensity of rabies outbreaks in the Arctic fox population. Our work suggests that disruption of prey cycles and increasing interactions between Arctic and red foxes due to climate change and northern development may significantly change the epidemiology of rabies across the Arctic.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.33265/polar.v38.3366&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.33265/polar.v38.3366&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Embargo end date: 14 Jul 2021 Qatar, France, Switzerland, France, Canada, Italy, Germany, Australia, Portugal, Austria, France, Denmark, Belgium, Qatar, France, Spain, France, Argentina, France, United Kingdom, Canada, Austria, Argentina, Portugal, FrancePublisher:Frontiers Media SA Funded by:EC | ECOWORM, EC | Med-N-Change, EC | eLTER PLUS +2 projectsEC| ECOWORM ,EC| Med-N-Change ,EC| eLTER PLUS ,FCT| Centre for Ecology, Evolution and Environmental Changes ,DFG| German Centre for Integrative Biodiversity Research - iDivTaeOh Kwon; Hideaki Shibata; Sebastian Kepfer-Rojas; Inger K. Schmidt; Klaus S. Larsen; Claus Beier; Björn Berg; Kris Verheyen; Jean-Francois Lamarque; Frank Hagedorn; Nico Eisenhauer; Nico Eisenhauer; Ika Djukic; TeaComposition Network; TaeOh Kwon; Hideaki Shibata; Sebastian Kepfer-Rojas; Inger Kappel Schmidt; Klaus Steenberg Larsen; Claus Beier; Björn Berg; Kris Verheyen; Jean Francois Lamarque; Frank Hagedorn; Nico Eisenhauer; Ika Djukic; Adriano Caliman; Alain Paquette; Alba Gutiérrez-Girón; Alessandro Petraglia; Algirdas Augustaitis; Amélie Saillard; Ana Carolina Ruiz-Fernández; Ana I. Sousa; Ana I. Lillebø; Anderson da Rocha Gripp; Andrea Lamprecht; Andreas Bohner; André-Jean Francez; Andrey Malyshev; Andrijana Andrić; Angela Stanisci; Anita Zolles; Anna Avila; Anna-Maria Virkkala; Anne Probst; Annie Ouin; Anzar A. Khuroo; Arne Verstraeten; Artur Stefanski; Aurora Gaxiola; Bart Muys; Beatriz Gozalo; Bernd Ahrends; Bo Yang; Brigitta Erschbamer; Carmen Eugenia Rodríguez Ortíz; Casper T. Christiansen; Céline Meredieu; Cendrine Mony; Charles Nock; Chiao-Ping Wang; Christel Baum; Christian Rixen; Christine Delire; Christophe Piscart; Christopher Andrews; Corinna Rebmann; Cristina Branquinho; Dick Jan; Dirk Wundram; Dušanka Vujanović; E. Carol Adair; Eduardo Ordóñez-Regil; Edward R. Crawford; Elena F. Tropina; Elisabeth Hornung; Elli Groner; Eric Lucot; Esperança Gacia; Esther Lévesque; Evanilde Benedito; Evgeny A. Davydov; Fábio Padilha Bolzan; Fernando T. Maestre; Florence Maunoury-Danger; Florian Kitz; Florian Hofhansl; Flurin Sutter; Francisco de Almeida Lobo; Franco Leadro Souza; Franz Zehetner; Fulgence Kouamé Koffi; Georg Wohlfahrt; Giacomo Certini; Gisele Daiane Pinha; Grizelle González; Guylaine Canut; Harald Pauli; Héctor A. Bahamonde; Heike Feldhaar; Heinke Jäger; Helena Cristina Serrano; Hélène Verheyden; Helge Bruelheide; Henning Meesenburg; Hermann Jungkunst; Hervé Jactel; Hiroko Kurokawa; Ian Yesilonis; Inara Melece; Inge van Halder; Inmaculada García Quirós; István Fekete; Ivika Ostonen; Jana Borovská; Javier Roales; Jawad Hasan Shoqeir; Jean-Christophe Lata; Jean-Luc Probst; Jeyanny Vijayanathan; Jiri Dolezal; Joan-Albert Sanchez-Cabeza; Joël Merlet; John Loehr; Jonathan von Oppen; Jörg Löffler; José Luis Benito Alonso; José-Gilberto Cardoso-Mohedano; Josep Peñuelas; Joseph C. Morina; Juan Darío Quinde; Juan J. Jiménez; Juha M. Alatalo; Julia Seeber; Julia Kemppinen; Jutta Stadler; Kaie Kriiska; Karel Van den Meersche; Karibu Fukuzawa; Katalin Szlavecz; Katalin Juhos; Katarína Gerhátová; Kate Lajtha; Katie Jennings; Katja Tielbörger; Kazuhiko Hoshizaki; Ken Green; Klaus Steinbauer; Laryssa Pazianoto; Laura Dienstbach; Laura Yahdjian; Laura J. Williams; Laurel Brigham; Lee Hanna; Liesbeth van den Brink; Lindsey Rustad; Lourdes Morillas; Luciana Silva Carneiro; Luciano Di Martino; Luis Villar; Luísa Alícida Fernandes Tavares; Madison Morley; Manuela Winkler; Marc Lebouvier; Marcello Tomaselli; Marcus Schaub; Maria Glushkova; Maria Guadalupe Almazan Torres; Marie-Anne de Graaff; Marie-Noëlle Pons; Marijn Bauters; Marina Mazón; Mark Frenzel; Markus Wagner; Markus Didion; Maroof Hamid; Marta Lopes; Martha Apple; Martin Weih; Matej Mojses; Matteo Gualmini; Matthew Vadeboncoeur; Michael Bierbaumer; Michael Danger; Michael Scherer-Lorenzen; Michal Růžek; Michel Isabellon; Michele Di Musciano; Michele Carbognani; Miglena Zhiyanski; Mihai Puşcaş; Milan Barna; Mioko Ataka; Miska Luoto; Mohammed H. Alsafaran; Nadia Barsoum; Naoko Tokuchi; Nathalie Korboulewsky; Nicolas Lecomte;handle: 10261/275795 , 10576/40041 , 20.500.12123/9826 , 11336/166456 , 11695/119968 , 11585/872593 , 2158/1259496 , 1854/LU-8720292 , 1885/311153 , 11381/2931395 , 1959.7/uws:67032
Litter decomposition is a key process for carbon and nutrient cycling in terrestrial ecosystems and is mainly controlled by environmental conditions, substrate quantity and quality as well as microbial community abundance and composition. In particular, the effects of climate and atmospheric nitrogen (N) deposition on litter decomposition and its temporal dynamics are of significant importance, since their effects might change over the course of the decomposition process. Within the TeaComposition initiative, we incubated Green and Rooibos teas at 524 sites across nine biomes. We assessed how macroclimate and atmospheric inorganic N deposition under current and predicted scenarios (RCP 2.6, RCP 8.5) might affect litter mass loss measured after 3 and 12 months. Our study shows that the early to mid-term mass loss at the global scale was affected predominantly by litter quality (explaining 73% and 62% of the total variance after 3 and 12 months, respectively) followed by climate and N deposition. The effects of climate were not litter-specific and became increasingly significant as decomposition progressed, with MAP explaining 2% and MAT 4% of the variation after 12 months of incubation. The effect of N deposition was litter-specific, and significant only for 12-month decomposition of Rooibos tea at the global scale. However, in the temperate biome where atmospheric N deposition rates are relatively high, the 12-month mass loss of Green and Rooibos teas decreased significantly with increasing N deposition, explaining 9.5% and 1.1% of the variance, respectively. The expected changes in macroclimate and N deposition at the global scale by the end of this century are estimated to increase the 12-month mass loss of easily decomposable litter by 1.1–3.5% and of the more stable substrates by 3.8–10.6%, relative to current mass loss. In contrast, expected changes in atmospheric N deposition will decrease the mid-term mass loss of high-quality litter by 1.4–2.2% and that of low-quality litter by 0.9–1.5% in the temperate biome. Our results suggest that projected increases in N deposition may have the capacity to dampen the climate-driven increases in litter decomposition depending on the biome and decomposition stage of substrate.
NERC Open Research A... arrow_drop_down Open Archive Toulouse Archive OuverteArticle . 2021 . Peer-reviewedData sources: Open Archive Toulouse Archive OuverteInstitut National Polytechnique de Toulouse (Theses)Article . 2021 . Peer-reviewedData sources: Institut National Polytechnique de Toulouse (Theses)Flore (Florence Research Repository)Article . 2021License: CC BYFull-Text: https://flore.unifi.it/bitstream/2158/1259496/1/Frontiers%20in%20Forests%20and%20Global%20Change.pdfData sources: Flore (Florence Research Repository)University of Freiburg: FreiDokArticle . 2021Full-Text: https://freidok.uni-freiburg.de/data/229972Data sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2021Full-Text: https://hal.science/hal-03403978Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleLicense: CC BYFull-Text: http://hdl.handle.net/1885/311153Data sources: Bielefeld Academic Search Engine (BASE)OATAO (Open Archive Toulouse Archive Ouverte - Université de Toulouse)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03403978Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Frontiers in Forests and Global ChangeArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAQatar University Institutional RepositoryArticle . 2021Data sources: Qatar University Institutional RepositoryServeur académique lausannoisArticle . 2021License: CC BYData sources: Serveur académique lausannoisUniversidade de Lisboa: Repositório.ULArticle . 2021License: CC BYData sources: Universidade de Lisboa: Repositório.ULCopenhagen University Research Information SystemArticle . 2021Data sources: Copenhagen University Research Information SystemFrontiers in Forests and Global ChangeArticle . 2021 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2021Data sources: Ghent University Academic Bibliographyhttp://dx.doi.org/10.3389/ffgc...Article . 2021 . Peer-reviewedData sources: European Union Open Data PortalUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2021Data sources: Universitätsbibliographie, Universität Duisburg-EssenArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Université du Québec à Trois-Rivières: Dépôt numérique de UQTRArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Qatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/ffgc.2021.678480&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 120visibility views 120 download downloads 90 Powered bymore_vert NERC Open Research A... arrow_drop_down Open Archive Toulouse Archive OuverteArticle . 2021 . Peer-reviewedData sources: Open Archive Toulouse Archive OuverteInstitut National Polytechnique de Toulouse (Theses)Article . 2021 . Peer-reviewedData sources: Institut National Polytechnique de Toulouse (Theses)Flore (Florence Research Repository)Article . 2021License: CC BYFull-Text: https://flore.unifi.it/bitstream/2158/1259496/1/Frontiers%20in%20Forests%20and%20Global%20Change.pdfData sources: Flore (Florence Research Repository)University of Freiburg: FreiDokArticle . 2021Full-Text: https://freidok.uni-freiburg.de/data/229972Data sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2021Full-Text: https://hal.science/hal-03403978Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleLicense: CC BYFull-Text: http://hdl.handle.net/1885/311153Data sources: Bielefeld Academic Search Engine (BASE)OATAO (Open Archive Toulouse Archive Ouverte - Université de Toulouse)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03403978Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Frontiers in Forests and Global ChangeArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAQatar University Institutional RepositoryArticle . 2021Data sources: Qatar University Institutional RepositoryServeur académique lausannoisArticle . 2021License: CC BYData sources: Serveur académique lausannoisUniversidade de Lisboa: Repositório.ULArticle . 2021License: CC BYData sources: Universidade de Lisboa: Repositório.ULCopenhagen University Research Information SystemArticle . 2021Data sources: Copenhagen University Research Information SystemFrontiers in Forests and Global ChangeArticle . 2021 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2021Data sources: Ghent University Academic Bibliographyhttp://dx.doi.org/10.3389/ffgc...Article . 2021 . Peer-reviewedData sources: European Union Open Data PortalUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2021Data sources: Universitätsbibliographie, Universität Duisburg-EssenArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Université du Québec à Trois-Rivières: Dépôt numérique de UQTRArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Qatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/ffgc.2021.678480&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Embargo end date: 14 Jul 2021 Qatar, France, Switzerland, France, Canada, Italy, Germany, Australia, Portugal, Austria, France, Denmark, Belgium, Qatar, France, Spain, France, Argentina, France, United Kingdom, Canada, Austria, Argentina, Portugal, FrancePublisher:Frontiers Media SA Funded by:EC | ECOWORM, EC | Med-N-Change, EC | eLTER PLUS +2 projectsEC| ECOWORM ,EC| Med-N-Change ,EC| eLTER PLUS ,FCT| Centre for Ecology, Evolution and Environmental Changes ,DFG| German Centre for Integrative Biodiversity Research - iDivTaeOh Kwon; Hideaki Shibata; Sebastian Kepfer-Rojas; Inger K. Schmidt; Klaus S. Larsen; Claus Beier; Björn Berg; Kris Verheyen; Jean-Francois Lamarque; Frank Hagedorn; Nico Eisenhauer; Nico Eisenhauer; Ika Djukic; TeaComposition Network; TaeOh Kwon; Hideaki Shibata; Sebastian Kepfer-Rojas; Inger Kappel Schmidt; Klaus Steenberg Larsen; Claus Beier; Björn Berg; Kris Verheyen; Jean Francois Lamarque; Frank Hagedorn; Nico Eisenhauer; Ika Djukic; Adriano Caliman; Alain Paquette; Alba Gutiérrez-Girón; Alessandro Petraglia; Algirdas Augustaitis; Amélie Saillard; Ana Carolina Ruiz-Fernández; Ana I. Sousa; Ana I. Lillebø; Anderson da Rocha Gripp; Andrea Lamprecht; Andreas Bohner; André-Jean Francez; Andrey Malyshev; Andrijana Andrić; Angela Stanisci; Anita Zolles; Anna Avila; Anna-Maria Virkkala; Anne Probst; Annie Ouin; Anzar A. Khuroo; Arne Verstraeten; Artur Stefanski; Aurora Gaxiola; Bart Muys; Beatriz Gozalo; Bernd Ahrends; Bo Yang; Brigitta Erschbamer; Carmen Eugenia Rodríguez Ortíz; Casper T. Christiansen; Céline Meredieu; Cendrine Mony; Charles Nock; Chiao-Ping Wang; Christel Baum; Christian Rixen; Christine Delire; Christophe Piscart; Christopher Andrews; Corinna Rebmann; Cristina Branquinho; Dick Jan; Dirk Wundram; Dušanka Vujanović; E. Carol Adair; Eduardo Ordóñez-Regil; Edward R. Crawford; Elena F. Tropina; Elisabeth Hornung; Elli Groner; Eric Lucot; Esperança Gacia; Esther Lévesque; Evanilde Benedito; Evgeny A. Davydov; Fábio Padilha Bolzan; Fernando T. Maestre; Florence Maunoury-Danger; Florian Kitz; Florian Hofhansl; Flurin Sutter; Francisco de Almeida Lobo; Franco Leadro Souza; Franz Zehetner; Fulgence Kouamé Koffi; Georg Wohlfahrt; Giacomo Certini; Gisele Daiane Pinha; Grizelle González; Guylaine Canut; Harald Pauli; Héctor A. Bahamonde; Heike Feldhaar; Heinke Jäger; Helena Cristina Serrano; Hélène Verheyden; Helge Bruelheide; Henning Meesenburg; Hermann Jungkunst; Hervé Jactel; Hiroko Kurokawa; Ian Yesilonis; Inara Melece; Inge van Halder; Inmaculada García Quirós; István Fekete; Ivika Ostonen; Jana Borovská; Javier Roales; Jawad Hasan Shoqeir; Jean-Christophe Lata; Jean-Luc Probst; Jeyanny Vijayanathan; Jiri Dolezal; Joan-Albert Sanchez-Cabeza; Joël Merlet; John Loehr; Jonathan von Oppen; Jörg Löffler; José Luis Benito Alonso; José-Gilberto Cardoso-Mohedano; Josep Peñuelas; Joseph C. Morina; Juan Darío Quinde; Juan J. Jiménez; Juha M. Alatalo; Julia Seeber; Julia Kemppinen; Jutta Stadler; Kaie Kriiska; Karel Van den Meersche; Karibu Fukuzawa; Katalin Szlavecz; Katalin Juhos; Katarína Gerhátová; Kate Lajtha; Katie Jennings; Katja Tielbörger; Kazuhiko Hoshizaki; Ken Green; Klaus Steinbauer; Laryssa Pazianoto; Laura Dienstbach; Laura Yahdjian; Laura J. Williams; Laurel Brigham; Lee Hanna; Liesbeth van den Brink; Lindsey Rustad; Lourdes Morillas; Luciana Silva Carneiro; Luciano Di Martino; Luis Villar; Luísa Alícida Fernandes Tavares; Madison Morley; Manuela Winkler; Marc Lebouvier; Marcello Tomaselli; Marcus Schaub; Maria Glushkova; Maria Guadalupe Almazan Torres; Marie-Anne de Graaff; Marie-Noëlle Pons; Marijn Bauters; Marina Mazón; Mark Frenzel; Markus Wagner; Markus Didion; Maroof Hamid; Marta Lopes; Martha Apple; Martin Weih; Matej Mojses; Matteo Gualmini; Matthew Vadeboncoeur; Michael Bierbaumer; Michael Danger; Michael Scherer-Lorenzen; Michal Růžek; Michel Isabellon; Michele Di Musciano; Michele Carbognani; Miglena Zhiyanski; Mihai Puşcaş; Milan Barna; Mioko Ataka; Miska Luoto; Mohammed H. Alsafaran; Nadia Barsoum; Naoko Tokuchi; Nathalie Korboulewsky; Nicolas Lecomte;handle: 10261/275795 , 10576/40041 , 20.500.12123/9826 , 11336/166456 , 11695/119968 , 11585/872593 , 2158/1259496 , 1854/LU-8720292 , 1885/311153 , 11381/2931395 , 1959.7/uws:67032
Litter decomposition is a key process for carbon and nutrient cycling in terrestrial ecosystems and is mainly controlled by environmental conditions, substrate quantity and quality as well as microbial community abundance and composition. In particular, the effects of climate and atmospheric nitrogen (N) deposition on litter decomposition and its temporal dynamics are of significant importance, since their effects might change over the course of the decomposition process. Within the TeaComposition initiative, we incubated Green and Rooibos teas at 524 sites across nine biomes. We assessed how macroclimate and atmospheric inorganic N deposition under current and predicted scenarios (RCP 2.6, RCP 8.5) might affect litter mass loss measured after 3 and 12 months. Our study shows that the early to mid-term mass loss at the global scale was affected predominantly by litter quality (explaining 73% and 62% of the total variance after 3 and 12 months, respectively) followed by climate and N deposition. The effects of climate were not litter-specific and became increasingly significant as decomposition progressed, with MAP explaining 2% and MAT 4% of the variation after 12 months of incubation. The effect of N deposition was litter-specific, and significant only for 12-month decomposition of Rooibos tea at the global scale. However, in the temperate biome where atmospheric N deposition rates are relatively high, the 12-month mass loss of Green and Rooibos teas decreased significantly with increasing N deposition, explaining 9.5% and 1.1% of the variance, respectively. The expected changes in macroclimate and N deposition at the global scale by the end of this century are estimated to increase the 12-month mass loss of easily decomposable litter by 1.1–3.5% and of the more stable substrates by 3.8–10.6%, relative to current mass loss. In contrast, expected changes in atmospheric N deposition will decrease the mid-term mass loss of high-quality litter by 1.4–2.2% and that of low-quality litter by 0.9–1.5% in the temperate biome. Our results suggest that projected increases in N deposition may have the capacity to dampen the climate-driven increases in litter decomposition depending on the biome and decomposition stage of substrate.
NERC Open Research A... arrow_drop_down Open Archive Toulouse Archive OuverteArticle . 2021 . Peer-reviewedData sources: Open Archive Toulouse Archive OuverteInstitut National Polytechnique de Toulouse (Theses)Article . 2021 . Peer-reviewedData sources: Institut National Polytechnique de Toulouse (Theses)Flore (Florence Research Repository)Article . 2021License: CC BYFull-Text: https://flore.unifi.it/bitstream/2158/1259496/1/Frontiers%20in%20Forests%20and%20Global%20Change.pdfData sources: Flore (Florence Research Repository)University of Freiburg: FreiDokArticle . 2021Full-Text: https://freidok.uni-freiburg.de/data/229972Data sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2021Full-Text: https://hal.science/hal-03403978Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleLicense: CC BYFull-Text: http://hdl.handle.net/1885/311153Data sources: Bielefeld Academic Search Engine (BASE)OATAO (Open Archive Toulouse Archive Ouverte - Université de Toulouse)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03403978Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Frontiers in Forests and Global ChangeArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAQatar University Institutional RepositoryArticle . 2021Data sources: Qatar University Institutional RepositoryServeur académique lausannoisArticle . 2021License: CC BYData sources: Serveur académique lausannoisUniversidade de Lisboa: Repositório.ULArticle . 2021License: CC BYData sources: Universidade de Lisboa: Repositório.ULCopenhagen University Research Information SystemArticle . 2021Data sources: Copenhagen University Research Information SystemFrontiers in Forests and Global ChangeArticle . 2021 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2021Data sources: Ghent University Academic Bibliographyhttp://dx.doi.org/10.3389/ffgc...Article . 2021 . Peer-reviewedData sources: European Union Open Data PortalUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2021Data sources: Universitätsbibliographie, Universität Duisburg-EssenArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Université du Québec à Trois-Rivières: Dépôt numérique de UQTRArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Qatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/ffgc.2021.678480&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 120visibility views 120 download downloads 90 Powered bymore_vert NERC Open Research A... arrow_drop_down Open Archive Toulouse Archive OuverteArticle . 2021 . Peer-reviewedData sources: Open Archive Toulouse Archive OuverteInstitut National Polytechnique de Toulouse (Theses)Article . 2021 . Peer-reviewedData sources: Institut National Polytechnique de Toulouse (Theses)Flore (Florence Research Repository)Article . 2021License: CC BYFull-Text: https://flore.unifi.it/bitstream/2158/1259496/1/Frontiers%20in%20Forests%20and%20Global%20Change.pdfData sources: Flore (Florence Research Repository)University of Freiburg: FreiDokArticle . 2021Full-Text: https://freidok.uni-freiburg.de/data/229972Data sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2021Full-Text: https://hal.science/hal-03403978Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleLicense: CC BYFull-Text: http://hdl.handle.net/1885/311153Data sources: Bielefeld Academic Search Engine (BASE)OATAO (Open Archive Toulouse Archive Ouverte - Université de Toulouse)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03403978Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Frontiers in Forests and Global ChangeArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAQatar University Institutional RepositoryArticle . 2021Data sources: Qatar University Institutional RepositoryServeur académique lausannoisArticle . 2021License: CC BYData sources: Serveur académique lausannoisUniversidade de Lisboa: Repositório.ULArticle . 2021License: CC BYData sources: Universidade de Lisboa: Repositório.ULCopenhagen University Research Information SystemArticle . 2021Data sources: Copenhagen University Research Information SystemFrontiers in Forests and Global ChangeArticle . 2021 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2021Data sources: Ghent University Academic Bibliographyhttp://dx.doi.org/10.3389/ffgc...Article . 2021 . Peer-reviewedData sources: European Union Open Data PortalUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2021Data sources: Universitätsbibliographie, Universität Duisburg-EssenArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Université du Québec à Trois-Rivières: Dépôt numérique de UQTRArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Qatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/ffgc.2021.678480&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Netherlands, France, Spain, Italy, SpainPublisher:The Royal Society Richard O. Bierregaard; Duarte S. Viana; Duarte S. Viana; Paolo Becciu; Christina Kassara; Kamran Safi; Kamran Safi; Nicolas Lecomte; Hiroyoshi Higuchi; Noriyuki Yamaguchi; Gil Bohrer; Flavio Monti; Jordi Figuerola; Wouter M. G. Vansteelant; Wouter M. G. Vansteelant; Martin Wikelski; Martin Wikelski; Jean-François Therrien; Nikos Tsiopelas; Ivan Pokrovsky; Ivan Pokrovsky; Elham Nourani; Elham Nourani; Andrea Sforzi; Sinos Giokas; Olivier Duriez; Laura Gangoso; Laura Gangoso; Laura Gangoso; Olga Kulikova; Olga Kulikova;pmid: 34493076
pmc: PMC8424339
Flying over the open sea is energetically costly for terrestrial birds. Despite this, over-water journeys of many birds, sometimes hundreds of kilometres long, are uncovered by bio-logging technology. To understand how these birds afford their flights over the open sea, we investigated the role of atmospheric conditions, specifically wind and uplift, in subsidizing over-water flight at a global scale. We first established that ΔT, the temperature difference between sea surface and air, is a meaningful proxy for uplift over water. Using this proxy, we showed that the spatio-temporal patterns of sea-crossing in terrestrial migratory birds are associated with favourable uplift conditions. We then analysed route selection over the open sea for five facultative soaring species, representative of all major migratory flyways. The birds maximized wind support when selecting their sea-crossing routes and selected greater uplift when suitable wind support was available. They also preferred routes with low long-term uncertainty in wind conditions. Our findings suggest that, in addition to wind, uplift may play a key role in the energy seascape for bird migration that in turn determines strategies and associated costs for birds crossing ecological barriers such as the open sea.
IRIS Cnr arrow_drop_down Universiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the Royal Society B Biological SciencesArticleLicense: CC BYData sources: UnpayWallRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAProceedings of the Royal Society B Biological SciencesArticle . 2021License: CC BYData sources: Universiteit van Amsterdam Digital Academic RepositoryServeur académique lausannoisArticle . 2021License: CC BYData sources: Serveur académique lausannoisProceedings of the Royal Society B Biological SciencesArticle . 2021 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2021Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic GraphInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2021.1603&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 35visibility views 35 download downloads 49 Powered bymore_vert IRIS Cnr arrow_drop_down Universiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the Royal Society B Biological SciencesArticleLicense: CC BYData sources: UnpayWallRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAProceedings of the Royal Society B Biological SciencesArticle . 2021License: CC BYData sources: Universiteit van Amsterdam Digital Academic RepositoryServeur académique lausannoisArticle . 2021License: CC BYData sources: Serveur académique lausannoisProceedings of the Royal Society B Biological SciencesArticle . 2021 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2021Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic GraphInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2021.1603&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Netherlands, France, Spain, Italy, SpainPublisher:The Royal Society Richard O. Bierregaard; Duarte S. Viana; Duarte S. Viana; Paolo Becciu; Christina Kassara; Kamran Safi; Kamran Safi; Nicolas Lecomte; Hiroyoshi Higuchi; Noriyuki Yamaguchi; Gil Bohrer; Flavio Monti; Jordi Figuerola; Wouter M. G. Vansteelant; Wouter M. G. Vansteelant; Martin Wikelski; Martin Wikelski; Jean-François Therrien; Nikos Tsiopelas; Ivan Pokrovsky; Ivan Pokrovsky; Elham Nourani; Elham Nourani; Andrea Sforzi; Sinos Giokas; Olivier Duriez; Laura Gangoso; Laura Gangoso; Laura Gangoso; Olga Kulikova; Olga Kulikova;pmid: 34493076
pmc: PMC8424339
Flying over the open sea is energetically costly for terrestrial birds. Despite this, over-water journeys of many birds, sometimes hundreds of kilometres long, are uncovered by bio-logging technology. To understand how these birds afford their flights over the open sea, we investigated the role of atmospheric conditions, specifically wind and uplift, in subsidizing over-water flight at a global scale. We first established that ΔT, the temperature difference between sea surface and air, is a meaningful proxy for uplift over water. Using this proxy, we showed that the spatio-temporal patterns of sea-crossing in terrestrial migratory birds are associated with favourable uplift conditions. We then analysed route selection over the open sea for five facultative soaring species, representative of all major migratory flyways. The birds maximized wind support when selecting their sea-crossing routes and selected greater uplift when suitable wind support was available. They also preferred routes with low long-term uncertainty in wind conditions. Our findings suggest that, in addition to wind, uplift may play a key role in the energy seascape for bird migration that in turn determines strategies and associated costs for birds crossing ecological barriers such as the open sea.
IRIS Cnr arrow_drop_down Universiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the Royal Society B Biological SciencesArticleLicense: CC BYData sources: UnpayWallRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAProceedings of the Royal Society B Biological SciencesArticle . 2021License: CC BYData sources: Universiteit van Amsterdam Digital Academic RepositoryServeur académique lausannoisArticle . 2021License: CC BYData sources: Serveur académique lausannoisProceedings of the Royal Society B Biological SciencesArticle . 2021 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2021Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic GraphInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2021.1603&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 35visibility views 35 download downloads 49 Powered bymore_vert IRIS Cnr arrow_drop_down Universiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the Royal Society B Biological SciencesArticleLicense: CC BYData sources: UnpayWallRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAProceedings of the Royal Society B Biological SciencesArticle . 2021License: CC BYData sources: Universiteit van Amsterdam Digital Academic RepositoryServeur académique lausannoisArticle . 2021License: CC BYData sources: Serveur académique lausannoisProceedings of the Royal Society B Biological SciencesArticle . 2021 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2021Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic GraphInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2021.1603&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 United StatesPublisher:Wiley Diana V. Solovyeva; Tyrone F. Donnelly; Rebecca Bentzen; Joseph R. Liebezeit; Martin D. Robards; Laura Koloski; Christopher J. Latty; David H. Ward; Megan L. Boldenow; Paul F. Woodard; H. Grant Gilchrist; Mikhail Soloviev; Jennie Rausch; Laura McKinnon; Steve Kendall; Erica Nol; H. River Gates; H. River Gates; Samantha E. Franks; Johanna Perz; Joël Bêty; Nicolas Lecomte; Sarah T. Saalfeld; Jean-François Lamarre; Stephen C. Brown; David B. Lank; Marie-Andrée Giroux; Marie-Andrée Giroux; Lisa V. Kennedy; Andrew D. Johnson; Emily L. Weiser; Richard B. Lanctot; Nathan R. Senner; Nathan R. Senner; Kenneth F. Abraham; Scott A. Flemming; Brett K. Sandercock; Willow B. English; Paul A. Smith; Eunbi Kwon; Eunbi Kwon; Rodney W. Brook;doi: 10.1111/ibi.12571
handle: 10919/99313
The Arctic is experiencing rapidly warming conditions, increasing predator abundance, and diminishing population cycles of keystone species such as lemmings. However, it is still not known how many Arctic animals will respond to a changing climate with altered trophic interactions. We studied clutch size, incubation duration and nest survival of 17 taxa of Arctic‐breeding shorebirds at 16 field sites over 7 years. We predicted that physiological benefits of higher temperatures and earlier snowmelt would increase reproductive effort and nest survival, and we expected increasing predator abundance and decreasing abundance of alternative prey (arvicoline rodents) to have a negative effect on reproduction. Although we observed wide ranges of conditions during our study, we found no effects of covariates on reproductive traits in 12 of 17 taxa. In the remaining taxa, most relationships agreed with our predictions. Earlier snowmelt increased the probability of laying a full clutch from 0.61 to 0.91 for Western Sandpipers, and shortened incubation by 1.42 days forarcticolaDunlin and 0.77 days for Red Phalaropes. Higher temperatures increased the probability of a full clutch from 0.60 to 0.93 for Western Sandpipers and from 0.76 to 0.97 for Red‐necked Phalaropes, and increased daily nest survival rates from 0.9634 to 0.9890 for Semipalmated Sandpipers and 0.9546 to 0.9880 for Western Sandpipers. Higher abundance of predators (foxes) reduced daily nest survival rates only in Western Sandpipers (0.9821–0.9031). In contrast to our predictions, the probability of a full clutch was lowest (0.83) for Semipalmated Sandpipers at moderate abundance of alternative prey, rather than low abundance (0.90). Our findings suggest that in the short‐term, climate warming may have neutral or positive effects on the nesting cycle of most Arctic‐breeding shorebirds.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ibi.12571&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ibi.12571&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 United StatesPublisher:Wiley Diana V. Solovyeva; Tyrone F. Donnelly; Rebecca Bentzen; Joseph R. Liebezeit; Martin D. Robards; Laura Koloski; Christopher J. Latty; David H. Ward; Megan L. Boldenow; Paul F. Woodard; H. Grant Gilchrist; Mikhail Soloviev; Jennie Rausch; Laura McKinnon; Steve Kendall; Erica Nol; H. River Gates; H. River Gates; Samantha E. Franks; Johanna Perz; Joël Bêty; Nicolas Lecomte; Sarah T. Saalfeld; Jean-François Lamarre; Stephen C. Brown; David B. Lank; Marie-Andrée Giroux; Marie-Andrée Giroux; Lisa V. Kennedy; Andrew D. Johnson; Emily L. Weiser; Richard B. Lanctot; Nathan R. Senner; Nathan R. Senner; Kenneth F. Abraham; Scott A. Flemming; Brett K. Sandercock; Willow B. English; Paul A. Smith; Eunbi Kwon; Eunbi Kwon; Rodney W. Brook;doi: 10.1111/ibi.12571
handle: 10919/99313
The Arctic is experiencing rapidly warming conditions, increasing predator abundance, and diminishing population cycles of keystone species such as lemmings. However, it is still not known how many Arctic animals will respond to a changing climate with altered trophic interactions. We studied clutch size, incubation duration and nest survival of 17 taxa of Arctic‐breeding shorebirds at 16 field sites over 7 years. We predicted that physiological benefits of higher temperatures and earlier snowmelt would increase reproductive effort and nest survival, and we expected increasing predator abundance and decreasing abundance of alternative prey (arvicoline rodents) to have a negative effect on reproduction. Although we observed wide ranges of conditions during our study, we found no effects of covariates on reproductive traits in 12 of 17 taxa. In the remaining taxa, most relationships agreed with our predictions. Earlier snowmelt increased the probability of laying a full clutch from 0.61 to 0.91 for Western Sandpipers, and shortened incubation by 1.42 days forarcticolaDunlin and 0.77 days for Red Phalaropes. Higher temperatures increased the probability of a full clutch from 0.60 to 0.93 for Western Sandpipers and from 0.76 to 0.97 for Red‐necked Phalaropes, and increased daily nest survival rates from 0.9634 to 0.9890 for Semipalmated Sandpipers and 0.9546 to 0.9880 for Western Sandpipers. Higher abundance of predators (foxes) reduced daily nest survival rates only in Western Sandpipers (0.9821–0.9031). In contrast to our predictions, the probability of a full clutch was lowest (0.83) for Semipalmated Sandpipers at moderate abundance of alternative prey, rather than low abundance (0.90). Our findings suggest that in the short‐term, climate warming may have neutral or positive effects on the nesting cycle of most Arctic‐breeding shorebirds.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ibi.12571&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ibi.12571&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Wiley Funded by:NSERCNSERCAuthors: Christine Fehlner-Gardiner; Catherine Bouchard; Catherine Bouchard; Nicolas Lecomte; +6 AuthorsChristine Fehlner-Gardiner; Catherine Bouchard; Catherine Bouchard; Nicolas Lecomte; Patrick A. Leighton; Erin E. Rees; Erin E. Rees; Denise Bélanger; Audrey Simon; Guy Beauchamp;doi: 10.1111/zph.12848
pmid: 33987941
AbstractRabies occurs throughout the Arctic, representing an ongoing public health concern for residents of northern communities. The Arctic fox (Vulpes lagopus) is the main reservoir of the Arctic rabies virus variant, yet little is known about the epidemiology of Arctic rabies, such as the ecological mechanisms driving where and when epizootics in fox populations occur. In this study, we provide the first portrait of the spatio‐temporal spread of rabies across northern Canada. We also explore the impact of seasonal and multiannual dynamics in Arctic fox populations and climatic factors on rabies transmission dynamics. We analysed data on rabies cases collected through passive surveillance systems in the Yukon, Northwest Territories, Nunavut, Nunavik and Labrador from 1953 to 2014. In addition, we analysed a large and unique database of trapped foxes tested for rabies in the Northwest Territories and Nunavut from 1974 to 1984 as part of active surveillance studies. Rabies cases occurred in all Arctic regions of Canada and were relatively synchronous among foxes and dogs (Canis familiaris). This study highlights the spread of Arctic rabies virus variant across northern Canada, with contrasting rabies dynamics between different yet connected areas. Population fluctuations of Arctic fox populations could drive rabies transmission dynamics in a complex way across northern Canada. Furthermore, this study suggests different impacts of climate and sea ice cover on the onset of rabies epizootics in northern Canada. These results lay the groundwork for the development of epidemiological models to better predict the spatio‐temporal dynamics of rabies occurrence in both wild and domestic carnivores, leading to better estimates of human exposure and transmission risk.
Zoonoses and Public ... arrow_drop_down Zoonoses and Public HealthArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/zph.12848&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Zoonoses and Public ... arrow_drop_down Zoonoses and Public HealthArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/zph.12848&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Wiley Funded by:NSERCNSERCAuthors: Christine Fehlner-Gardiner; Catherine Bouchard; Catherine Bouchard; Nicolas Lecomte; +6 AuthorsChristine Fehlner-Gardiner; Catherine Bouchard; Catherine Bouchard; Nicolas Lecomte; Patrick A. Leighton; Erin E. Rees; Erin E. Rees; Denise Bélanger; Audrey Simon; Guy Beauchamp;doi: 10.1111/zph.12848
pmid: 33987941
AbstractRabies occurs throughout the Arctic, representing an ongoing public health concern for residents of northern communities. The Arctic fox (Vulpes lagopus) is the main reservoir of the Arctic rabies virus variant, yet little is known about the epidemiology of Arctic rabies, such as the ecological mechanisms driving where and when epizootics in fox populations occur. In this study, we provide the first portrait of the spatio‐temporal spread of rabies across northern Canada. We also explore the impact of seasonal and multiannual dynamics in Arctic fox populations and climatic factors on rabies transmission dynamics. We analysed data on rabies cases collected through passive surveillance systems in the Yukon, Northwest Territories, Nunavut, Nunavik and Labrador from 1953 to 2014. In addition, we analysed a large and unique database of trapped foxes tested for rabies in the Northwest Territories and Nunavut from 1974 to 1984 as part of active surveillance studies. Rabies cases occurred in all Arctic regions of Canada and were relatively synchronous among foxes and dogs (Canis familiaris). This study highlights the spread of Arctic rabies virus variant across northern Canada, with contrasting rabies dynamics between different yet connected areas. Population fluctuations of Arctic fox populations could drive rabies transmission dynamics in a complex way across northern Canada. Furthermore, this study suggests different impacts of climate and sea ice cover on the onset of rabies epizootics in northern Canada. These results lay the groundwork for the development of epidemiological models to better predict the spatio‐temporal dynamics of rabies occurrence in both wild and domestic carnivores, leading to better estimates of human exposure and transmission risk.
Zoonoses and Public ... arrow_drop_down Zoonoses and Public HealthArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/zph.12848&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Zoonoses and Public ... arrow_drop_down Zoonoses and Public HealthArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/zph.12848&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 NorwayPublisher:Wiley Funded by:NSERC, NSF | DISSERTATION RESEARCH: Th...NSERC ,NSF| DISSERTATION RESEARCH: The Impacts of Global Climate Change on the Annual Cycle of Long-Distance Migratory BirdsEveling A. Tavera; David B. Lank; David C. Douglas; Brett K. Sandercock; Richard B. Lanctot; Niels M. Schmidt; Jeroen Reneerkens; David H. Ward; Joël Bêty; Eunbi Kwon; Nicolas Lecomte; Cheri Gratto‐Trevor; Paul A. Smith; Willow B. English; Sarah T. Saalfeld; Stephen C. Brown; H. River Gates; Erica Nol; Joseph R. Liebezeit; Rebecca L. McGuire; Laura McKinnon; Steve Kendall; Martin Robards; Megan Boldenow; David C. Payer; Jennie Rausch; Diana V. Solovyeva; Jordyn A. Stalwick; Kirsty E. B. Gurney;doi: 10.1111/gcb.17335
pmid: 38771086
AbstractGlobal climate change has altered the timing of seasonal events (i.e., phenology) for a diverse range of biota. Within and among species, however, the degree to which alterations in phenology match climate variability differ substantially. To better understand factors driving these differences, we evaluated variation in timing of nesting of eight Arctic‐breeding shorebird species at 18 sites over a 23‐year period. We used the Normalized Difference Vegetation Index as a proxy to determine the start of spring (SOS) growing season and quantified relationships between SOS and nest initiation dates as a measure of phenological responsiveness. Among species, we tested four life history traits (migration distance, seasonal timing of breeding, female body mass, expected female reproductive effort) as species‐level predictors of responsiveness. For one species (Semipalmated Sandpiper), we also evaluated whether responsiveness varied across sites. Although no species in our study completely tracked annual variation in SOS, phenological responses were strongest for Western Sandpipers, Pectoral Sandpipers, and Red Phalaropes. Migration distance was the strongest additional predictor of responsiveness, with longer‐distance migrant species generally tracking variation in SOS more closely than species that migrate shorter distances. Semipalmated Sandpipers are a widely distributed species, but adjustments in timing of nesting relative to variability in SOS did not vary across sites, suggesting that different breeding populations of this species were equally responsive to climate cues despite differing migration strategies. Our results unexpectedly show that long‐distance migrants are more sensitive to local environmental conditions, which may help them to adapt to ongoing changes in climate.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2024License: CC BY NC NDData sources: University of Groningen Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2024License: CC BY NC NDData sources: University of Groningen Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 NorwayPublisher:Wiley Funded by:NSERC, NSF | DISSERTATION RESEARCH: Th...NSERC ,NSF| DISSERTATION RESEARCH: The Impacts of Global Climate Change on the Annual Cycle of Long-Distance Migratory BirdsEveling A. Tavera; David B. Lank; David C. Douglas; Brett K. Sandercock; Richard B. Lanctot; Niels M. Schmidt; Jeroen Reneerkens; David H. Ward; Joël Bêty; Eunbi Kwon; Nicolas Lecomte; Cheri Gratto‐Trevor; Paul A. Smith; Willow B. English; Sarah T. Saalfeld; Stephen C. Brown; H. River Gates; Erica Nol; Joseph R. Liebezeit; Rebecca L. McGuire; Laura McKinnon; Steve Kendall; Martin Robards; Megan Boldenow; David C. Payer; Jennie Rausch; Diana V. Solovyeva; Jordyn A. Stalwick; Kirsty E. B. Gurney;doi: 10.1111/gcb.17335
pmid: 38771086
AbstractGlobal climate change has altered the timing of seasonal events (i.e., phenology) for a diverse range of biota. Within and among species, however, the degree to which alterations in phenology match climate variability differ substantially. To better understand factors driving these differences, we evaluated variation in timing of nesting of eight Arctic‐breeding shorebird species at 18 sites over a 23‐year period. We used the Normalized Difference Vegetation Index as a proxy to determine the start of spring (SOS) growing season and quantified relationships between SOS and nest initiation dates as a measure of phenological responsiveness. Among species, we tested four life history traits (migration distance, seasonal timing of breeding, female body mass, expected female reproductive effort) as species‐level predictors of responsiveness. For one species (Semipalmated Sandpiper), we also evaluated whether responsiveness varied across sites. Although no species in our study completely tracked annual variation in SOS, phenological responses were strongest for Western Sandpipers, Pectoral Sandpipers, and Red Phalaropes. Migration distance was the strongest additional predictor of responsiveness, with longer‐distance migrant species generally tracking variation in SOS more closely than species that migrate shorter distances. Semipalmated Sandpipers are a widely distributed species, but adjustments in timing of nesting relative to variability in SOS did not vary across sites, suggesting that different breeding populations of this species were equally responsive to climate cues despite differing migration strategies. Our results unexpectedly show that long‐distance migrants are more sensitive to local environmental conditions, which may help them to adapt to ongoing changes in climate.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2024License: CC BY NC NDData sources: University of Groningen Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2024License: CC BY NC NDData sources: University of Groningen Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 Australia, Germany, Argentina, France, Australia, France, Netherlands, Argentina, FrancePublisher:American Association for the Advancement of Science (AAAS) Bart Kempenaers; Mihai Valcu; Natalya A. Sokolova; Marcelo Bertellotti; H. River Gates; Jan A. van Gils; Brian J. McCaffery; Richard Ottvall; Rebecca L. McGuire; Daniel R. Ruthrauff; Jean-François Lamarre; Ricardo Augusto Serpa Cerboncini; Sarah E. Jamieson; Glenda D. Hevia; Jeroen Reneerkens; Jeroen Reneerkens; José A. Alves; José A. Alves; Eldar Rakhimberdiev; Eldar Rakhimberdiev; James A. Johnson; Olivier Gilg; Rose J. Swift; Martijn van de Pol; Joe Liebezeit; Eduardo S. A. Santos; Paul A. Smith; Loïc Bollache; Nicolas Meyer; Mikhail Soloviev; Jennie Rausch; Rob van Bemmelen; Richard B. Lanctot; Matthew Johnson; Verónica L. D’Amico; Jannik Hansen; Glen S. Brown; Niels Martin Schmidt; Stephen C. Brown; Sara T Saalfeld; Erica Nol; David C. Payer; Audrey R. Taylor; Johannes Lang; Martin Bulla; Martin Bulla; Martin Bulla; Nathan R. Senner; Daniel H. Catlin; David H. Ward; Klaus-Michael Exo; Megan L. Boldenow; Aleksandr Sokolov; Joël Bêty; Nicolas Lecomte; Juan Fernandez-Elipe; Tomáš Albrecht; Tomáš Albrecht; Eunbi Kwon; Paula Machin; Diana V. Solovyeva; Jesse R. Conklin; Emily L. Weiser; Benoît Sittler; Marie-Andrée Giroux; Theunis Piersma; Theunis Piersma;pmid: 31196986
Kubelka et al . (Reports, 9 November 2018, p. 680) claim that climate change has disrupted patterns of nest predation in shorebirds. They report that predation rates have increased since the 1950s, especially in the Arctic. We describe methodological problems with their analyses and argue that there is no solid statistical support for their claims.
Science arrow_drop_down INRAP: HAL (Institut national de recherches archéologiques préventives)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)Université de Franche-Comté (UFC): HALArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)INRAP: HAL (Institut national de recherches archéologiques préventives)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)Université de Franche-Comté (UFC): HALArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aaw8529&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Science arrow_drop_down INRAP: HAL (Institut national de recherches archéologiques préventives)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)Université de Franche-Comté (UFC): HALArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)INRAP: HAL (Institut national de recherches archéologiques préventives)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)Université de Franche-Comté (UFC): HALArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aaw8529&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 Australia, Germany, Argentina, France, Australia, France, Netherlands, Argentina, FrancePublisher:American Association for the Advancement of Science (AAAS) Bart Kempenaers; Mihai Valcu; Natalya A. Sokolova; Marcelo Bertellotti; H. River Gates; Jan A. van Gils; Brian J. McCaffery; Richard Ottvall; Rebecca L. McGuire; Daniel R. Ruthrauff; Jean-François Lamarre; Ricardo Augusto Serpa Cerboncini; Sarah E. Jamieson; Glenda D. Hevia; Jeroen Reneerkens; Jeroen Reneerkens; José A. Alves; José A. Alves; Eldar Rakhimberdiev; Eldar Rakhimberdiev; James A. Johnson; Olivier Gilg; Rose J. Swift; Martijn van de Pol; Joe Liebezeit; Eduardo S. A. Santos; Paul A. Smith; Loïc Bollache; Nicolas Meyer; Mikhail Soloviev; Jennie Rausch; Rob van Bemmelen; Richard B. Lanctot; Matthew Johnson; Verónica L. D’Amico; Jannik Hansen; Glen S. Brown; Niels Martin Schmidt; Stephen C. Brown; Sara T Saalfeld; Erica Nol; David C. Payer; Audrey R. Taylor; Johannes Lang; Martin Bulla; Martin Bulla; Martin Bulla; Nathan R. Senner; Daniel H. Catlin; David H. Ward; Klaus-Michael Exo; Megan L. Boldenow; Aleksandr Sokolov; Joël Bêty; Nicolas Lecomte; Juan Fernandez-Elipe; Tomáš Albrecht; Tomáš Albrecht; Eunbi Kwon; Paula Machin; Diana V. Solovyeva; Jesse R. Conklin; Emily L. Weiser; Benoît Sittler; Marie-Andrée Giroux; Theunis Piersma; Theunis Piersma;pmid: 31196986
Kubelka et al . (Reports, 9 November 2018, p. 680) claim that climate change has disrupted patterns of nest predation in shorebirds. They report that predation rates have increased since the 1950s, especially in the Arctic. We describe methodological problems with their analyses and argue that there is no solid statistical support for their claims.
Science arrow_drop_down INRAP: HAL (Institut national de recherches archéologiques préventives)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)Université de Franche-Comté (UFC): HALArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)INRAP: HAL (Institut national de recherches archéologiques préventives)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)Université de Franche-Comté (UFC): HALArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aaw8529&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Science arrow_drop_down INRAP: HAL (Institut national de recherches archéologiques préventives)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)Université de Franche-Comté (UFC): HALArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)INRAP: HAL (Institut national de recherches archéologiques préventives)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)Université de Franche-Comté (UFC): HALArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aaw8529&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2012 NorwayPublisher:Public Library of Science (PLoS) Funded by:NSERCNSERCSokolov, Vasily; Ehrich, Dorothee; Yoccoz, Nigel; Sokolov, Alexander; Lecomte, Nicolas;The ratio of habitat generalists to specialists in birds has been suggested as a good indicator of ecosystem changes due to e.g. climate change and other anthropogenic perturbations. Most studies focusing on this functional component of biodiversity originate, however, from temperate regions. The Eurasian Arctic tundra is currently experiencing an unprecedented combination of climate change, change in grazing pressure by domestic reindeer and growing human activity.Here we monitored bird communities in a tundra landscape harbouring shrub and open habitats in order to analyse bird habitat relationships and quantify habitat specialization. We used ordination methods to analyse habitat associations and estimated the proportions of specialists in each of the main habitats. Correspondence Analysis identified three main bird communities, inhabiting upland, lowland and dense willow shrubs. We documented a stable structure of communities despite large multiannual variations of bird density (from 90 to 175 pairs/km(2)). Willow shrub thickets were a hotspot for bird density, but not for species richness. The thickets hosted many specialized species whose main distribution area was south of the tundra.If current arctic changes result in a shrubification of the landscape as many studies suggested, we would expect an increase in the overall bird abundance together with an increase of local specialists, since they are associated with willow thickets. The majority of these species have a southern origin and their increase in abundance would represent a strengthening of the boreal component in the southern tundra, perhaps at the expense of species typical of the subarctic zone, which appear to be generalists within this zone.
PLoS ONE arrow_drop_down Munin - Open Research ArchiveArticle . 2012 . Peer-reviewedData sources: Munin - Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0050335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert PLoS ONE arrow_drop_down Munin - Open Research ArchiveArticle . 2012 . Peer-reviewedData sources: Munin - Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0050335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2012 NorwayPublisher:Public Library of Science (PLoS) Funded by:NSERCNSERCSokolov, Vasily; Ehrich, Dorothee; Yoccoz, Nigel; Sokolov, Alexander; Lecomte, Nicolas;The ratio of habitat generalists to specialists in birds has been suggested as a good indicator of ecosystem changes due to e.g. climate change and other anthropogenic perturbations. Most studies focusing on this functional component of biodiversity originate, however, from temperate regions. The Eurasian Arctic tundra is currently experiencing an unprecedented combination of climate change, change in grazing pressure by domestic reindeer and growing human activity.Here we monitored bird communities in a tundra landscape harbouring shrub and open habitats in order to analyse bird habitat relationships and quantify habitat specialization. We used ordination methods to analyse habitat associations and estimated the proportions of specialists in each of the main habitats. Correspondence Analysis identified three main bird communities, inhabiting upland, lowland and dense willow shrubs. We documented a stable structure of communities despite large multiannual variations of bird density (from 90 to 175 pairs/km(2)). Willow shrub thickets were a hotspot for bird density, but not for species richness. The thickets hosted many specialized species whose main distribution area was south of the tundra.If current arctic changes result in a shrubification of the landscape as many studies suggested, we would expect an increase in the overall bird abundance together with an increase of local specialists, since they are associated with willow thickets. The majority of these species have a southern origin and their increase in abundance would represent a strengthening of the boreal component in the southern tundra, perhaps at the expense of species typical of the subarctic zone, which appear to be generalists within this zone.
PLoS ONE arrow_drop_down Munin - Open Research ArchiveArticle . 2012 . Peer-reviewedData sources: Munin - Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0050335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert PLoS ONE arrow_drop_down Munin - Open Research ArchiveArticle . 2012 . Peer-reviewedData sources: Munin - Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0050335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 Norway, Netherlands, NetherlandsPublisher:Wiley Funded by:NSERCNSERCAurélie Chagnon‐Lafortune; Éliane Duchesne; Pierre Legagneux; Laura McKinnon; Jeroen Reneerkens; Nicolas Casajus; Kenneth F. Abraham; Élise Bolduc; Glen S. Brown; Stephen C. Brown; H. River Gates; Olivier Gilg; Marie‐Andrée Giroux; Kirsty Gurney; Steve Kendall; Eunbi Kwon; Richard B. Lanctot; David B. Lank; Nicolas Lecomte; Maria Leung; Joseph R. Liebezeit; R. I. Guy Morrison; Erica Nol; David C. Payer; Donald Reid; Daniel Ruthrauff; Sarah T. Saalfeld; Brett K. Sandercock; Paul A. Smith; Niels Martin Schmidt; Ingrid Tulp; David H. Ward; Toke T. Høye; Dominique Berteaux; Joël Bêty;doi: 10.1111/gcb.17356
pmid: 38853470
AbstractSeasonally abundant arthropods are a crucial food source for many migratory birds that breed in the Arctic. In cold environments, the growth and emergence of arthropods are particularly tied to temperature. Thus, the phenology of arthropods is anticipated to undergo a rapid change in response to a warming climate, potentially leading to a trophic mismatch between migratory insectivorous birds and their prey. Using data from 19 sites spanning a wide temperature gradient from the Subarctic to the High Arctic, we investigated the effects of temperature on the phenology and biomass of arthropods available to shorebirds during their short breeding season at high latitudes. We hypothesized that prolonged exposure to warmer summer temperatures would generate earlier peaks in arthropod biomass, as well as higher peak and seasonal biomass. Across the temperature gradient encompassed by our study sites (>10°C in average summer temperatures), we found a 3‐day shift in average peak date for every increment of 80 cumulative thawing degree‐days. Interestingly, we found a linear relationship between temperature and arthropod biomass only below temperature thresholds. Higher temperatures were associated with higher peak and seasonal biomass below 106 and 177 cumulative thawing degree‐days, respectively, between June 5 and July 15. Beyond these thresholds, no relationship was observed between temperature and arthropod biomass. Our results suggest that prolonged exposure to elevated temperatures can positively influence prey availability for some arctic birds. This positive effect could, in part, stem from changes in arthropod assemblages and may reduce the risk of trophic mismatch.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2024License: CC BY NC NDData sources: University of Groningen Research PortalWageningen Staff PublicationsArticle . 2024License: CC BY NC NDData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17356&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2024License: CC BY NC NDData sources: University of Groningen Research PortalWageningen Staff PublicationsArticle . 2024License: CC BY NC NDData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17356&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 Norway, Netherlands, NetherlandsPublisher:Wiley Funded by:NSERCNSERCAurélie Chagnon‐Lafortune; Éliane Duchesne; Pierre Legagneux; Laura McKinnon; Jeroen Reneerkens; Nicolas Casajus; Kenneth F. Abraham; Élise Bolduc; Glen S. Brown; Stephen C. Brown; H. River Gates; Olivier Gilg; Marie‐Andrée Giroux; Kirsty Gurney; Steve Kendall; Eunbi Kwon; Richard B. Lanctot; David B. Lank; Nicolas Lecomte; Maria Leung; Joseph R. Liebezeit; R. I. Guy Morrison; Erica Nol; David C. Payer; Donald Reid; Daniel Ruthrauff; Sarah T. Saalfeld; Brett K. Sandercock; Paul A. Smith; Niels Martin Schmidt; Ingrid Tulp; David H. Ward; Toke T. Høye; Dominique Berteaux; Joël Bêty;doi: 10.1111/gcb.17356
pmid: 38853470
AbstractSeasonally abundant arthropods are a crucial food source for many migratory birds that breed in the Arctic. In cold environments, the growth and emergence of arthropods are particularly tied to temperature. Thus, the phenology of arthropods is anticipated to undergo a rapid change in response to a warming climate, potentially leading to a trophic mismatch between migratory insectivorous birds and their prey. Using data from 19 sites spanning a wide temperature gradient from the Subarctic to the High Arctic, we investigated the effects of temperature on the phenology and biomass of arthropods available to shorebirds during their short breeding season at high latitudes. We hypothesized that prolonged exposure to warmer summer temperatures would generate earlier peaks in arthropod biomass, as well as higher peak and seasonal biomass. Across the temperature gradient encompassed by our study sites (>10°C in average summer temperatures), we found a 3‐day shift in average peak date for every increment of 80 cumulative thawing degree‐days. Interestingly, we found a linear relationship between temperature and arthropod biomass only below temperature thresholds. Higher temperatures were associated with higher peak and seasonal biomass below 106 and 177 cumulative thawing degree‐days, respectively, between June 5 and July 15. Beyond these thresholds, no relationship was observed between temperature and arthropod biomass. Our results suggest that prolonged exposure to elevated temperatures can positively influence prey availability for some arctic birds. This positive effect could, in part, stem from changes in arthropod assemblages and may reduce the risk of trophic mismatch.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2024License: CC BY NC NDData sources: University of Groningen Research PortalWageningen Staff PublicationsArticle . 2024License: CC BY NC NDData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17356&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2024License: CC BY NC NDData sources: University of Groningen Research PortalWageningen Staff PublicationsArticle . 2024License: CC BY NC NDData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17356&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Finland, Norway, Norway, Sweden, Denmark, NorwayPublisher:Wiley Funded by:AKA | Exposing the long-term dy..., EC | INTERACT, AKA | Biotic interactions in a ... +3 projectsAKA| Exposing the long-term dynamics of Arctic ecosystems by novel and transdisciplinary techniques ,EC| INTERACT ,AKA| Biotic interactions in a changing Arctic ,NSERC ,AKA| Consequences of climate-driven changes in background below- and aboveground herbivory for tree growth, forest productivity, and ecosystem functions ,RCN| Functional traits across primary producer groups and their effects on tundra ecosystem processesNils Hein; Aleksandr Sokolov; Josée-Anne Otis; Katherine H.I. Drotos; Olivier Gilg; Mikhail V. Kozlov; Niklas Beckers; Evgenya Vyguzova; Dorothee Ehrich; Maia Olsen; Catherine Villeneuve; Bess Hardwick; Nicolas Lecomte; Vitali Zverev; Philipp Marr; Tomas Roslin; Tomas Roslin; Vladimir Gilg; Don-Jean Léandri-Breton; Maarten J.J.E. Loonen; Isabel C. Barrio; Tommi Andersson; Michelle Pyle; Jean-Claude Kresse; Christine Urbanowicz; Spencer K. Monckton; Kristian M. Jakobsen; Ruben E. Roos; Brigitte Sabard; Tone Birkemoe; Joël Bêty; Melissa H. DeSiervo; Daria Rozhkova; Jesse Jorna; Niels Martin Schmidt; Anna M. Solecki; Eero J. Vesterinen; Eero J. Vesterinen; Eero J. Vesterinen; Natalia Sokolova; Katrine Raundrup; Toke T. Høye; Paul E. Aspholm; Camille Jodouin; Tuomas Kankaanpää;AbstractClimatic impacts are especially pronounced in the Arctic, which as a region is warming twice as fast as the rest of the globe. Here, we investigate how mean climatic conditions and rates of climatic change impact parasitoid insect communities in 16 localities across the Arctic. We focus on parasitoids in a widespread habitat, Dryas heathlands, and describe parasitoid community composition in terms of larval host use (i.e., parasitoid use of herbivorous Lepidoptera vs. pollinating Diptera) and functional groups differing in their closeness of host associations (koinobionts vs. idiobionts). Of the latter, we expect idiobionts—as being less fine‐tuned to host development—to be generally less tolerant to cold temperatures, since they are confined to attacking hosts pupating and overwintering in relatively exposed locations. To further test our findings, we assess whether similar climatic variables are associated with host abundances in a 22 year time series from Northeast Greenland. We find sites which have experienced a temperature rise in summer while retaining cold winters to be dominated by parasitoids of Lepidoptera, with the reverse being true for the parasitoids of Diptera. The rate of summer temperature rise is further associated with higher levels of herbivory, suggesting higher availability of lepidopteran hosts and changes in ecosystem functioning. We also detect a matching signal over time, as higher summer temperatures, coupled with cold early winter soils, are related to high herbivory by lepidopteran larvae, and to declines in the abundance of dipteran pollinators. Collectively, our results suggest that in parts of the warming Arctic, Dryas is being simultaneously exposed to increased herbivory and reduced pollination. Our findings point to potential drastic and rapid consequences of climate change on multitrophic‐level community structure and on ecosystem functioning and highlight the value of collaborative, systematic sampling effort.
SLU publication data... arrow_drop_down Global Change BiologyArticle . 2020License: CC BY NC NDData sources: University of Groningen Research PortalHELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiMunin - Open Research ArchiveArticle . 2020 . Peer-reviewedData sources: Munin - Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15297&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 33 citations 33 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert SLU publication data... arrow_drop_down Global Change BiologyArticle . 2020License: CC BY NC NDData sources: University of Groningen Research PortalHELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiMunin - Open Research ArchiveArticle . 2020 . Peer-reviewedData sources: Munin - Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15297&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Finland, Norway, Norway, Sweden, Denmark, NorwayPublisher:Wiley Funded by:AKA | Exposing the long-term dy..., EC | INTERACT, AKA | Biotic interactions in a ... +3 projectsAKA| Exposing the long-term dynamics of Arctic ecosystems by novel and transdisciplinary techniques ,EC| INTERACT ,AKA| Biotic interactions in a changing Arctic ,NSERC ,AKA| Consequences of climate-driven changes in background below- and aboveground herbivory for tree growth, forest productivity, and ecosystem functions ,RCN| Functional traits across primary producer groups and their effects on tundra ecosystem processesNils Hein; Aleksandr Sokolov; Josée-Anne Otis; Katherine H.I. Drotos; Olivier Gilg; Mikhail V. Kozlov; Niklas Beckers; Evgenya Vyguzova; Dorothee Ehrich; Maia Olsen; Catherine Villeneuve; Bess Hardwick; Nicolas Lecomte; Vitali Zverev; Philipp Marr; Tomas Roslin; Tomas Roslin; Vladimir Gilg; Don-Jean Léandri-Breton; Maarten J.J.E. Loonen; Isabel C. Barrio; Tommi Andersson; Michelle Pyle; Jean-Claude Kresse; Christine Urbanowicz; Spencer K. Monckton; Kristian M. Jakobsen; Ruben E. Roos; Brigitte Sabard; Tone Birkemoe; Joël Bêty; Melissa H. DeSiervo; Daria Rozhkova; Jesse Jorna; Niels Martin Schmidt; Anna M. Solecki; Eero J. Vesterinen; Eero J. Vesterinen; Eero J. Vesterinen; Natalia Sokolova; Katrine Raundrup; Toke T. Høye; Paul E. Aspholm; Camille Jodouin; Tuomas Kankaanpää;AbstractClimatic impacts are especially pronounced in the Arctic, which as a region is warming twice as fast as the rest of the globe. Here, we investigate how mean climatic conditions and rates of climatic change impact parasitoid insect communities in 16 localities across the Arctic. We focus on parasitoids in a widespread habitat, Dryas heathlands, and describe parasitoid community composition in terms of larval host use (i.e., parasitoid use of herbivorous Lepidoptera vs. pollinating Diptera) and functional groups differing in their closeness of host associations (koinobionts vs. idiobionts). Of the latter, we expect idiobionts—as being less fine‐tuned to host development—to be generally less tolerant to cold temperatures, since they are confined to attacking hosts pupating and overwintering in relatively exposed locations. To further test our findings, we assess whether similar climatic variables are associated with host abundances in a 22 year time series from Northeast Greenland. We find sites which have experienced a temperature rise in summer while retaining cold winters to be dominated by parasitoids of Lepidoptera, with the reverse being true for the parasitoids of Diptera. The rate of summer temperature rise is further associated with higher levels of herbivory, suggesting higher availability of lepidopteran hosts and changes in ecosystem functioning. We also detect a matching signal over time, as higher summer temperatures, coupled with cold early winter soils, are related to high herbivory by lepidopteran larvae, and to declines in the abundance of dipteran pollinators. Collectively, our results suggest that in parts of the warming Arctic, Dryas is being simultaneously exposed to increased herbivory and reduced pollination. Our findings point to potential drastic and rapid consequences of climate change on multitrophic‐level community structure and on ecosystem functioning and highlight the value of collaborative, systematic sampling effort.
SLU publication data... arrow_drop_down Global Change BiologyArticle . 2020License: CC BY NC NDData sources: University of Groningen Research PortalHELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiMunin - Open Research ArchiveArticle . 2020 . Peer-reviewedData sources: Munin - Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15297&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 33 citations 33 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert SLU publication data... arrow_drop_down Global Change BiologyArticle . 2020License: CC BY NC NDData sources: University of Groningen Research PortalHELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiMunin - Open Research ArchiveArticle . 2020 . Peer-reviewedData sources: Munin - Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15297&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Norwegian Polar Institute Denise Bélanger; Audrey Simon; Olivia Tardy; Patrick A. Leighton; Nicolas Lecomte; Amy Hurford;Rabies is a major issue for human and animal health in the Arctic, yet little is known about its epidemiology. In particular, there is an ongoing debate regarding how Arctic rabies persists in its primary reservoir host, the Arctic fox (Vulpes lagopus), which exists in the ecosystem at very low population densities. To shed light on the mechanisms of rabies persistence in the Arctic, we built a susceptible–exposed–infectious–recovered (SEIR) epidemiological model of rabies virus transmission in an Arctic fox population interacting with red foxes (Vulpes vulpes), a rabies host that is increasingly present in the Arctic. The model suggests that rabies cannot be maintained in resource-poor areas of the Arctic, characterized by low Arctic fox density, even in the presence of continuous reintroduction of the virus by infected Arctic foxes from neighbouring regions. However, in populations of relatively high Arctic fox density, rabies persists under conditions of higher transmission rate, prolonged infectious period and for a broad range of incubation periods. Introducing the strong cyclical dynamics of Arctic prey availability makes simulated rabies outbreaks less regular but more intense, with an onset that does not neatly track peaks in Arctic fox density. Finally, interaction between Arctic and red foxes increases the frequency and/or the intensity of rabies outbreaks in the Arctic fox population. Our work suggests that disruption of prey cycles and increasing interactions between Arctic and red foxes due to climate change and northern development may significantly change the epidemiology of rabies across the Arctic.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.33265/polar.v38.3366&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.33265/polar.v38.3366&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Norwegian Polar Institute Denise Bélanger; Audrey Simon; Olivia Tardy; Patrick A. Leighton; Nicolas Lecomte; Amy Hurford;Rabies is a major issue for human and animal health in the Arctic, yet little is known about its epidemiology. In particular, there is an ongoing debate regarding how Arctic rabies persists in its primary reservoir host, the Arctic fox (Vulpes lagopus), which exists in the ecosystem at very low population densities. To shed light on the mechanisms of rabies persistence in the Arctic, we built a susceptible–exposed–infectious–recovered (SEIR) epidemiological model of rabies virus transmission in an Arctic fox population interacting with red foxes (Vulpes vulpes), a rabies host that is increasingly present in the Arctic. The model suggests that rabies cannot be maintained in resource-poor areas of the Arctic, characterized by low Arctic fox density, even in the presence of continuous reintroduction of the virus by infected Arctic foxes from neighbouring regions. However, in populations of relatively high Arctic fox density, rabies persists under conditions of higher transmission rate, prolonged infectious period and for a broad range of incubation periods. Introducing the strong cyclical dynamics of Arctic prey availability makes simulated rabies outbreaks less regular but more intense, with an onset that does not neatly track peaks in Arctic fox density. Finally, interaction between Arctic and red foxes increases the frequency and/or the intensity of rabies outbreaks in the Arctic fox population. Our work suggests that disruption of prey cycles and increasing interactions between Arctic and red foxes due to climate change and northern development may significantly change the epidemiology of rabies across the Arctic.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.33265/polar.v38.3366&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.33265/polar.v38.3366&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Embargo end date: 14 Jul 2021 Qatar, France, Switzerland, France, Canada, Italy, Germany, Australia, Portugal, Austria, France, Denmark, Belgium, Qatar, France, Spain, France, Argentina, France, United Kingdom, Canada, Austria, Argentina, Portugal, FrancePublisher:Frontiers Media SA Funded by:EC | ECOWORM, EC | Med-N-Change, EC | eLTER PLUS +2 projectsEC| ECOWORM ,EC| Med-N-Change ,EC| eLTER PLUS ,FCT| Centre for Ecology, Evolution and Environmental Changes ,DFG| German Centre for Integrative Biodiversity Research - iDivTaeOh Kwon; Hideaki Shibata; Sebastian Kepfer-Rojas; Inger K. Schmidt; Klaus S. Larsen; Claus Beier; Björn Berg; Kris Verheyen; Jean-Francois Lamarque; Frank Hagedorn; Nico Eisenhauer; Nico Eisenhauer; Ika Djukic; TeaComposition Network; TaeOh Kwon; Hideaki Shibata; Sebastian Kepfer-Rojas; Inger Kappel Schmidt; Klaus Steenberg Larsen; Claus Beier; Björn Berg; Kris Verheyen; Jean Francois Lamarque; Frank Hagedorn; Nico Eisenhauer; Ika Djukic; Adriano Caliman; Alain Paquette; Alba Gutiérrez-Girón; Alessandro Petraglia; Algirdas Augustaitis; Amélie Saillard; Ana Carolina Ruiz-Fernández; Ana I. Sousa; Ana I. Lillebø; Anderson da Rocha Gripp; Andrea Lamprecht; Andreas Bohner; André-Jean Francez; Andrey Malyshev; Andrijana Andrić; Angela Stanisci; Anita Zolles; Anna Avila; Anna-Maria Virkkala; Anne Probst; Annie Ouin; Anzar A. Khuroo; Arne Verstraeten; Artur Stefanski; Aurora Gaxiola; Bart Muys; Beatriz Gozalo; Bernd Ahrends; Bo Yang; Brigitta Erschbamer; Carmen Eugenia Rodríguez Ortíz; Casper T. Christiansen; Céline Meredieu; Cendrine Mony; Charles Nock; Chiao-Ping Wang; Christel Baum; Christian Rixen; Christine Delire; Christophe Piscart; Christopher Andrews; Corinna Rebmann; Cristina Branquinho; Dick Jan; Dirk Wundram; Dušanka Vujanović; E. Carol Adair; Eduardo Ordóñez-Regil; Edward R. Crawford; Elena F. Tropina; Elisabeth Hornung; Elli Groner; Eric Lucot; Esperança Gacia; Esther Lévesque; Evanilde Benedito; Evgeny A. Davydov; Fábio Padilha Bolzan; Fernando T. Maestre; Florence Maunoury-Danger; Florian Kitz; Florian Hofhansl; Flurin Sutter; Francisco de Almeida Lobo; Franco Leadro Souza; Franz Zehetner; Fulgence Kouamé Koffi; Georg Wohlfahrt; Giacomo Certini; Gisele Daiane Pinha; Grizelle González; Guylaine Canut; Harald Pauli; Héctor A. Bahamonde; Heike Feldhaar; Heinke Jäger; Helena Cristina Serrano; Hélène Verheyden; Helge Bruelheide; Henning Meesenburg; Hermann Jungkunst; Hervé Jactel; Hiroko Kurokawa; Ian Yesilonis; Inara Melece; Inge van Halder; Inmaculada García Quirós; István Fekete; Ivika Ostonen; Jana Borovská; Javier Roales; Jawad Hasan Shoqeir; Jean-Christophe Lata; Jean-Luc Probst; Jeyanny Vijayanathan; Jiri Dolezal; Joan-Albert Sanchez-Cabeza; Joël Merlet; John Loehr; Jonathan von Oppen; Jörg Löffler; José Luis Benito Alonso; José-Gilberto Cardoso-Mohedano; Josep Peñuelas; Joseph C. Morina; Juan Darío Quinde; Juan J. Jiménez; Juha M. Alatalo; Julia Seeber; Julia Kemppinen; Jutta Stadler; Kaie Kriiska; Karel Van den Meersche; Karibu Fukuzawa; Katalin Szlavecz; Katalin Juhos; Katarína Gerhátová; Kate Lajtha; Katie Jennings; Katja Tielbörger; Kazuhiko Hoshizaki; Ken Green; Klaus Steinbauer; Laryssa Pazianoto; Laura Dienstbach; Laura Yahdjian; Laura J. Williams; Laurel Brigham; Lee Hanna; Liesbeth van den Brink; Lindsey Rustad; Lourdes Morillas; Luciana Silva Carneiro; Luciano Di Martino; Luis Villar; Luísa Alícida Fernandes Tavares; Madison Morley; Manuela Winkler; Marc Lebouvier; Marcello Tomaselli; Marcus Schaub; Maria Glushkova; Maria Guadalupe Almazan Torres; Marie-Anne de Graaff; Marie-Noëlle Pons; Marijn Bauters; Marina Mazón; Mark Frenzel; Markus Wagner; Markus Didion; Maroof Hamid; Marta Lopes; Martha Apple; Martin Weih; Matej Mojses; Matteo Gualmini; Matthew Vadeboncoeur; Michael Bierbaumer; Michael Danger; Michael Scherer-Lorenzen; Michal Růžek; Michel Isabellon; Michele Di Musciano; Michele Carbognani; Miglena Zhiyanski; Mihai Puşcaş; Milan Barna; Mioko Ataka; Miska Luoto; Mohammed H. Alsafaran; Nadia Barsoum; Naoko Tokuchi; Nathalie Korboulewsky; Nicolas Lecomte;handle: 10261/275795 , 10576/40041 , 20.500.12123/9826 , 11336/166456 , 11695/119968 , 11585/872593 , 2158/1259496 , 1854/LU-8720292 , 1885/311153 , 11381/2931395 , 1959.7/uws:67032
Litter decomposition is a key process for carbon and nutrient cycling in terrestrial ecosystems and is mainly controlled by environmental conditions, substrate quantity and quality as well as microbial community abundance and composition. In particular, the effects of climate and atmospheric nitrogen (N) deposition on litter decomposition and its temporal dynamics are of significant importance, since their effects might change over the course of the decomposition process. Within the TeaComposition initiative, we incubated Green and Rooibos teas at 524 sites across nine biomes. We assessed how macroclimate and atmospheric inorganic N deposition under current and predicted scenarios (RCP 2.6, RCP 8.5) might affect litter mass loss measured after 3 and 12 months. Our study shows that the early to mid-term mass loss at the global scale was affected predominantly by litter quality (explaining 73% and 62% of the total variance after 3 and 12 months, respectively) followed by climate and N deposition. The effects of climate were not litter-specific and became increasingly significant as decomposition progressed, with MAP explaining 2% and MAT 4% of the variation after 12 months of incubation. The effect of N deposition was litter-specific, and significant only for 12-month decomposition of Rooibos tea at the global scale. However, in the temperate biome where atmospheric N deposition rates are relatively high, the 12-month mass loss of Green and Rooibos teas decreased significantly with increasing N deposition, explaining 9.5% and 1.1% of the variance, respectively. The expected changes in macroclimate and N deposition at the global scale by the end of this century are estimated to increase the 12-month mass loss of easily decomposable litter by 1.1–3.5% and of the more stable substrates by 3.8–10.6%, relative to current mass loss. In contrast, expected changes in atmospheric N deposition will decrease the mid-term mass loss of high-quality litter by 1.4–2.2% and that of low-quality litter by 0.9–1.5% in the temperate biome. Our results suggest that projected increases in N deposition may have the capacity to dampen the climate-driven increases in litter decomposition depending on the biome and decomposition stage of substrate.
NERC Open Research A... arrow_drop_down Open Archive Toulouse Archive OuverteArticle . 2021 . Peer-reviewedData sources: Open Archive Toulouse Archive OuverteInstitut National Polytechnique de Toulouse (Theses)Article . 2021 . Peer-reviewedData sources: Institut National Polytechnique de Toulouse (Theses)Flore (Florence Research Repository)Article . 2021License: CC BYFull-Text: https://flore.unifi.it/bitstream/2158/1259496/1/Frontiers%20in%20Forests%20and%20Global%20Change.pdfData sources: Flore (Florence Research Repository)University of Freiburg: FreiDokArticle . 2021Full-Text: https://freidok.uni-freiburg.de/data/229972Data sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2021Full-Text: https://hal.science/hal-03403978Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleLicense: CC BYFull-Text: http://hdl.handle.net/1885/311153Data sources: Bielefeld Academic Search Engine (BASE)OATAO (Open Archive Toulouse Archive Ouverte - Université de Toulouse)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03403978Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Frontiers in Forests and Global ChangeArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAQatar University Institutional RepositoryArticle . 2021Data sources: Qatar University Institutional RepositoryServeur académique lausannoisArticle . 2021License: CC BYData sources: Serveur académique lausannoisUniversidade de Lisboa: Repositório.ULArticle . 2021License: CC BYData sources: Universidade de Lisboa: Repositório.ULCopenhagen University Research Information SystemArticle . 2021Data sources: Copenhagen University Research Information SystemFrontiers in Forests and Global ChangeArticle . 2021 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2021Data sources: Ghent University Academic Bibliographyhttp://dx.doi.org/10.3389/ffgc...Article . 2021 . Peer-reviewedData sources: European Union Open Data PortalUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2021Data sources: Universitätsbibliographie, Universität Duisburg-EssenArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Université du Québec à Trois-Rivières: Dépôt numérique de UQTRArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Qatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/ffgc.2021.678480&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 120visibility views 120 download downloads 90 Powered bymore_vert NERC Open Research A... arrow_drop_down Open Archive Toulouse Archive OuverteArticle . 2021 . Peer-reviewedData sources: Open Archive Toulouse Archive OuverteInstitut National Polytechnique de Toulouse (Theses)Article . 2021 . Peer-reviewedData sources: Institut National Polytechnique de Toulouse (Theses)Flore (Florence Research Repository)Article . 2021License: CC BYFull-Text: https://flore.unifi.it/bitstream/2158/1259496/1/Frontiers%20in%20Forests%20and%20Global%20Change.pdfData sources: Flore (Florence Research Repository)University of Freiburg: FreiDokArticle . 2021Full-Text: https://freidok.uni-freiburg.de/data/229972Data sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2021Full-Text: https://hal.science/hal-03403978Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleLicense: CC BYFull-Text: http://hdl.handle.net/1885/311153Data sources: Bielefeld Academic Search Engine (BASE)OATAO (Open Archive Toulouse Archive Ouverte - Université de Toulouse)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03403978Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Frontiers in Forests and Global ChangeArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAQatar University Institutional RepositoryArticle . 2021Data sources: Qatar University Institutional RepositoryServeur académique lausannoisArticle . 2021License: CC BYData sources: Serveur académique lausannoisUniversidade de Lisboa: Repositório.ULArticle . 2021License: CC BYData sources: Universidade de Lisboa: Repositório.ULCopenhagen University Research Information SystemArticle . 2021Data sources: Copenhagen University Research Information SystemFrontiers in Forests and Global ChangeArticle . 2021 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2021Data sources: Ghent University Academic Bibliographyhttp://dx.doi.org/10.3389/ffgc...Article . 2021 . Peer-reviewedData sources: European Union Open Data PortalUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2021Data sources: Universitätsbibliographie, Universität Duisburg-EssenArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Université du Québec à Trois-Rivières: Dépôt numérique de UQTRArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Qatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/ffgc.2021.678480&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Embargo end date: 14 Jul 2021 Qatar, France, Switzerland, France, Canada, Italy, Germany, Australia, Portugal, Austria, France, Denmark, Belgium, Qatar, France, Spain, France, Argentina, France, United Kingdom, Canada, Austria, Argentina, Portugal, FrancePublisher:Frontiers Media SA Funded by:EC | ECOWORM, EC | Med-N-Change, EC | eLTER PLUS +2 projectsEC| ECOWORM ,EC| Med-N-Change ,EC| eLTER PLUS ,FCT| Centre for Ecology, Evolution and Environmental Changes ,DFG| German Centre for Integrative Biodiversity Research - iDivTaeOh Kwon; Hideaki Shibata; Sebastian Kepfer-Rojas; Inger K. Schmidt; Klaus S. Larsen; Claus Beier; Björn Berg; Kris Verheyen; Jean-Francois Lamarque; Frank Hagedorn; Nico Eisenhauer; Nico Eisenhauer; Ika Djukic; TeaComposition Network; TaeOh Kwon; Hideaki Shibata; Sebastian Kepfer-Rojas; Inger Kappel Schmidt; Klaus Steenberg Larsen; Claus Beier; Björn Berg; Kris Verheyen; Jean Francois Lamarque; Frank Hagedorn; Nico Eisenhauer; Ika Djukic; Adriano Caliman; Alain Paquette; Alba Gutiérrez-Girón; Alessandro Petraglia; Algirdas Augustaitis; Amélie Saillard; Ana Carolina Ruiz-Fernández; Ana I. Sousa; Ana I. Lillebø; Anderson da Rocha Gripp; Andrea Lamprecht; Andreas Bohner; André-Jean Francez; Andrey Malyshev; Andrijana Andrić; Angela Stanisci; Anita Zolles; Anna Avila; Anna-Maria Virkkala; Anne Probst; Annie Ouin; Anzar A. Khuroo; Arne Verstraeten; Artur Stefanski; Aurora Gaxiola; Bart Muys; Beatriz Gozalo; Bernd Ahrends; Bo Yang; Brigitta Erschbamer; Carmen Eugenia Rodríguez Ortíz; Casper T. Christiansen; Céline Meredieu; Cendrine Mony; Charles Nock; Chiao-Ping Wang; Christel Baum; Christian Rixen; Christine Delire; Christophe Piscart; Christopher Andrews; Corinna Rebmann; Cristina Branquinho; Dick Jan; Dirk Wundram; Dušanka Vujanović; E. Carol Adair; Eduardo Ordóñez-Regil; Edward R. Crawford; Elena F. Tropina; Elisabeth Hornung; Elli Groner; Eric Lucot; Esperança Gacia; Esther Lévesque; Evanilde Benedito; Evgeny A. Davydov; Fábio Padilha Bolzan; Fernando T. Maestre; Florence Maunoury-Danger; Florian Kitz; Florian Hofhansl; Flurin Sutter; Francisco de Almeida Lobo; Franco Leadro Souza; Franz Zehetner; Fulgence Kouamé Koffi; Georg Wohlfahrt; Giacomo Certini; Gisele Daiane Pinha; Grizelle González; Guylaine Canut; Harald Pauli; Héctor A. Bahamonde; Heike Feldhaar; Heinke Jäger; Helena Cristina Serrano; Hélène Verheyden; Helge Bruelheide; Henning Meesenburg; Hermann Jungkunst; Hervé Jactel; Hiroko Kurokawa; Ian Yesilonis; Inara Melece; Inge van Halder; Inmaculada García Quirós; István Fekete; Ivika Ostonen; Jana Borovská; Javier Roales; Jawad Hasan Shoqeir; Jean-Christophe Lata; Jean-Luc Probst; Jeyanny Vijayanathan; Jiri Dolezal; Joan-Albert Sanchez-Cabeza; Joël Merlet; John Loehr; Jonathan von Oppen; Jörg Löffler; José Luis Benito Alonso; José-Gilberto Cardoso-Mohedano; Josep Peñuelas; Joseph C. Morina; Juan Darío Quinde; Juan J. Jiménez; Juha M. Alatalo; Julia Seeber; Julia Kemppinen; Jutta Stadler; Kaie Kriiska; Karel Van den Meersche; Karibu Fukuzawa; Katalin Szlavecz; Katalin Juhos; Katarína Gerhátová; Kate Lajtha; Katie Jennings; Katja Tielbörger; Kazuhiko Hoshizaki; Ken Green; Klaus Steinbauer; Laryssa Pazianoto; Laura Dienstbach; Laura Yahdjian; Laura J. Williams; Laurel Brigham; Lee Hanna; Liesbeth van den Brink; Lindsey Rustad; Lourdes Morillas; Luciana Silva Carneiro; Luciano Di Martino; Luis Villar; Luísa Alícida Fernandes Tavares; Madison Morley; Manuela Winkler; Marc Lebouvier; Marcello Tomaselli; Marcus Schaub; Maria Glushkova; Maria Guadalupe Almazan Torres; Marie-Anne de Graaff; Marie-Noëlle Pons; Marijn Bauters; Marina Mazón; Mark Frenzel; Markus Wagner; Markus Didion; Maroof Hamid; Marta Lopes; Martha Apple; Martin Weih; Matej Mojses; Matteo Gualmini; Matthew Vadeboncoeur; Michael Bierbaumer; Michael Danger; Michael Scherer-Lorenzen; Michal Růžek; Michel Isabellon; Michele Di Musciano; Michele Carbognani; Miglena Zhiyanski; Mihai Puşcaş; Milan Barna; Mioko Ataka; Miska Luoto; Mohammed H. Alsafaran; Nadia Barsoum; Naoko Tokuchi; Nathalie Korboulewsky; Nicolas Lecomte;handle: 10261/275795 , 10576/40041 , 20.500.12123/9826 , 11336/166456 , 11695/119968 , 11585/872593 , 2158/1259496 , 1854/LU-8720292 , 1885/311153 , 11381/2931395 , 1959.7/uws:67032
Litter decomposition is a key process for carbon and nutrient cycling in terrestrial ecosystems and is mainly controlled by environmental conditions, substrate quantity and quality as well as microbial community abundance and composition. In particular, the effects of climate and atmospheric nitrogen (N) deposition on litter decomposition and its temporal dynamics are of significant importance, since their effects might change over the course of the decomposition process. Within the TeaComposition initiative, we incubated Green and Rooibos teas at 524 sites across nine biomes. We assessed how macroclimate and atmospheric inorganic N deposition under current and predicted scenarios (RCP 2.6, RCP 8.5) might affect litter mass loss measured after 3 and 12 months. Our study shows that the early to mid-term mass loss at the global scale was affected predominantly by litter quality (explaining 73% and 62% of the total variance after 3 and 12 months, respectively) followed by climate and N deposition. The effects of climate were not litter-specific and became increasingly significant as decomposition progressed, with MAP explaining 2% and MAT 4% of the variation after 12 months of incubation. The effect of N deposition was litter-specific, and significant only for 12-month decomposition of Rooibos tea at the global scale. However, in the temperate biome where atmospheric N deposition rates are relatively high, the 12-month mass loss of Green and Rooibos teas decreased significantly with increasing N deposition, explaining 9.5% and 1.1% of the variance, respectively. The expected changes in macroclimate and N deposition at the global scale by the end of this century are estimated to increase the 12-month mass loss of easily decomposable litter by 1.1–3.5% and of the more stable substrates by 3.8–10.6%, relative to current mass loss. In contrast, expected changes in atmospheric N deposition will decrease the mid-term mass loss of high-quality litter by 1.4–2.2% and that of low-quality litter by 0.9–1.5% in the temperate biome. Our results suggest that projected increases in N deposition may have the capacity to dampen the climate-driven increases in litter decomposition depending on the biome and decomposition stage of substrate.
NERC Open Research A... arrow_drop_down Open Archive Toulouse Archive OuverteArticle . 2021 . Peer-reviewedData sources: Open Archive Toulouse Archive OuverteInstitut National Polytechnique de Toulouse (Theses)Article . 2021 . Peer-reviewedData sources: Institut National Polytechnique de Toulouse (Theses)Flore (Florence Research Repository)Article . 2021License: CC BYFull-Text: https://flore.unifi.it/bitstream/2158/1259496/1/Frontiers%20in%20Forests%20and%20Global%20Change.pdfData sources: Flore (Florence Research Repository)University of Freiburg: FreiDokArticle . 2021Full-Text: https://freidok.uni-freiburg.de/data/229972Data sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2021Full-Text: https://hal.science/hal-03403978Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleLicense: CC BYFull-Text: http://hdl.handle.net/1885/311153Data sources: Bielefeld Academic Search Engine (BASE)OATAO (Open Archive Toulouse Archive Ouverte - Université de Toulouse)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03403978Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Frontiers in Forests and Global ChangeArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAQatar University Institutional RepositoryArticle . 2021Data sources: Qatar University Institutional RepositoryServeur académique lausannoisArticle . 2021License: CC BYData sources: Serveur académique lausannoisUniversidade de Lisboa: Repositório.ULArticle . 2021License: CC BYData sources: Universidade de Lisboa: Repositório.ULCopenhagen University Research Information SystemArticle . 2021Data sources: Copenhagen University Research Information SystemFrontiers in Forests and Global ChangeArticle . 2021 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2021Data sources: Ghent University Academic Bibliographyhttp://dx.doi.org/10.3389/ffgc...Article . 2021 . Peer-reviewedData sources: European Union Open Data PortalUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2021Data sources: Universitätsbibliographie, Universität Duisburg-EssenArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Université du Québec à Trois-Rivières: Dépôt numérique de UQTRArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Qatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/ffgc.2021.678480&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 120visibility views 120 download downloads 90 Powered bymore_vert NERC Open Research A... arrow_drop_down Open Archive Toulouse Archive OuverteArticle . 2021 . Peer-reviewedData sources: Open Archive Toulouse Archive OuverteInstitut National Polytechnique de Toulouse (Theses)Article . 2021 . Peer-reviewedData sources: Institut National Polytechnique de Toulouse (Theses)Flore (Florence Research Repository)Article . 2021License: CC BYFull-Text: https://flore.unifi.it/bitstream/2158/1259496/1/Frontiers%20in%20Forests%20and%20Global%20Change.pdfData sources: Flore (Florence Research Repository)University of Freiburg: FreiDokArticle . 2021Full-Text: https://freidok.uni-freiburg.de/data/229972Data sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2021Full-Text: https://hal.science/hal-03403978Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleLicense: CC BYFull-Text: http://hdl.handle.net/1885/311153Data sources: Bielefeld Academic Search Engine (BASE)OATAO (Open Archive Toulouse Archive Ouverte - Université de Toulouse)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03403978Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Frontiers in Forests and Global ChangeArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAQatar University Institutional RepositoryArticle . 2021Data sources: Qatar University Institutional RepositoryServeur académique lausannoisArticle . 2021License: CC BYData sources: Serveur académique lausannoisUniversidade de Lisboa: Repositório.ULArticle . 2021License: CC BYData sources: Universidade de Lisboa: Repositório.ULCopenhagen University Research Information SystemArticle . 2021Data sources: Copenhagen University Research Information SystemFrontiers in Forests and Global ChangeArticle . 2021 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2021Data sources: Ghent University Academic Bibliographyhttp://dx.doi.org/10.3389/ffgc...Article . 2021 . Peer-reviewedData sources: European Union Open Data PortalUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2021Data sources: Universitätsbibliographie, Universität Duisburg-EssenArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Université du Québec à Trois-Rivières: Dépôt numérique de UQTRArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Qatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/ffgc.2021.678480&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu