- home
- Advanced Search
Filters
Year range
-chevron_right GOCountry
Source
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2022 United States, United KingdomPublisher:Wiley Authors: Camille Piponiot; Kristina J. Anderson‐Teixeira; Stuart J. Davies; David Allen; +56 AuthorsCamille Piponiot; Kristina J. Anderson‐Teixeira; Stuart J. Davies; David Allen; Norman A. Bourg; David F. R. P. Burslem; Dairon Cárdenas; Chia‐Hao Chang‐Yang; George Chuyong; Susan Cordell; Handanakere Shivaramaiah Dattaraja; Álvaro Duque; Sisira Ediriweera; Corneille Ewango; Zacky Ezedin; Jonah Filip; Christian P. Giardina; Robert Howe; Chang‐Fu Hsieh; Stephen P. Hubbell; Faith M. Inman‐Narahari; Akira Itoh; David Janík; David Kenfack; Kamil Král; James A. Lutz; Jean‐Remy Makana; Sean M. McMahon; William McShea; Xiangcheng Mi; Mohizah Bt. Mohamad; Vojtěch Novotný; Michael J. O'Brien; Rebecca Ostertag; Geoffrey Parker; Rolando Pérez; Haibao Ren; Glen Reynolds; Mohamad Danial Md Sabri; Lawren Sack; Ankur Shringi; Sheng‐Hsin Su; Raman Sukumar; I‐Fang Sun; Hebbalalu S. Suresh; Duncan W. Thomas; Jill Thompson; Maria Uriarte; John Vandermeer; Yunquan Wang; Ian M. Ware; George D. Weiblen; Timothy J. S. Whitfeld; Amy Wolf; Tze Leong Yao; Mingjian Yu; Zuoqiang Yuan; Jess K. Zimmerman; Daniel Zuleta; Helene C. Muller‐Landau;Summary Tree size shapes forest carbon dynamics and determines how trees interact with their environment, including a changing climate. Here, we conduct the first global analysis of among‐site differences in how aboveground biomass stocks and fluxes are distributed with tree size. We analyzed repeat tree censuses from 25 large‐scale (4–52 ha) forest plots spanning a broad climatic range over five continents to characterize how aboveground biomass, woody productivity, and woody mortality vary with tree diameter. We examined how the median, dispersion, and skewness of these size‐related distributions vary with mean annual temperature and precipitation. In warmer forests, aboveground biomass, woody productivity, and woody mortality were more broadly distributed with respect to tree size. In warmer and wetter forests, aboveground biomass and woody productivity were more right skewed, with a long tail towards large trees. Small trees (1–10 cm diameter) contributed more to productivity and mortality than to biomass, highlighting the importance of including these trees in analyses of forest dynamics. Our findings provide an improved characterization of climate‐driven forest differences in the size structure of aboveground biomass and dynamics of that biomass, as well as refined benchmarks for capturing climate influences in vegetation demographic models.
New Phytologist arrow_drop_down New PhytologistArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Michigan: Deep BlueArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.17995&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 37 citations 37 popularity Top 10% influence Average impulse Top 1% Powered by BIP!
more_vert New Phytologist arrow_drop_down New PhytologistArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Michigan: Deep BlueArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.17995&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United StatesPublisher:Wiley Daniel Zuleta; Gabriel Arellano; Helene C. Muller‐Landau; Sean M. McMahon; Salomón Aguilar; Sarayudh Bunyavejchewin; Dairon Cárdenas; Chia‐Hao Chang‐Yang; Alvaro Duque; David Mitre; Musalmah Nasardin; Rolando Pérez; I‐Fang Sun; Tze Leong Yao; Stuart J. Davies;Summary The relative importance of tree mortality risk factors remains unknown, especially in diverse tropical forests where species may vary widely in their responses to particular conditions. We present a new framework for quantifying the importance of mortality risk factors and apply it to compare 19 risks on 31 203 trees (1977 species) in 14 one‐year periods in six tropical forests. We defined a condition as a risk factor for a species if it was associated with at least a doubling of mortality rate in univariate analyses. For each risk, we estimated prevalence (frequency), lethality (difference in mortality between trees with and without the risk) and impact (‘excess mortality’ associated with the risk, relative to stand‐level mortality). The most impactful risk factors were light limitation and crown/trunk loss; the most prevalent were light limitation and small size; the most lethal were leaf damage and wounds. Modes of death (standing, broken and uprooted) had limited links with previous conditions and mortality risk factors. We provide the first ranking of importance of tree‐level mortality risk factors in tropical forests. Future research should focus on the links between these risks, their climatic drivers and the physiological processes to enable mechanistic predictions of future tree mortality.
New Phytologist arrow_drop_down New PhytologistArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Michigan: Deep BlueArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.17832&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert New Phytologist arrow_drop_down New PhytologistArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Michigan: Deep BlueArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.17832&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type 2019Publisher:OpenAlex Dmitry Schepaschenko; Jérôme Chave; Oliver L. Phillips; Simon L. Lewis; Stuart J. Davies; Maxime Réjou‐Méchain; Plínio Sist; Klaus Scipal; Christoph Perger; Bruno Hérault; Nicolas Labrière; Florian Hofhansl; Kofi Affum‐Baffoe; Alfonso Alonso; Christian Amani; Alejandro Araujo‐Murakami; John Armston; Luzmila Arroyo; Nataly Ascarrunz; C. P. de Azevedo; Timothy R. Baker; Radomir Bałazy; Caroline Bedeau; Nicholas Berry; Andrii Bilous; Pulchérie Bissiengou; Lilian Blanc; Tatyana Braslavskaya; Roel Brienen; David F. R. P. Burslem; Richard Condit; Aida Cuní-Sanchez; Dennis Del Castillo-Torres; Géraldine Derroire; Laurent Descroix; Eleneide Doff Sotta; Marcus Vn d'Oliveira; Christopher Dresel; Terry L. Erwin; Jan Falck; Ted R. Feldpausch; Ernest G. Foli; Robin B. Foster; Steffen Fritz; Antonio García‐Abril; Ernest Gothard-Bassébé; Sylvie Gourlet‐Fleury; Marcelino Carneiro Guedes; Keith C. Hamer; Farida Herry Susanty; Níro Higuchi; Eurídice N. Honorio Coronado; Wannes Hubau; Stephen P. Hubbell; Ulrik Ilstedt; Milton Kanashiro; Anders Karlsson; Viktor Karminov; Timothy J. Killeen; Jean-Claude Konan Koffi; Florian Kraxner; Jan Krejza; Haruni Krisnawati; Leonid Krivobokov; M. A. Kuznetsov; Ivan Lakyda; Petro Lakyda; Juan Carlos Licona; Richard Lucas; Daniel Lussetti; Yadvinder Malhi; J. A. Manzanera; Beatriz Schwantes Marimon; Ben Hur Marimon; Rodolfo Vásquez Martínez; Olga Martynenko; Maksym Matsala; Raisa K. Matyashuk; Lucas Mazzei; Hervé Memiaghe; Casimiro Mendoza; Abel Monteagudo Mendoza; Olga V. Moroziuk; Liudmila Mukhortova; Samsudin Musa; Toshinori Okuda; Luís Cláudio de Oliveira; Petr Ontikov;La biomasse forestière est un indicateur essentiel pour la surveillance des écosystèmes et du climat de la Terre. Il s'agit d'une contribution essentielle à la comptabilisation des gaz à effet de serre, à l'estimation des pertes de carbone et de la dégradation des forêts, à l'évaluation du potentiel des énergies renouvelables et à l'élaboration de politiques d'atténuation du changement climatique telles que REDD+, entre autres. La cartographie mur à mur de la biomasse aérienne (AGB) est maintenant possible avec la télédétection par satellite (RS). Cependant, les méthodes RS nécessitent des données in situ existantes, à jour, fiables, représentatives et comparables pour l'étalonnage et la validation. Nous présentons ici l'initiative Forest Observation System (Fos), une coopération internationale visant à établir et à maintenir une base de données mondiale sur la biomasse forestière in situ. Les estimations de la hauteur de l'AGB et de la canopée avec leurs incertitudes associées sont dérivées à une échelle de 0,25 ha à partir de mesures sur le terrain effectuées dans des parcelles de recherche permanentes à travers les forêts du monde. Toutes les estimations des placettes sont géolocalisées et ont une taille qui permet une comparaison directe avec de nombreuses mesures RS. Le Fos offre le potentiel d'améliorer la précision des produits de la biomasse à base de RS tout en développant de nouvelles synergies entre la RS et les communautés de recherche sur les écosystèmes terrestres. La biomasa forestal es un indicador esencial para monitorear los ecosistemas y el clima de la Tierra. Es un insumo crítico para la contabilidad de gases de efecto invernadero, la estimación de las pérdidas de carbono y la degradación forestal, la evaluación del potencial de energía renovable y para el desarrollo de políticas de mitigación del cambio climático como REDD+, entre otras. El mapeo de pared a pared de la biomasa sobre el suelo (AGB) ahora es posible con la teledetección satelital (RS). Sin embargo, los métodos de RS requieren datos in situ existentes, actualizados, confiables, representativos y comparables para la calibración y validación. Aquí, presentamos la iniciativa del Sistema de Observación Forestal (FOS), una cooperación internacional para establecer y mantener una base de datos global de biomasa forestal in situ. Las estimaciones de altura de AGB y dosel con sus incertidumbres asociadas se derivan a una escala de 0,25 ha a partir de mediciones de campo realizadas en parcelas de investigación permanentes en los bosques del mundo. Todas las estimaciones de parcelas están geolocalizadas y tienen un tamaño que permite la comparación directa con muchas mediciones de RS. El FOS ofrece el potencial de mejorar la precisión de los productos de biomasa basados en RS al tiempo que desarrolla nuevas sinergias entre las comunidades de investigación de ecosistemas basados en RS y en tierra. Forest biomass is an essential indicator for monitoring the Earth's ecosystems and climate. It is a critical input to greenhouse gas accounting, estimation of carbon losses and forest degradation, assessment of renewable energy potential, and for developing climate change mitigation policies such as REDD+, among others. Wall-to-wall mapping of aboveground biomass (AGB) is now possible with satellite remote sensing (RS). However, RS methods require extant, up-to-date, reliable, representative and comparable in situ data for calibration and validation. Here, we present the Forest Observation System (FOS) initiative, an international cooperation to establish and maintain a global in situ forest biomass database. AGB and canopy height estimates with their associated uncertainties are derived at a 0.25 ha scale from field measurements made in permanent research plots across the world's forests. All plot estimates are geolocated and have a size that allows for direct comparison with many RS measurements. The FOS offers the potential to improve the accuracy of RS-based biomass products while developing new synergies between the RS and ground-based ecosystem research communities. الكتلة الحيوية للغابات هي مؤشر أساسي لرصد النظم الإيكولوجية للأرض ومناخها. وهو مدخل حاسم في المحاسبة المتعلقة بغازات الدفيئة، وتقدير خسائر الكربون وتدهور الغابات، وتقييم إمكانات الطاقة المتجددة، ووضع سياسات للتخفيف من آثار تغير المناخ مثل المبادرة المعززة لخفض الانبعاثات الناجمة عن إزالة الغاباتوتدهورها، من بين أمور أخرى. أصبح من الممكن الآن رسم خرائط من الجدار إلى الجدار للكتلة الحيوية فوق الأرض (AGB) باستخدام الاستشعار عن بعد عبر الأقمار الصناعية (RS). ومع ذلك، تتطلب طرق RS بيانات موجودة وحديثة وموثوقة وتمثيلية وقابلة للمقارنة في الموقع للمعايرة والتحقق من الصحة. نقدم هنا مبادرة نظام مراقبة الغابات، وهو تعاون دولي لإنشاء وصيانة قاعدة بيانات عالمية للكتلة الحيوية للغابات في الموقع. يتم اشتقاق تقديرات ارتفاع AGB والمظلة مع أوجه عدم اليقين المرتبطة بها على مقياس 0.25 هكتار من القياسات الميدانية التي تم إجراؤها في قطع البحث الدائمة عبر غابات العالم. جميع تقديرات المخطط محددة جغرافيًا ولها حجم يسمح بالمقارنة المباشرة مع العديد من قياسات RS. يوفر نظام التشغيل الحر إمكانية تحسين دقة منتجات الكتلة الحيوية القائمة على RS مع تطوير أوجه تآزر جديدة بين RS ومجتمعات أبحاث النظام الإيكولوجي الأرضية.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60692/20mb6-40r78&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60692/20mb6-40r78&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Wiley Daniel Zuleta; Gabriel Arellano; Sean M. McMahon; Salomón Aguilar; Sarayudh Bunyavejchewin; Nicolas Castaño; Chia‐Hao Chang‐Yang; Alvaro Duque; David Mitre; Musalmah Nasardin; Rolando Pérez; I‐Fang Sun; Tze Leong Yao; Renato Valencia; Sruthi M. Krishna Moorthy; Hans Verbeeck; Stuart J. Davies;doi: 10.1111/gcb.16687
pmid: 36938951
AbstractAccurate estimates of forest biomass stocks and fluxes are needed to quantify global carbon budgets and assess the response of forests to climate change. However, most forest inventories consider tree mortality as the only aboveground biomass (AGB) loss without accounting for losses via damage to living trees: branchfall, trunk breakage, and wood decay. Here, we use ~151,000 annual records of tree survival and structural completeness to compare AGB loss via damage to living trees to total AGB loss (mortality + damage) in seven tropical forests widely distributed across environmental conditions. We find that 42% (3.62 Mg ha−1 year−1; 95% confidence interval [CI] 2.36–5.25) of total AGB loss (8.72 Mg ha−1 year−1; CI 5.57–12.86) is due to damage to living trees. Total AGB loss was highly variable among forests, but these differences were mainly caused by site variability in damage‐related AGB losses rather than by mortality‐related AGB losses. We show that conventional forest inventories overestimate stand‐level AGB stocks by 4% (1%–17% range across forests) because assume structurally complete trees, underestimate total AGB loss by 29% (6%–57% range across forests) due to overlooked damage‐related AGB losses, and overestimate AGB loss via mortality by 22% (7%–80% range across forests) because of the assumption that trees are undamaged before dying. Our results indicate that forest carbon fluxes are higher than previously thought. Damage on living trees is an underappreciated component of the forest carbon cycle that is likely to become even more important as the frequency and severity of forest disturbances increase.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16687&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16687&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Netherlands, United States, AustraliaPublisher:Wiley Craig D. Allen; James A. Lutz; Neil Pederson; M. Ross Alexander; Cameron Dow; Cameron Dow; Mart Vlam; Valentine Herrmann; Christine R. Rollinson; Ellis Q. Margolis; Sarayudh Bunyavejchewin; Sean M. McMahon; Sean M. McMahon; Ryan Helcoski; Anastasia E. Sniderhan; Jakub Kašpar; Sabrina E. Russo; Kristina J. Anderson-Teixeira; Kristina J. Anderson-Teixeira; Joseph D. Birch; Jennifer L. Baltzer; Stuart J. Davies; Camille Piponiot; Camille Piponiot; Raquel Alfaro-Sánchez; Pieter A. Zuidema; Alan J. Tepley; Alan J. Tepley; Pavel Šamonil; Erika Gonzalez-Akre; Paolo Cherubini; Paolo Cherubini; Ivana Vašíčková; Justin T. Maxwell; Bianca Gonzalez; Patrick J. Baker; Tala Awada;AbstractTree rings provide an invaluable long‐term record for understanding how climate and other drivers shape tree growth and forest productivity. However, conventional tree‐ring analysis methods were not designed to simultaneously test effects of climate, tree size, and other drivers on individual growth. This has limited the potential to test ecologically relevant hypotheses on tree growth sensitivity to environmental drivers and their interactions with tree size. Here, we develop and apply a new method to simultaneously model nonlinear effects of primary climate drivers, reconstructed tree diameter at breast height (DBH), and calendar year in generalized least squares models that account for the temporal autocorrelation inherent to each individual tree's growth. We analyze data from 3811 trees representing 40 species at 10 globally distributed sites, showing that precipitation, temperature, DBH, and calendar year have additively, and often interactively, influenced annual growth over the past 120 years. Growth responses were predominantly positive to precipitation (usually over ≥3‐month seasonal windows) and negative to temperature (usually maximum temperature, over ≤3‐month seasonal windows), with concave‐down responses in 63% of relationships. Climate sensitivity commonly varied with DBH (45% of cases tested), with larger trees usually more sensitive. Trends in ring width at small DBH were linked to the light environment under which trees established, but basal area or biomass increments consistently reached maxima at intermediate DBH. Accounting for climate and DBH, growth rate declined over time for 92% of species in secondary or disturbed stands, whereas growth trends were mixed in older forests. These trends were largely attributable to stand dynamics as cohorts and stands age, which remain challenging to disentangle from global change drivers. By providing a parsimonious approach for characterizing multiple interacting drivers of tree growth, our method reveals a more complete picture of the factors influencing growth than has previously been possible.
The University of Me... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/11343/315826Data sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2022License: CC BY NC NDData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15934&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 71 citations 71 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The University of Me... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/11343/315826Data sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2022License: CC BY NC NDData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15934&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022 United States, United KingdomPublisher:Wiley Authors: Camille Piponiot; Kristina J. Anderson‐Teixeira; Stuart J. Davies; David Allen; +56 AuthorsCamille Piponiot; Kristina J. Anderson‐Teixeira; Stuart J. Davies; David Allen; Norman A. Bourg; David F. R. P. Burslem; Dairon Cárdenas; Chia‐Hao Chang‐Yang; George Chuyong; Susan Cordell; Handanakere Shivaramaiah Dattaraja; Álvaro Duque; Sisira Ediriweera; Corneille Ewango; Zacky Ezedin; Jonah Filip; Christian P. Giardina; Robert Howe; Chang‐Fu Hsieh; Stephen P. Hubbell; Faith M. Inman‐Narahari; Akira Itoh; David Janík; David Kenfack; Kamil Král; James A. Lutz; Jean‐Remy Makana; Sean M. McMahon; William McShea; Xiangcheng Mi; Mohizah Bt. Mohamad; Vojtěch Novotný; Michael J. O'Brien; Rebecca Ostertag; Geoffrey Parker; Rolando Pérez; Haibao Ren; Glen Reynolds; Mohamad Danial Md Sabri; Lawren Sack; Ankur Shringi; Sheng‐Hsin Su; Raman Sukumar; I‐Fang Sun; Hebbalalu S. Suresh; Duncan W. Thomas; Jill Thompson; Maria Uriarte; John Vandermeer; Yunquan Wang; Ian M. Ware; George D. Weiblen; Timothy J. S. Whitfeld; Amy Wolf; Tze Leong Yao; Mingjian Yu; Zuoqiang Yuan; Jess K. Zimmerman; Daniel Zuleta; Helene C. Muller‐Landau;Summary Tree size shapes forest carbon dynamics and determines how trees interact with their environment, including a changing climate. Here, we conduct the first global analysis of among‐site differences in how aboveground biomass stocks and fluxes are distributed with tree size. We analyzed repeat tree censuses from 25 large‐scale (4–52 ha) forest plots spanning a broad climatic range over five continents to characterize how aboveground biomass, woody productivity, and woody mortality vary with tree diameter. We examined how the median, dispersion, and skewness of these size‐related distributions vary with mean annual temperature and precipitation. In warmer forests, aboveground biomass, woody productivity, and woody mortality were more broadly distributed with respect to tree size. In warmer and wetter forests, aboveground biomass and woody productivity were more right skewed, with a long tail towards large trees. Small trees (1–10 cm diameter) contributed more to productivity and mortality than to biomass, highlighting the importance of including these trees in analyses of forest dynamics. Our findings provide an improved characterization of climate‐driven forest differences in the size structure of aboveground biomass and dynamics of that biomass, as well as refined benchmarks for capturing climate influences in vegetation demographic models.
New Phytologist arrow_drop_down New PhytologistArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Michigan: Deep BlueArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.17995&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 37 citations 37 popularity Top 10% influence Average impulse Top 1% Powered by BIP!
more_vert New Phytologist arrow_drop_down New PhytologistArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Michigan: Deep BlueArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.17995&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United StatesPublisher:Wiley Daniel Zuleta; Gabriel Arellano; Helene C. Muller‐Landau; Sean M. McMahon; Salomón Aguilar; Sarayudh Bunyavejchewin; Dairon Cárdenas; Chia‐Hao Chang‐Yang; Alvaro Duque; David Mitre; Musalmah Nasardin; Rolando Pérez; I‐Fang Sun; Tze Leong Yao; Stuart J. Davies;Summary The relative importance of tree mortality risk factors remains unknown, especially in diverse tropical forests where species may vary widely in their responses to particular conditions. We present a new framework for quantifying the importance of mortality risk factors and apply it to compare 19 risks on 31 203 trees (1977 species) in 14 one‐year periods in six tropical forests. We defined a condition as a risk factor for a species if it was associated with at least a doubling of mortality rate in univariate analyses. For each risk, we estimated prevalence (frequency), lethality (difference in mortality between trees with and without the risk) and impact (‘excess mortality’ associated with the risk, relative to stand‐level mortality). The most impactful risk factors were light limitation and crown/trunk loss; the most prevalent were light limitation and small size; the most lethal were leaf damage and wounds. Modes of death (standing, broken and uprooted) had limited links with previous conditions and mortality risk factors. We provide the first ranking of importance of tree‐level mortality risk factors in tropical forests. Future research should focus on the links between these risks, their climatic drivers and the physiological processes to enable mechanistic predictions of future tree mortality.
New Phytologist arrow_drop_down New PhytologistArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Michigan: Deep BlueArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.17832&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert New Phytologist arrow_drop_down New PhytologistArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Michigan: Deep BlueArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.17832&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type 2019Publisher:OpenAlex Dmitry Schepaschenko; Jérôme Chave; Oliver L. Phillips; Simon L. Lewis; Stuart J. Davies; Maxime Réjou‐Méchain; Plínio Sist; Klaus Scipal; Christoph Perger; Bruno Hérault; Nicolas Labrière; Florian Hofhansl; Kofi Affum‐Baffoe; Alfonso Alonso; Christian Amani; Alejandro Araujo‐Murakami; John Armston; Luzmila Arroyo; Nataly Ascarrunz; C. P. de Azevedo; Timothy R. Baker; Radomir Bałazy; Caroline Bedeau; Nicholas Berry; Andrii Bilous; Pulchérie Bissiengou; Lilian Blanc; Tatyana Braslavskaya; Roel Brienen; David F. R. P. Burslem; Richard Condit; Aida Cuní-Sanchez; Dennis Del Castillo-Torres; Géraldine Derroire; Laurent Descroix; Eleneide Doff Sotta; Marcus Vn d'Oliveira; Christopher Dresel; Terry L. Erwin; Jan Falck; Ted R. Feldpausch; Ernest G. Foli; Robin B. Foster; Steffen Fritz; Antonio García‐Abril; Ernest Gothard-Bassébé; Sylvie Gourlet‐Fleury; Marcelino Carneiro Guedes; Keith C. Hamer; Farida Herry Susanty; Níro Higuchi; Eurídice N. Honorio Coronado; Wannes Hubau; Stephen P. Hubbell; Ulrik Ilstedt; Milton Kanashiro; Anders Karlsson; Viktor Karminov; Timothy J. Killeen; Jean-Claude Konan Koffi; Florian Kraxner; Jan Krejza; Haruni Krisnawati; Leonid Krivobokov; M. A. Kuznetsov; Ivan Lakyda; Petro Lakyda; Juan Carlos Licona; Richard Lucas; Daniel Lussetti; Yadvinder Malhi; J. A. Manzanera; Beatriz Schwantes Marimon; Ben Hur Marimon; Rodolfo Vásquez Martínez; Olga Martynenko; Maksym Matsala; Raisa K. Matyashuk; Lucas Mazzei; Hervé Memiaghe; Casimiro Mendoza; Abel Monteagudo Mendoza; Olga V. Moroziuk; Liudmila Mukhortova; Samsudin Musa; Toshinori Okuda; Luís Cláudio de Oliveira; Petr Ontikov;La biomasse forestière est un indicateur essentiel pour la surveillance des écosystèmes et du climat de la Terre. Il s'agit d'une contribution essentielle à la comptabilisation des gaz à effet de serre, à l'estimation des pertes de carbone et de la dégradation des forêts, à l'évaluation du potentiel des énergies renouvelables et à l'élaboration de politiques d'atténuation du changement climatique telles que REDD+, entre autres. La cartographie mur à mur de la biomasse aérienne (AGB) est maintenant possible avec la télédétection par satellite (RS). Cependant, les méthodes RS nécessitent des données in situ existantes, à jour, fiables, représentatives et comparables pour l'étalonnage et la validation. Nous présentons ici l'initiative Forest Observation System (Fos), une coopération internationale visant à établir et à maintenir une base de données mondiale sur la biomasse forestière in situ. Les estimations de la hauteur de l'AGB et de la canopée avec leurs incertitudes associées sont dérivées à une échelle de 0,25 ha à partir de mesures sur le terrain effectuées dans des parcelles de recherche permanentes à travers les forêts du monde. Toutes les estimations des placettes sont géolocalisées et ont une taille qui permet une comparaison directe avec de nombreuses mesures RS. Le Fos offre le potentiel d'améliorer la précision des produits de la biomasse à base de RS tout en développant de nouvelles synergies entre la RS et les communautés de recherche sur les écosystèmes terrestres. La biomasa forestal es un indicador esencial para monitorear los ecosistemas y el clima de la Tierra. Es un insumo crítico para la contabilidad de gases de efecto invernadero, la estimación de las pérdidas de carbono y la degradación forestal, la evaluación del potencial de energía renovable y para el desarrollo de políticas de mitigación del cambio climático como REDD+, entre otras. El mapeo de pared a pared de la biomasa sobre el suelo (AGB) ahora es posible con la teledetección satelital (RS). Sin embargo, los métodos de RS requieren datos in situ existentes, actualizados, confiables, representativos y comparables para la calibración y validación. Aquí, presentamos la iniciativa del Sistema de Observación Forestal (FOS), una cooperación internacional para establecer y mantener una base de datos global de biomasa forestal in situ. Las estimaciones de altura de AGB y dosel con sus incertidumbres asociadas se derivan a una escala de 0,25 ha a partir de mediciones de campo realizadas en parcelas de investigación permanentes en los bosques del mundo. Todas las estimaciones de parcelas están geolocalizadas y tienen un tamaño que permite la comparación directa con muchas mediciones de RS. El FOS ofrece el potencial de mejorar la precisión de los productos de biomasa basados en RS al tiempo que desarrolla nuevas sinergias entre las comunidades de investigación de ecosistemas basados en RS y en tierra. Forest biomass is an essential indicator for monitoring the Earth's ecosystems and climate. It is a critical input to greenhouse gas accounting, estimation of carbon losses and forest degradation, assessment of renewable energy potential, and for developing climate change mitigation policies such as REDD+, among others. Wall-to-wall mapping of aboveground biomass (AGB) is now possible with satellite remote sensing (RS). However, RS methods require extant, up-to-date, reliable, representative and comparable in situ data for calibration and validation. Here, we present the Forest Observation System (FOS) initiative, an international cooperation to establish and maintain a global in situ forest biomass database. AGB and canopy height estimates with their associated uncertainties are derived at a 0.25 ha scale from field measurements made in permanent research plots across the world's forests. All plot estimates are geolocated and have a size that allows for direct comparison with many RS measurements. The FOS offers the potential to improve the accuracy of RS-based biomass products while developing new synergies between the RS and ground-based ecosystem research communities. الكتلة الحيوية للغابات هي مؤشر أساسي لرصد النظم الإيكولوجية للأرض ومناخها. وهو مدخل حاسم في المحاسبة المتعلقة بغازات الدفيئة، وتقدير خسائر الكربون وتدهور الغابات، وتقييم إمكانات الطاقة المتجددة، ووضع سياسات للتخفيف من آثار تغير المناخ مثل المبادرة المعززة لخفض الانبعاثات الناجمة عن إزالة الغاباتوتدهورها، من بين أمور أخرى. أصبح من الممكن الآن رسم خرائط من الجدار إلى الجدار للكتلة الحيوية فوق الأرض (AGB) باستخدام الاستشعار عن بعد عبر الأقمار الصناعية (RS). ومع ذلك، تتطلب طرق RS بيانات موجودة وحديثة وموثوقة وتمثيلية وقابلة للمقارنة في الموقع للمعايرة والتحقق من الصحة. نقدم هنا مبادرة نظام مراقبة الغابات، وهو تعاون دولي لإنشاء وصيانة قاعدة بيانات عالمية للكتلة الحيوية للغابات في الموقع. يتم اشتقاق تقديرات ارتفاع AGB والمظلة مع أوجه عدم اليقين المرتبطة بها على مقياس 0.25 هكتار من القياسات الميدانية التي تم إجراؤها في قطع البحث الدائمة عبر غابات العالم. جميع تقديرات المخطط محددة جغرافيًا ولها حجم يسمح بالمقارنة المباشرة مع العديد من قياسات RS. يوفر نظام التشغيل الحر إمكانية تحسين دقة منتجات الكتلة الحيوية القائمة على RS مع تطوير أوجه تآزر جديدة بين RS ومجتمعات أبحاث النظام الإيكولوجي الأرضية.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60692/20mb6-40r78&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60692/20mb6-40r78&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Wiley Daniel Zuleta; Gabriel Arellano; Sean M. McMahon; Salomón Aguilar; Sarayudh Bunyavejchewin; Nicolas Castaño; Chia‐Hao Chang‐Yang; Alvaro Duque; David Mitre; Musalmah Nasardin; Rolando Pérez; I‐Fang Sun; Tze Leong Yao; Renato Valencia; Sruthi M. Krishna Moorthy; Hans Verbeeck; Stuart J. Davies;doi: 10.1111/gcb.16687
pmid: 36938951
AbstractAccurate estimates of forest biomass stocks and fluxes are needed to quantify global carbon budgets and assess the response of forests to climate change. However, most forest inventories consider tree mortality as the only aboveground biomass (AGB) loss without accounting for losses via damage to living trees: branchfall, trunk breakage, and wood decay. Here, we use ~151,000 annual records of tree survival and structural completeness to compare AGB loss via damage to living trees to total AGB loss (mortality + damage) in seven tropical forests widely distributed across environmental conditions. We find that 42% (3.62 Mg ha−1 year−1; 95% confidence interval [CI] 2.36–5.25) of total AGB loss (8.72 Mg ha−1 year−1; CI 5.57–12.86) is due to damage to living trees. Total AGB loss was highly variable among forests, but these differences were mainly caused by site variability in damage‐related AGB losses rather than by mortality‐related AGB losses. We show that conventional forest inventories overestimate stand‐level AGB stocks by 4% (1%–17% range across forests) because assume structurally complete trees, underestimate total AGB loss by 29% (6%–57% range across forests) due to overlooked damage‐related AGB losses, and overestimate AGB loss via mortality by 22% (7%–80% range across forests) because of the assumption that trees are undamaged before dying. Our results indicate that forest carbon fluxes are higher than previously thought. Damage on living trees is an underappreciated component of the forest carbon cycle that is likely to become even more important as the frequency and severity of forest disturbances increase.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16687&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16687&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Netherlands, United States, AustraliaPublisher:Wiley Craig D. Allen; James A. Lutz; Neil Pederson; M. Ross Alexander; Cameron Dow; Cameron Dow; Mart Vlam; Valentine Herrmann; Christine R. Rollinson; Ellis Q. Margolis; Sarayudh Bunyavejchewin; Sean M. McMahon; Sean M. McMahon; Ryan Helcoski; Anastasia E. Sniderhan; Jakub Kašpar; Sabrina E. Russo; Kristina J. Anderson-Teixeira; Kristina J. Anderson-Teixeira; Joseph D. Birch; Jennifer L. Baltzer; Stuart J. Davies; Camille Piponiot; Camille Piponiot; Raquel Alfaro-Sánchez; Pieter A. Zuidema; Alan J. Tepley; Alan J. Tepley; Pavel Šamonil; Erika Gonzalez-Akre; Paolo Cherubini; Paolo Cherubini; Ivana Vašíčková; Justin T. Maxwell; Bianca Gonzalez; Patrick J. Baker; Tala Awada;AbstractTree rings provide an invaluable long‐term record for understanding how climate and other drivers shape tree growth and forest productivity. However, conventional tree‐ring analysis methods were not designed to simultaneously test effects of climate, tree size, and other drivers on individual growth. This has limited the potential to test ecologically relevant hypotheses on tree growth sensitivity to environmental drivers and their interactions with tree size. Here, we develop and apply a new method to simultaneously model nonlinear effects of primary climate drivers, reconstructed tree diameter at breast height (DBH), and calendar year in generalized least squares models that account for the temporal autocorrelation inherent to each individual tree's growth. We analyze data from 3811 trees representing 40 species at 10 globally distributed sites, showing that precipitation, temperature, DBH, and calendar year have additively, and often interactively, influenced annual growth over the past 120 years. Growth responses were predominantly positive to precipitation (usually over ≥3‐month seasonal windows) and negative to temperature (usually maximum temperature, over ≤3‐month seasonal windows), with concave‐down responses in 63% of relationships. Climate sensitivity commonly varied with DBH (45% of cases tested), with larger trees usually more sensitive. Trends in ring width at small DBH were linked to the light environment under which trees established, but basal area or biomass increments consistently reached maxima at intermediate DBH. Accounting for climate and DBH, growth rate declined over time for 92% of species in secondary or disturbed stands, whereas growth trends were mixed in older forests. These trends were largely attributable to stand dynamics as cohorts and stands age, which remain challenging to disentangle from global change drivers. By providing a parsimonious approach for characterizing multiple interacting drivers of tree growth, our method reveals a more complete picture of the factors influencing growth than has previously been possible.
The University of Me... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/11343/315826Data sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2022License: CC BY NC NDData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15934&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 71 citations 71 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The University of Me... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/11343/315826Data sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2022License: CC BY NC NDData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15934&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu