- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023Embargo end date: 27 May 2024 Germany, Switzerland, NorwayPublisher:The Royal Society Funded by:SNSF | FeedBaCks: Feedbacks betw..., SNSF | Combining artificial inte..., SNSF | BIodiversity Gradients fr... +2 projectsSNSF| FeedBaCks: Feedbacks between Biodiversity and Climate ,SNSF| Combining artificial intelligence and environmental DNA to improve the prediction of marine fish range shifts under global change ,SNSF| BIodiversity Gradients from Eco-evolutionary Simulations in Tetrapods (BIGEST) ,RCN| ECOGEN - Ecosystem change and species persistence over time: a genome-based approach ,EC| IceAGenTInger Greve Alsos; Victor Boussange; Dilli Prasad Rijal; Marieke Beaulieu; Antony Gavin Brown; Ulrike Herzschuh; Jens-Christian Svenning; Loïc Pellissier;pmid: 38583481
pmc: PMC10999269
Ecosystem response to climate change is complex. In order to forecast ecosystem dynamics, we need high-quality data on changes in past species abundance that can inform process-based models. Sedimentary ancient DNA ( sed aDNA) has revolutionised our ability to document past ecosystems' dynamics. It provides time series of increased taxonomic resolution compared to microfossils (pollen, spores), and can often give species-level information, especially for past vascular plant and mammal abundances. Time series are much richer in information than contemporary spatial distribution information, which have been traditionally used to train models for predicting biodiversity and ecosystem responses to climate change. Here, we outline the potential contribution of sed aDNA to forecast ecosystem changes. We showcase how species-level time series may allow quantification of the effect of biotic interactions in ecosystem dynamics, and be used to estimate dispersal rates when a dense network of sites is available. By combining palaeo-time series, process-based models, and inverse modelling, we can recover the biotic and abiotic processes underlying ecosystem dynamics, which are traditionally very challenging to characterise. Dynamic models informed by sed aDNA can further be used to extrapolate beyond current dynamics and provide robust forecasts of ecosystem responses to future climate change. This article is part of the theme issue ‘Ecological novelty and planetary stewardship: biodiversity dynamics in a transforming biosphere’.
Philosophical Transa... arrow_drop_down Philosophical Transactions of the Royal Society B Biological SciencesArticleLicense: CC BYData sources: SygmaPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefMunin - Open Research ArchiveArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Munin - Open Research ArchiveElectronic Publication Information CenterArticle . 2024Data sources: Electronic Publication Information CenterPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2024Data sources: Europe PubMed CentralPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2024 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2023.0017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Philosophical Transa... arrow_drop_down Philosophical Transactions of the Royal Society B Biological SciencesArticleLicense: CC BYData sources: SygmaPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefMunin - Open Research ArchiveArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Munin - Open Research ArchiveElectronic Publication Information CenterArticle . 2024Data sources: Electronic Publication Information CenterPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2024Data sources: Europe PubMed CentralPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2024 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2023.0017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 South AfricaPublisher:Wiley Authors: Donald A. Walker; Inger Greve Alsos; Kristine Bakke Westergaard; Andreas Tribsch; +29 AuthorsDonald A. Walker; Inger Greve Alsos; Kristine Bakke Westergaard; Andreas Tribsch; Liv Unn Tveraabak; Christian Damgaard; Peter Schönswetter; Risto Virtanen; Fred J.A. Daniëls; Christian Bay; Mary S. Wisz; Helga Bültmann; Antoine Guisan; Dorothee Ehrich; Lærke Stewart; Peder Klith Bøcher; Jonathan Lenoir; Loïc Pellissier; Nigel G. Yoccoz; Miska Luoto; Noémie Boulanger-Lapointe; Pernille Bronken Eidesen; Niels Martin Schmidt; Esther Lévesque; Olivier Broennimann; Christian Brochmann; Amy L. Breen; Jens-Christian Svenning; Ingibjörg S. Jónsdóttir; Ingibjörg S. Jónsdóttir; Peter Christiaan le Roux; Peter Christiaan le Roux; Jacob Nabe-Nielsen;doi: 10.1111/geb.12424
handle: 2263/56601
AbstractAimTheArctic has experienced marked climatic differences between glacial and interglacial periods and is now subject to a rapidly warming climate. Knowledge of the effects of historical processes on current patterns of diversity may aid predictions of the responses of vegetation to future climate change. We aim to test whether plant species and genetic diversity patterns are correlated with time since deglaciation at regional and local scales. We also investigate whether species richness is correlated with genetic diversity in vascular plants.LocationCircumarctic.MethodsWe investigated species richness of the vascular plant flora of 21 floristic provinces and examined local species richness in 6215 vegetation plots distributed across theArctic. We assessed levels of genetic diversity inferred from amplified fragment length polymorphism variation across populations of 23 commonArctic species. Correlations between diversity measures and landscape age (time since deglaciation) as well as variables characterizing current climate were analysed using spatially explicit simultaneous autoregressive models.ResultsRegional species richness of vascular plants and genetic diversity were correlated with each other, and both showed a positive relationship with landscape age. Plot species richness showed differing responses for vascular plants, bryophytes and lichens. At this finer scale, the richness of vascular plants was not significantly related to landscape age, which had a small effect size compared to the models of bryophyte and lichen richness.Main conclusionOur study suggests that imprints of past glaciations inArctic vegetation diversity patterns at the regional scale are still detectable today. SinceArctic vegetation is still limited by post‐glacial migration lag, it will most probably also exhibit lags in response to current and future climate change. Our results also suggest that local species richness at the plot scale is more determined by local habitat factors.
Global Ecology and B... arrow_drop_down Global Ecology and BiogeographyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.12424&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Global Ecology and B... arrow_drop_down Global Ecology and BiogeographyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.12424&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Embargo end date: 04 Nov 2022 Switzerland, Switzerland, United Kingdom, France, Switzerland, NorwayPublisher:Springer Science and Business Media LLC Funded by:EC | TEEMBIO, RCN | ECOGEN - Ecosystem change..., ANR | Origin-AlpsEC| TEEMBIO ,RCN| ECOGEN - Ecosystem change and species persistence over time: a genome-based approach ,ANR| Origin-AlpsSandra Garcés-Pastor; Eric Coissac; Sébastien Lavergne; Christoph Schwörer; Jean-Paul Theurillat; Peter D. Heintzman; Owen S. Wangensteen; Willy Tinner; Fabian Rey; Martina Heer; Astrid Rutzer; Kevin Walsh; Youri Lammers; Antony G. Brown; Tomasz Goslar; Dilli P. Rijal; Dirk N. Karger; Loïc Pellissier; Charles Pouchon; Cristina Roquet; Wilfried Thuiller; Niklaus E. Zimmermann; Adriana Alberti; Patrick Wincker; Martí Boleda; Frédéric Boyer; Anthony Hombiat; Christophe Perrier; Rolland Douzet; Jean-Gabriel Valay; Serge Aubert; France Denoeud; Bruno Bzeznick; Ludovic Gielly; Pierre Taberlet; Delphine Rioux; Céline Orvain; Maxime Rome; Rafael O. Wüest; Sonia Latzin; John Spillmann; Linda Feichtinger; Jérémie Van Es; Luc Garraud; Jean-Charles Villaret; Sylvain Abdulhak; Véronique Bonnet; Stéphanie Huc; Noémie Fort; Thomas Legland; Thomas Sanz; Gilles Pache; Alexis Mikolajczak; Virgile Noble; Henri Michaud; Benoît Offerhaus; Cédric Dentant; Pierre Salomez; Richard Bonet; Thierry Delahaye; Marie-France Leccia; Monique Perfus; Stefan Eggenberg; Adrian Möhl; Bogdan-Iuliu Hurdu; Paul-Marian Szatmari; Mihai Pușcaș; Jan Smyčka; Patrik Mráz; Kristýna Šemberová; Michał Ronikier; Marek Slovák; Oliver Heiri; Inger Greve Alsos;doi: 10.1038/s41467-022-34010-4 , 10.3929/ethz-b-000581853 , 10.5451/unibas-ep91365 , 10.48350/174537
pmid: 36333301
pmc: PMC9636257
handle: 10037/28074
doi: 10.1038/s41467-022-34010-4 , 10.3929/ethz-b-000581853 , 10.5451/unibas-ep91365 , 10.48350/174537
pmid: 36333301
pmc: PMC9636257
handle: 10037/28074
AbstractThe European Alps are highly rich in species, but their future may be threatened by ongoing changes in human land use and climate. Here, we reconstructed vegetation, temperature, human impact and livestock over the past ~12,000 years from Lake Sulsseewli, based on sedimentary ancient plant and mammal DNA, pollen, spores, chironomids, and microcharcoal. We assembled a highly-complete local DNA reference library (PhyloAlps, 3923 plant taxa), and used this to obtain an exceptionally rich sedaDNA record of 366 plant taxa. Vegetation mainly responded to climate during the early Holocene, while human activity had an additional influence on vegetation from 6 ka onwards. Land-use shifted from episodic grazing during the Neolithic and Bronze Age to agropastoralism in the Middle Ages. Associated human deforestation allowed the coexistence of plant species typically found at different elevational belts, leading to levels of plant richness that characterise the current high diversity of this region. Our findings indicate a positive association between low intensity agropastoral activities and precipitation with the maintenance of the unique subalpine and alpine plant diversity of the European Alps.
Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2022 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)University of Basel: edocArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Munin - Open Research ArchiveArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Munin - Open Research ArchiveUniversité Grenoble Alpes: HALArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Université d'Évry-Val-d'Essonne: HALArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-022-34010-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 50 citations 50 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2022 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)University of Basel: edocArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Munin - Open Research ArchiveArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Munin - Open Research ArchiveUniversité Grenoble Alpes: HALArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Université d'Évry-Val-d'Essonne: HALArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-022-34010-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Embargo end date: 17 Mar 2022 Norway, United Kingdom, France, Sweden, Norway, United KingdomPublisher:Springer Science and Business Media LLC Funded by:WT | Whole genome sequence bas..., EC | ArCH4ives, EC | PEGASUS +4 projectsWT| Whole genome sequence based analysis of genetic variation and genome evolution ,EC| ArCH4ives ,EC| PEGASUS ,RCN| Norwegian barcode of life network (NorBOL) ,UKRI| Plausible policy pathways to Paris ,RCN| Methane cycling archives from warming Arctic lakes: Retrieving the genomic blueprints of Holocene microbes ,EC| IceAGenTHannah L. Owens; Anna Cherezova; Anna Cherezova; Kurt H. Kjær; Alexandra Rouillard; Marie Kristine Føreid Merkel; Inger Greve Alsos; Richard Durbin; John Inge Svendsen; John Inge Svendsen; Kristian K. Kjeldsen; Thorfinn Sand Korneliussen; Thorfinn Sand Korneliussen; Ludovic Orlando; Jeffrey T. Rasic; Y. L. Wang; Y. L. Wang; Ana Prohaska; Anders A. Bjørk; Jialu Cao; Julie Esdale; Carsten Rahbek; Alexei Tikhonov; Adriana Alberti; Anthony Ruter; Mary E. Edwards; Mary E. Edwards; Youri Lammers; Patrick Wincker; Birgitte Skadhauge; Neil R. Edwards; Per Möller; Nicolaj K. Larsen; James Haile; Jan Mangerud; Jan Mangerud; Christoph Dockter; David W. Beilman; David J. Meltzer; David J. Meltzer; Lasse Vinner; Galina Gusarova; Daniel Money; Grigory Fedorov; Grigory Fedorov; Eske Willerslev; Hugh McColl; Fernando Racimo; Mikkel Winther Pedersen; Eric Coissac; Yingchun Xing; Antonio Fernandez-Guerra; David Bravo Nogues; Philip B. Holden; Yubin Zhang; Duane G. Froese; Bianca De Sanctis;AbstractDuring the last glacial–interglacial cycle, Arctic biotas experienced substantial climatic changes, yet the nature, extent and rate of their responses are not fully understood1–8. Here we report a large-scale environmental DNA metagenomic study of ancient plant and mammal communities, analysing 535 permafrost and lake sediment samples from across the Arctic spanning the past 50,000 years. Furthermore, we present 1,541 contemporary plant genome assemblies that were generated as reference sequences. Our study provides several insights into the long-term dynamics of the Arctic biota at the circumpolar and regional scales. Our key findings include: (1) a relatively homogeneous steppe–tundra flora dominated the Arctic during the Last Glacial Maximum, followed by regional divergence of vegetation during the Holocene epoch; (2) certain grazing animals consistently co-occurred in space and time; (3) humans appear to have been a minor factor in driving animal distributions; (4) higher effective precipitation, as well as an increase in the proportion of wetland plants, show negative effects on animal diversity; (5) the persistence of the steppe–tundra vegetation in northern Siberia enabled the late survival of several now-extinct megafauna species, including the woolly mammoth until 3.9 ± 0.2 thousand years ago (ka) and the woolly rhinoceros until 9.8 ± 0.2 ka; and (6) phylogenetic analysis of mammoth environmental DNA reveals a previously unsampled mitochondrial lineage. Our findings highlight the power of ancient environmental metagenomics analyses to advance understanding of population histories and long-term ecological dynamics.
e-Prints Soton arrow_drop_down University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/11250/2829931Data sources: Bielefeld Academic Search Engine (BASE)Université d'Évry-Val-d'Essonne: HALArticle . 2021Full-Text: https://hal.science/hal-03431961Data sources: Bielefeld Academic Search Engine (BASE)Publikationer från Umeå universitetArticle . 2021 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2021 . Peer-reviewedMunin - Open Research ArchiveArticle . 2021 . Peer-reviewedData sources: Munin - Open Research ArchiveBergen Open Research Archive - UiBArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBUniversité Savoie Mont Blanc: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-021-04016-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 110 citations 110 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert e-Prints Soton arrow_drop_down University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/11250/2829931Data sources: Bielefeld Academic Search Engine (BASE)Université d'Évry-Val-d'Essonne: HALArticle . 2021Full-Text: https://hal.science/hal-03431961Data sources: Bielefeld Academic Search Engine (BASE)Publikationer från Umeå universitetArticle . 2021 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2021 . Peer-reviewedMunin - Open Research ArchiveArticle . 2021 . Peer-reviewedData sources: Munin - Open Research ArchiveBergen Open Research Archive - UiBArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBUniversité Savoie Mont Blanc: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-021-04016-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 United Kingdom, DenmarkPublisher:Wiley Hans Henrik Bruun; H. John B. Birks; H. John B. Birks; H. John B. Birks; Claes Bergendorff; Jonathan Lenoir; Fride Høistad Schei; Fride Høistad Schei; Ann Milbau; Jens-Christian Svenning; Martin Zobel; Mari Moora; Risto Virtanen; Martin Diekmann; John-Arvid Grytnes; Stefanie Reinhardt; Carl Johan Dahlberg; Liv Guri Velle; Bettina Nygaard; Sylvi M. Sandvik; Bente J. Graae; Jörg Brunet; Gunnar Austrheim; Miska Luoto; Kari Anne Bråthen; Vigdis Vandvik; Kari Klanderud; Kari Klanderud; James D. M. Speed; Arvid Odland; Virve Ravolainen; Rasmus Ejrnæs; Mats Dynesius; W. Scott Armbruster; Guillaume Decocq; Kristoffer Hylander; Inger Greve Alsos; Per Arild Aarrestad; Liv Unn Tveraabak;doi: 10.1111/gcb.12129
pmid: 23504984
AbstractRecent studies from mountainous areas of small spatial extent (<2500 km2) suggest that fine‐grained thermal variability over tens or hundreds of metres exceeds much of the climate warming expected for the coming decades. Such variability in temperature provides buffering to mitigate climate‐change impacts. Is this local spatial buffering restricted to topographically complex terrains? To answer this, we here study fine‐grained thermal variability across a 2500‐km wide latitudinal gradient in Northern Europe encompassing a large array of topographic complexities. We first combined plant community data, Ellenberg temperature indicator values, locally measured temperatures (LmT) and globally interpolated temperatures (GiT) in a modelling framework to infer biologically relevant temperature conditions from plant assemblages within <1000‐m2 units (community‐inferred temperatures: CiT). We then assessed: (1) CiT range (thermal variability) within 1‐km2 units; (2) the relationship between CiT range and topographically and geographically derived predictors at 1‐km resolution; and (3) whether spatial turnover in CiT is greater than spatial turnover in GiT within 100‐km2 units. Ellenberg temperature indicator values in combination with plant assemblages explained 46–72% of variation in LmT and 92–96% of variation in GiT during the growing season (June, July, August). Growing‐season CiT range within 1‐km2 units peaked at 60–65°N and increased with terrain roughness, averaging 1.97 °C (SD = 0.84 °C) and 2.68 °C (SD = 1.26 °C) within the flattest and roughest units respectively. Complex interactions between topography‐related variables and latitude explained 35% of variation in growing‐season CiT range when accounting for sampling effort and residual spatial autocorrelation. Spatial turnover in growing‐season CiT within 100‐km2 units was, on average, 1.8 times greater (0.32 °C km−1) than spatial turnover in growing‐season GiT (0.18 °C km−1). We conclude that thermal variability within 1‐km2 units strongly increases local spatial buffering of future climate warming across Northern Europe, even in the flattest terrains.
PURE Aarhus Universi... arrow_drop_down Global Change BiologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Portsmouth: Portsmouth Research PortalArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12129&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu205 citations 205 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert PURE Aarhus Universi... arrow_drop_down Global Change BiologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Portsmouth: Portsmouth Research PortalArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12129&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2012Publisher:The Royal Society Funded by:FWF | Evolution and phylogeogra..., FWF | Recent immigrants or anci...FWF| Evolution and phylogeography of arctic-alpine plants: Tertiary roots, glacial refugia and directions of migrations ,FWF| Recent immigrants or ancient witnesses of recurrent climate change? The fate of rare arctic plants in the Alps revisitedPeter Schönswetter; Peter Schönswetter; Christian Brochmann; Andreas Tribsch; Andreas Tribsch; Inger Greve Alsos; Pierre Taberlet; Dorothee Ehrich; Dorothee Ehrich; Wilfried Thuiller; Claire Lagaye; Pernille Bronken Eidesen; Pernille Bronken Eidesen;Climate change will lead to loss of range for many species, and thus to loss of genetic diversity crucial for their long-term persistence. We analysed range-wide genetic diversity (amplified fragment length polymorphisms) in 9581 samples from 1200 populations of 27 northern plant species, to assess genetic consequences of range reduction and potential association with species traits. We used species distribution modelling (SDM, eight techniques, two global circulation models and two emission scenarios) to predict loss of range and genetic diversity by 2080. Loss of genetic diversity varied considerably among species, and this variation could be explained by dispersal adaptation (up to 57%) and by genetic differentiation among populations ( F ST ; up to 61%). Herbs lacking adaptations for long-distance dispersal were estimated to lose genetic diversity at higher rate than dwarf shrubs adapted to long-distance dispersal. The expected range reduction in these 27 northern species was larger than reported for temperate plants, and all were predicted to lose genetic diversity according to at least one scenario. SDM combined with F ST estimates and/or with species trait information thus allows the prediction of species' vulnerability to climate change, aiding rational prioritization of conservation efforts.
Proceedings of the R... arrow_drop_down Proceedings of the Royal Society B Biological SciencesArticleLicense: CC BYData sources: UnpayWallProceedings of the Royal Society B Biological SciencesArticle . 2012 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2012Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2011.2363&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 168 citations 168 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Proceedings of the R... arrow_drop_down Proceedings of the Royal Society B Biological SciencesArticleLicense: CC BYData sources: UnpayWallProceedings of the Royal Society B Biological SciencesArticle . 2012 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2012Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2011.2363&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 NorwayPublisher:Wiley Inger Greve Alsos; Dorothee Ehrich; Pernille Bronken Eidesen; Eike Müller; Eike Müller;doi: 10.3732/ajb.1100363
pmid: 22371855
•Premise of the Study:Climate change forces many species to migrate. Empirical small‐scale data on migration and colonization in the Arctic are scarce. Retreating glaciers provide new territory for cold‐adapted plant species, but the genetic consequences depend on dispersal distances and frequencies. We estimated local, regional, and long‐distance dispersal frequencies, as well as their effect on levels of genetic diversity, in diploid and tetraploid individuals ofSaxifraga oppositifolia.•Methods:Samples were collected in four aged moraines in each of three glacier forelands, in surrounding areas and reference populations in the Arctic archipelago Svalbard. These samples were analyzed for neutral amplified fragment length polymorphisms (AFLPs,n= 707) and ploidy levels (n= 30).•Key Results:Genetic clustering and ploidy analyses revealed two distinct genetic groups representing diploids and tetraploids, with few intermediate triploids. The groups were intermixed in most sampled populations. No differences in genetic diversity were found between tetraploids and diploids, or between established and glacier foreland populations. Seeds were dispersed over local, regional, and long distances, with the highest proportions of seeds originating from close sources. A minimum of 4–15 founding individuals from several source populations had initially established in each glacier foreland.•Conclusions:Our data suggest thatS. oppositifoliacan rapidly colonize new deglaciated areas without losing genetic diversity. Thus, glacier forelands can be alternative habitats for cold‐adapted vascular plants tracking their climatic niche. Our data show no difference in colonization success between diploid and tetraploid individuals.
American Journal of ... arrow_drop_down Munin - Open Research ArchiveArticle . 2012 . Peer-reviewedData sources: Munin - Open Research ArchiveAmerican Journal of BotanyArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3732/ajb.1100363&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 16 citations 16 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert American Journal of ... arrow_drop_down Munin - Open Research ArchiveArticle . 2012 . Peer-reviewedData sources: Munin - Open Research ArchiveAmerican Journal of BotanyArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3732/ajb.1100363&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017 NorwayPublisher:Oxford University Press (OUP) Anne K. Brysting; Siri Birkeland; Siri Birkeland; Siri Birkeland; Idunn Elisabeth Borgen Skjetne; Idunn Elisabeth Borgen Skjetne; Reidar Elven; Inger Greve Alsos;Small, isolated, and/or peripheral populations are expected to harbour low levels of genetic variation and may therefore have reduced adaptability to environmental change, including climate warming. In the Arctic, global warming has already caused vegetation change across the region and is acting as a significant stressor on Arctic biodiversity. Many of the rare plants in the Arctic are relicts from early Holocene warm periods, but their ability to benefit from the current warming is dependent on the viability of their populations. We therefore examined Amplified Fragment Length Polymorphism (AFLP) data from regional red listed vascular plant species in the High Arctic archipelago of Svalbard and reference populations from the main distribution area of: 1) Botrychium lunaria, 2) Carex capillaris ssp. fuscidula, 3) Comastoma tenellum, 4) Kobresia simpliciuscula ssp. subholarctica, 5) Ranunculus wilanderi, 6) Sibbaldia procumbens and 7) Tofieldia pusilla In addition, we gathered population size data in Svalbard. The Svalbard populations had low genetic diversity and distinctiveness and few or no private markers compared to populations outside the archipelago. This is similar to observations in other rare species in Svalbard and the genetic depletion may be due to an initial founder effect and/or a genetic bottleneck caused by late Holocene cooling. There seems to be limited gene flow from other areas and the Svalbard populations should therefore be considered as demographically independent management units. Overall, these management units have small and/or few populations and are therefore prone to stochastic events which may further increase vulnerability to inbreeding depression, loss of genetic variation, and reduced evolutionary potential. Our results support theory predicting lower levels of genetic diversity in small, isolated and/or peripheral populations and may be of importance for management of other rare plant species in the Arctic.
Universitet i Oslo: ... arrow_drop_down Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2017License: CC BYFull-Text: http://hdl.handle.net/10852/59770Data sources: Bielefeld Academic Search Engine (BASE)Munin - Open Research ArchiveArticle . 2017 . Peer-reviewedData sources: Munin - Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/aobpla/plx001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Universitet i Oslo: ... arrow_drop_down Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2017License: CC BYFull-Text: http://hdl.handle.net/10852/59770Data sources: Bielefeld Academic Search Engine (BASE)Munin - Open Research ArchiveArticle . 2017 . Peer-reviewedData sources: Munin - Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/aobpla/plx001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 NorwayPublisher:Springer Science and Business Media LLC Chris Ware; Chris Ware; Chris Ware; Reidar Elven; Inger Greve Alsos;handle: 10852/50330
Increased human activity and climate change are expected to increase the numbers and impact of alien species in the Arctic, but knowledge of alien species is poor in most Arctic regions. Through field investigations over the last 10 years, and review of alien vascular plant records for the high Arctic Archipelago Svalbard over the past 130 years, we explored long term trends in persistence and phenology. In total, 448 observations of 105 taxa have been recorded from 28 sites. Recent surveys at 18 of these sites revealed that alien species had disappeared at half of them. Investigations at a further 49 sites characterised by former human activity and/or current tourist landing sites did not reveal any alien species. Patterns of alien species distribution suggest that greater alien species richness is more likely to be aligned with ongoing human inhabitation than sites of transient use. The probability of an alien species being in a more advanced phenological stage increased with higher mean July temperatures. As higher mean July temperatures are positively correlated with more recent year, the latter finding suggests a clear warming effect on the increased reproductive potential of alien plants, and thus an increased potential for spread in Svalbard. Given that both human activity and temperatures are expected to increase in the future, there is need to respond in policy and action to reduce the potential for further alien species introduction and spread in the Arctic.
Universitet i Oslo: ... arrow_drop_down Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2015License: CC BYFull-Text: http://hdl.handle.net/10852/50330Data sources: Bielefeld Academic Search Engine (BASE)Munin - Open Research ArchiveArticle . 2015 . Peer-reviewedData sources: Munin - Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10530-015-0937-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Universitet i Oslo: ... arrow_drop_down Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2015License: CC BYFull-Text: http://hdl.handle.net/10852/50330Data sources: Bielefeld Academic Search Engine (BASE)Munin - Open Research ArchiveArticle . 2015 . Peer-reviewedData sources: Munin - Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10530-015-0937-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 United Kingdom, Norway, NorwayPublisher:MDPI AG Funded by:RCN | ECOGEN - Ecosystem change..., EC | IceAGenTRCN| ECOGEN - Ecosystem change and species persistence over time: a genome-based approach ,EC| IceAGenTLucas D. Elliott; Dilli P. Rijal; Antony G. Brown; Jostein Bakke; Lasse Topstad; Peter D. Heintzman; Inger G. Alsos;doi: 10.3390/quat6010007
handle: 10037/28744 , 11250/3061916
Disentangling the effects of glaciers and climate on vegetation is complicated by the confounding role that climate plays in both systems. We reconstructed changes in vegetation occurring over the Holocene at Jøkelvatnet, a lake located directly downstream from the Langfjordjøkel glacier in northern Norway. We used a sedimentary ancient DNA (sedaDNA) metabarcoding dataset of 38 samples from a lake sediment core spanning 10,400 years using primers targeting the P6 loop of the trnL (UAA) intron. A total of 193 plant taxa were identified revealing a pattern of continually increasing richness over the time period. Vegetation surveys conducted around Jøkelvatnet show a high concordance with the taxa identified through sedaDNA metabarcoding. We identified four distinct vegetation assemblage zones with transitions at ca. 9.7, 8.4 and 4.3 ka with the first and last mirroring climatic shifts recorded by the Langfjordjøkel glacier. Soil disturbance trait values of the vegetation increased with glacial activity, suggesting that the glacier had a direct impact on plants growing in the catchment. Temperature optimum and moisture trait values correlated with both glacial activity and reconstructed climatic variables showing direct and indirect effects of climate change on the vegetation. In contrast to other catchments without an active glacier, the vegetation at Jøkelvatnet has displayed an increased sensitivity to climate change throughout the Middle and Late Holocene. Beyond the direct impact of climate change on arctic and alpine vegetation, our results suggest the ongoing disappearance of glaciers will have an additional effect on plant communities.
Quaternary arrow_drop_down QuaternaryOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2571-550X/6/1/7/pdfData sources: Multidisciplinary Digital Publishing InstituteQuaternaryArticleLicense: CC BYFull-Text: https://www.mdpi.com/2571-550X/6/1/7/pdfData sources: SygmaUniversity of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/11250/3061916Data sources: Bielefeld Academic Search Engine (BASE)Munin - Open Research ArchiveArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Munin - Open Research ArchiveBergen Open Research Archive - UiBArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/quat6010007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Quaternary arrow_drop_down QuaternaryOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2571-550X/6/1/7/pdfData sources: Multidisciplinary Digital Publishing InstituteQuaternaryArticleLicense: CC BYFull-Text: https://www.mdpi.com/2571-550X/6/1/7/pdfData sources: SygmaUniversity of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/11250/3061916Data sources: Bielefeld Academic Search Engine (BASE)Munin - Open Research ArchiveArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Munin - Open Research ArchiveBergen Open Research Archive - UiBArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/quat6010007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023Embargo end date: 27 May 2024 Germany, Switzerland, NorwayPublisher:The Royal Society Funded by:SNSF | FeedBaCks: Feedbacks betw..., SNSF | Combining artificial inte..., SNSF | BIodiversity Gradients fr... +2 projectsSNSF| FeedBaCks: Feedbacks between Biodiversity and Climate ,SNSF| Combining artificial intelligence and environmental DNA to improve the prediction of marine fish range shifts under global change ,SNSF| BIodiversity Gradients from Eco-evolutionary Simulations in Tetrapods (BIGEST) ,RCN| ECOGEN - Ecosystem change and species persistence over time: a genome-based approach ,EC| IceAGenTInger Greve Alsos; Victor Boussange; Dilli Prasad Rijal; Marieke Beaulieu; Antony Gavin Brown; Ulrike Herzschuh; Jens-Christian Svenning; Loïc Pellissier;pmid: 38583481
pmc: PMC10999269
Ecosystem response to climate change is complex. In order to forecast ecosystem dynamics, we need high-quality data on changes in past species abundance that can inform process-based models. Sedimentary ancient DNA ( sed aDNA) has revolutionised our ability to document past ecosystems' dynamics. It provides time series of increased taxonomic resolution compared to microfossils (pollen, spores), and can often give species-level information, especially for past vascular plant and mammal abundances. Time series are much richer in information than contemporary spatial distribution information, which have been traditionally used to train models for predicting biodiversity and ecosystem responses to climate change. Here, we outline the potential contribution of sed aDNA to forecast ecosystem changes. We showcase how species-level time series may allow quantification of the effect of biotic interactions in ecosystem dynamics, and be used to estimate dispersal rates when a dense network of sites is available. By combining palaeo-time series, process-based models, and inverse modelling, we can recover the biotic and abiotic processes underlying ecosystem dynamics, which are traditionally very challenging to characterise. Dynamic models informed by sed aDNA can further be used to extrapolate beyond current dynamics and provide robust forecasts of ecosystem responses to future climate change. This article is part of the theme issue ‘Ecological novelty and planetary stewardship: biodiversity dynamics in a transforming biosphere’.
Philosophical Transa... arrow_drop_down Philosophical Transactions of the Royal Society B Biological SciencesArticleLicense: CC BYData sources: SygmaPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefMunin - Open Research ArchiveArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Munin - Open Research ArchiveElectronic Publication Information CenterArticle . 2024Data sources: Electronic Publication Information CenterPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2024Data sources: Europe PubMed CentralPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2024 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2023.0017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Philosophical Transa... arrow_drop_down Philosophical Transactions of the Royal Society B Biological SciencesArticleLicense: CC BYData sources: SygmaPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefMunin - Open Research ArchiveArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Munin - Open Research ArchiveElectronic Publication Information CenterArticle . 2024Data sources: Electronic Publication Information CenterPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2024Data sources: Europe PubMed CentralPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2024 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2023.0017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 South AfricaPublisher:Wiley Authors: Donald A. Walker; Inger Greve Alsos; Kristine Bakke Westergaard; Andreas Tribsch; +29 AuthorsDonald A. Walker; Inger Greve Alsos; Kristine Bakke Westergaard; Andreas Tribsch; Liv Unn Tveraabak; Christian Damgaard; Peter Schönswetter; Risto Virtanen; Fred J.A. Daniëls; Christian Bay; Mary S. Wisz; Helga Bültmann; Antoine Guisan; Dorothee Ehrich; Lærke Stewart; Peder Klith Bøcher; Jonathan Lenoir; Loïc Pellissier; Nigel G. Yoccoz; Miska Luoto; Noémie Boulanger-Lapointe; Pernille Bronken Eidesen; Niels Martin Schmidt; Esther Lévesque; Olivier Broennimann; Christian Brochmann; Amy L. Breen; Jens-Christian Svenning; Ingibjörg S. Jónsdóttir; Ingibjörg S. Jónsdóttir; Peter Christiaan le Roux; Peter Christiaan le Roux; Jacob Nabe-Nielsen;doi: 10.1111/geb.12424
handle: 2263/56601
AbstractAimTheArctic has experienced marked climatic differences between glacial and interglacial periods and is now subject to a rapidly warming climate. Knowledge of the effects of historical processes on current patterns of diversity may aid predictions of the responses of vegetation to future climate change. We aim to test whether plant species and genetic diversity patterns are correlated with time since deglaciation at regional and local scales. We also investigate whether species richness is correlated with genetic diversity in vascular plants.LocationCircumarctic.MethodsWe investigated species richness of the vascular plant flora of 21 floristic provinces and examined local species richness in 6215 vegetation plots distributed across theArctic. We assessed levels of genetic diversity inferred from amplified fragment length polymorphism variation across populations of 23 commonArctic species. Correlations between diversity measures and landscape age (time since deglaciation) as well as variables characterizing current climate were analysed using spatially explicit simultaneous autoregressive models.ResultsRegional species richness of vascular plants and genetic diversity were correlated with each other, and both showed a positive relationship with landscape age. Plot species richness showed differing responses for vascular plants, bryophytes and lichens. At this finer scale, the richness of vascular plants was not significantly related to landscape age, which had a small effect size compared to the models of bryophyte and lichen richness.Main conclusionOur study suggests that imprints of past glaciations inArctic vegetation diversity patterns at the regional scale are still detectable today. SinceArctic vegetation is still limited by post‐glacial migration lag, it will most probably also exhibit lags in response to current and future climate change. Our results also suggest that local species richness at the plot scale is more determined by local habitat factors.
Global Ecology and B... arrow_drop_down Global Ecology and BiogeographyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.12424&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Global Ecology and B... arrow_drop_down Global Ecology and BiogeographyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.12424&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Embargo end date: 04 Nov 2022 Switzerland, Switzerland, United Kingdom, France, Switzerland, NorwayPublisher:Springer Science and Business Media LLC Funded by:EC | TEEMBIO, RCN | ECOGEN - Ecosystem change..., ANR | Origin-AlpsEC| TEEMBIO ,RCN| ECOGEN - Ecosystem change and species persistence over time: a genome-based approach ,ANR| Origin-AlpsSandra Garcés-Pastor; Eric Coissac; Sébastien Lavergne; Christoph Schwörer; Jean-Paul Theurillat; Peter D. Heintzman; Owen S. Wangensteen; Willy Tinner; Fabian Rey; Martina Heer; Astrid Rutzer; Kevin Walsh; Youri Lammers; Antony G. Brown; Tomasz Goslar; Dilli P. Rijal; Dirk N. Karger; Loïc Pellissier; Charles Pouchon; Cristina Roquet; Wilfried Thuiller; Niklaus E. Zimmermann; Adriana Alberti; Patrick Wincker; Martí Boleda; Frédéric Boyer; Anthony Hombiat; Christophe Perrier; Rolland Douzet; Jean-Gabriel Valay; Serge Aubert; France Denoeud; Bruno Bzeznick; Ludovic Gielly; Pierre Taberlet; Delphine Rioux; Céline Orvain; Maxime Rome; Rafael O. Wüest; Sonia Latzin; John Spillmann; Linda Feichtinger; Jérémie Van Es; Luc Garraud; Jean-Charles Villaret; Sylvain Abdulhak; Véronique Bonnet; Stéphanie Huc; Noémie Fort; Thomas Legland; Thomas Sanz; Gilles Pache; Alexis Mikolajczak; Virgile Noble; Henri Michaud; Benoît Offerhaus; Cédric Dentant; Pierre Salomez; Richard Bonet; Thierry Delahaye; Marie-France Leccia; Monique Perfus; Stefan Eggenberg; Adrian Möhl; Bogdan-Iuliu Hurdu; Paul-Marian Szatmari; Mihai Pușcaș; Jan Smyčka; Patrik Mráz; Kristýna Šemberová; Michał Ronikier; Marek Slovák; Oliver Heiri; Inger Greve Alsos;doi: 10.1038/s41467-022-34010-4 , 10.3929/ethz-b-000581853 , 10.5451/unibas-ep91365 , 10.48350/174537
pmid: 36333301
pmc: PMC9636257
handle: 10037/28074
doi: 10.1038/s41467-022-34010-4 , 10.3929/ethz-b-000581853 , 10.5451/unibas-ep91365 , 10.48350/174537
pmid: 36333301
pmc: PMC9636257
handle: 10037/28074
AbstractThe European Alps are highly rich in species, but their future may be threatened by ongoing changes in human land use and climate. Here, we reconstructed vegetation, temperature, human impact and livestock over the past ~12,000 years from Lake Sulsseewli, based on sedimentary ancient plant and mammal DNA, pollen, spores, chironomids, and microcharcoal. We assembled a highly-complete local DNA reference library (PhyloAlps, 3923 plant taxa), and used this to obtain an exceptionally rich sedaDNA record of 366 plant taxa. Vegetation mainly responded to climate during the early Holocene, while human activity had an additional influence on vegetation from 6 ka onwards. Land-use shifted from episodic grazing during the Neolithic and Bronze Age to agropastoralism in the Middle Ages. Associated human deforestation allowed the coexistence of plant species typically found at different elevational belts, leading to levels of plant richness that characterise the current high diversity of this region. Our findings indicate a positive association between low intensity agropastoral activities and precipitation with the maintenance of the unique subalpine and alpine plant diversity of the European Alps.
Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2022 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)University of Basel: edocArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Munin - Open Research ArchiveArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Munin - Open Research ArchiveUniversité Grenoble Alpes: HALArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Université d'Évry-Val-d'Essonne: HALArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-022-34010-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 50 citations 50 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2022 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)University of Basel: edocArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Munin - Open Research ArchiveArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Munin - Open Research ArchiveUniversité Grenoble Alpes: HALArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Université d'Évry-Val-d'Essonne: HALArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-022-34010-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Embargo end date: 17 Mar 2022 Norway, United Kingdom, France, Sweden, Norway, United KingdomPublisher:Springer Science and Business Media LLC Funded by:WT | Whole genome sequence bas..., EC | ArCH4ives, EC | PEGASUS +4 projectsWT| Whole genome sequence based analysis of genetic variation and genome evolution ,EC| ArCH4ives ,EC| PEGASUS ,RCN| Norwegian barcode of life network (NorBOL) ,UKRI| Plausible policy pathways to Paris ,RCN| Methane cycling archives from warming Arctic lakes: Retrieving the genomic blueprints of Holocene microbes ,EC| IceAGenTHannah L. Owens; Anna Cherezova; Anna Cherezova; Kurt H. Kjær; Alexandra Rouillard; Marie Kristine Føreid Merkel; Inger Greve Alsos; Richard Durbin; John Inge Svendsen; John Inge Svendsen; Kristian K. Kjeldsen; Thorfinn Sand Korneliussen; Thorfinn Sand Korneliussen; Ludovic Orlando; Jeffrey T. Rasic; Y. L. Wang; Y. L. Wang; Ana Prohaska; Anders A. Bjørk; Jialu Cao; Julie Esdale; Carsten Rahbek; Alexei Tikhonov; Adriana Alberti; Anthony Ruter; Mary E. Edwards; Mary E. Edwards; Youri Lammers; Patrick Wincker; Birgitte Skadhauge; Neil R. Edwards; Per Möller; Nicolaj K. Larsen; James Haile; Jan Mangerud; Jan Mangerud; Christoph Dockter; David W. Beilman; David J. Meltzer; David J. Meltzer; Lasse Vinner; Galina Gusarova; Daniel Money; Grigory Fedorov; Grigory Fedorov; Eske Willerslev; Hugh McColl; Fernando Racimo; Mikkel Winther Pedersen; Eric Coissac; Yingchun Xing; Antonio Fernandez-Guerra; David Bravo Nogues; Philip B. Holden; Yubin Zhang; Duane G. Froese; Bianca De Sanctis;AbstractDuring the last glacial–interglacial cycle, Arctic biotas experienced substantial climatic changes, yet the nature, extent and rate of their responses are not fully understood1–8. Here we report a large-scale environmental DNA metagenomic study of ancient plant and mammal communities, analysing 535 permafrost and lake sediment samples from across the Arctic spanning the past 50,000 years. Furthermore, we present 1,541 contemporary plant genome assemblies that were generated as reference sequences. Our study provides several insights into the long-term dynamics of the Arctic biota at the circumpolar and regional scales. Our key findings include: (1) a relatively homogeneous steppe–tundra flora dominated the Arctic during the Last Glacial Maximum, followed by regional divergence of vegetation during the Holocene epoch; (2) certain grazing animals consistently co-occurred in space and time; (3) humans appear to have been a minor factor in driving animal distributions; (4) higher effective precipitation, as well as an increase in the proportion of wetland plants, show negative effects on animal diversity; (5) the persistence of the steppe–tundra vegetation in northern Siberia enabled the late survival of several now-extinct megafauna species, including the woolly mammoth until 3.9 ± 0.2 thousand years ago (ka) and the woolly rhinoceros until 9.8 ± 0.2 ka; and (6) phylogenetic analysis of mammoth environmental DNA reveals a previously unsampled mitochondrial lineage. Our findings highlight the power of ancient environmental metagenomics analyses to advance understanding of population histories and long-term ecological dynamics.
e-Prints Soton arrow_drop_down University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/11250/2829931Data sources: Bielefeld Academic Search Engine (BASE)Université d'Évry-Val-d'Essonne: HALArticle . 2021Full-Text: https://hal.science/hal-03431961Data sources: Bielefeld Academic Search Engine (BASE)Publikationer från Umeå universitetArticle . 2021 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2021 . Peer-reviewedMunin - Open Research ArchiveArticle . 2021 . Peer-reviewedData sources: Munin - Open Research ArchiveBergen Open Research Archive - UiBArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBUniversité Savoie Mont Blanc: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-021-04016-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 110 citations 110 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert e-Prints Soton arrow_drop_down University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/11250/2829931Data sources: Bielefeld Academic Search Engine (BASE)Université d'Évry-Val-d'Essonne: HALArticle . 2021Full-Text: https://hal.science/hal-03431961Data sources: Bielefeld Academic Search Engine (BASE)Publikationer från Umeå universitetArticle . 2021 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2021 . Peer-reviewedMunin - Open Research ArchiveArticle . 2021 . Peer-reviewedData sources: Munin - Open Research ArchiveBergen Open Research Archive - UiBArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBUniversité Savoie Mont Blanc: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-021-04016-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 United Kingdom, DenmarkPublisher:Wiley Hans Henrik Bruun; H. John B. Birks; H. John B. Birks; H. John B. Birks; Claes Bergendorff; Jonathan Lenoir; Fride Høistad Schei; Fride Høistad Schei; Ann Milbau; Jens-Christian Svenning; Martin Zobel; Mari Moora; Risto Virtanen; Martin Diekmann; John-Arvid Grytnes; Stefanie Reinhardt; Carl Johan Dahlberg; Liv Guri Velle; Bettina Nygaard; Sylvi M. Sandvik; Bente J. Graae; Jörg Brunet; Gunnar Austrheim; Miska Luoto; Kari Anne Bråthen; Vigdis Vandvik; Kari Klanderud; Kari Klanderud; James D. M. Speed; Arvid Odland; Virve Ravolainen; Rasmus Ejrnæs; Mats Dynesius; W. Scott Armbruster; Guillaume Decocq; Kristoffer Hylander; Inger Greve Alsos; Per Arild Aarrestad; Liv Unn Tveraabak;doi: 10.1111/gcb.12129
pmid: 23504984
AbstractRecent studies from mountainous areas of small spatial extent (<2500 km2) suggest that fine‐grained thermal variability over tens or hundreds of metres exceeds much of the climate warming expected for the coming decades. Such variability in temperature provides buffering to mitigate climate‐change impacts. Is this local spatial buffering restricted to topographically complex terrains? To answer this, we here study fine‐grained thermal variability across a 2500‐km wide latitudinal gradient in Northern Europe encompassing a large array of topographic complexities. We first combined plant community data, Ellenberg temperature indicator values, locally measured temperatures (LmT) and globally interpolated temperatures (GiT) in a modelling framework to infer biologically relevant temperature conditions from plant assemblages within <1000‐m2 units (community‐inferred temperatures: CiT). We then assessed: (1) CiT range (thermal variability) within 1‐km2 units; (2) the relationship between CiT range and topographically and geographically derived predictors at 1‐km resolution; and (3) whether spatial turnover in CiT is greater than spatial turnover in GiT within 100‐km2 units. Ellenberg temperature indicator values in combination with plant assemblages explained 46–72% of variation in LmT and 92–96% of variation in GiT during the growing season (June, July, August). Growing‐season CiT range within 1‐km2 units peaked at 60–65°N and increased with terrain roughness, averaging 1.97 °C (SD = 0.84 °C) and 2.68 °C (SD = 1.26 °C) within the flattest and roughest units respectively. Complex interactions between topography‐related variables and latitude explained 35% of variation in growing‐season CiT range when accounting for sampling effort and residual spatial autocorrelation. Spatial turnover in growing‐season CiT within 100‐km2 units was, on average, 1.8 times greater (0.32 °C km−1) than spatial turnover in growing‐season GiT (0.18 °C km−1). We conclude that thermal variability within 1‐km2 units strongly increases local spatial buffering of future climate warming across Northern Europe, even in the flattest terrains.
PURE Aarhus Universi... arrow_drop_down Global Change BiologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Portsmouth: Portsmouth Research PortalArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12129&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu205 citations 205 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert PURE Aarhus Universi... arrow_drop_down Global Change BiologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Portsmouth: Portsmouth Research PortalArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12129&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2012Publisher:The Royal Society Funded by:FWF | Evolution and phylogeogra..., FWF | Recent immigrants or anci...FWF| Evolution and phylogeography of arctic-alpine plants: Tertiary roots, glacial refugia and directions of migrations ,FWF| Recent immigrants or ancient witnesses of recurrent climate change? The fate of rare arctic plants in the Alps revisitedPeter Schönswetter; Peter Schönswetter; Christian Brochmann; Andreas Tribsch; Andreas Tribsch; Inger Greve Alsos; Pierre Taberlet; Dorothee Ehrich; Dorothee Ehrich; Wilfried Thuiller; Claire Lagaye; Pernille Bronken Eidesen; Pernille Bronken Eidesen;Climate change will lead to loss of range for many species, and thus to loss of genetic diversity crucial for their long-term persistence. We analysed range-wide genetic diversity (amplified fragment length polymorphisms) in 9581 samples from 1200 populations of 27 northern plant species, to assess genetic consequences of range reduction and potential association with species traits. We used species distribution modelling (SDM, eight techniques, two global circulation models and two emission scenarios) to predict loss of range and genetic diversity by 2080. Loss of genetic diversity varied considerably among species, and this variation could be explained by dispersal adaptation (up to 57%) and by genetic differentiation among populations ( F ST ; up to 61%). Herbs lacking adaptations for long-distance dispersal were estimated to lose genetic diversity at higher rate than dwarf shrubs adapted to long-distance dispersal. The expected range reduction in these 27 northern species was larger than reported for temperate plants, and all were predicted to lose genetic diversity according to at least one scenario. SDM combined with F ST estimates and/or with species trait information thus allows the prediction of species' vulnerability to climate change, aiding rational prioritization of conservation efforts.
Proceedings of the R... arrow_drop_down Proceedings of the Royal Society B Biological SciencesArticleLicense: CC BYData sources: UnpayWallProceedings of the Royal Society B Biological SciencesArticle . 2012 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2012Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2011.2363&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 168 citations 168 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Proceedings of the R... arrow_drop_down Proceedings of the Royal Society B Biological SciencesArticleLicense: CC BYData sources: UnpayWallProceedings of the Royal Society B Biological SciencesArticle . 2012 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2012Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2011.2363&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 NorwayPublisher:Wiley Inger Greve Alsos; Dorothee Ehrich; Pernille Bronken Eidesen; Eike Müller; Eike Müller;doi: 10.3732/ajb.1100363
pmid: 22371855
•Premise of the Study:Climate change forces many species to migrate. Empirical small‐scale data on migration and colonization in the Arctic are scarce. Retreating glaciers provide new territory for cold‐adapted plant species, but the genetic consequences depend on dispersal distances and frequencies. We estimated local, regional, and long‐distance dispersal frequencies, as well as their effect on levels of genetic diversity, in diploid and tetraploid individuals ofSaxifraga oppositifolia.•Methods:Samples were collected in four aged moraines in each of three glacier forelands, in surrounding areas and reference populations in the Arctic archipelago Svalbard. These samples were analyzed for neutral amplified fragment length polymorphisms (AFLPs,n= 707) and ploidy levels (n= 30).•Key Results:Genetic clustering and ploidy analyses revealed two distinct genetic groups representing diploids and tetraploids, with few intermediate triploids. The groups were intermixed in most sampled populations. No differences in genetic diversity were found between tetraploids and diploids, or between established and glacier foreland populations. Seeds were dispersed over local, regional, and long distances, with the highest proportions of seeds originating from close sources. A minimum of 4–15 founding individuals from several source populations had initially established in each glacier foreland.•Conclusions:Our data suggest thatS. oppositifoliacan rapidly colonize new deglaciated areas without losing genetic diversity. Thus, glacier forelands can be alternative habitats for cold‐adapted vascular plants tracking their climatic niche. Our data show no difference in colonization success between diploid and tetraploid individuals.
American Journal of ... arrow_drop_down Munin - Open Research ArchiveArticle . 2012 . Peer-reviewedData sources: Munin - Open Research ArchiveAmerican Journal of BotanyArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3732/ajb.1100363&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 16 citations 16 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert American Journal of ... arrow_drop_down Munin - Open Research ArchiveArticle . 2012 . Peer-reviewedData sources: Munin - Open Research ArchiveAmerican Journal of BotanyArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3732/ajb.1100363&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017 NorwayPublisher:Oxford University Press (OUP) Anne K. Brysting; Siri Birkeland; Siri Birkeland; Siri Birkeland; Idunn Elisabeth Borgen Skjetne; Idunn Elisabeth Borgen Skjetne; Reidar Elven; Inger Greve Alsos;Small, isolated, and/or peripheral populations are expected to harbour low levels of genetic variation and may therefore have reduced adaptability to environmental change, including climate warming. In the Arctic, global warming has already caused vegetation change across the region and is acting as a significant stressor on Arctic biodiversity. Many of the rare plants in the Arctic are relicts from early Holocene warm periods, but their ability to benefit from the current warming is dependent on the viability of their populations. We therefore examined Amplified Fragment Length Polymorphism (AFLP) data from regional red listed vascular plant species in the High Arctic archipelago of Svalbard and reference populations from the main distribution area of: 1) Botrychium lunaria, 2) Carex capillaris ssp. fuscidula, 3) Comastoma tenellum, 4) Kobresia simpliciuscula ssp. subholarctica, 5) Ranunculus wilanderi, 6) Sibbaldia procumbens and 7) Tofieldia pusilla In addition, we gathered population size data in Svalbard. The Svalbard populations had low genetic diversity and distinctiveness and few or no private markers compared to populations outside the archipelago. This is similar to observations in other rare species in Svalbard and the genetic depletion may be due to an initial founder effect and/or a genetic bottleneck caused by late Holocene cooling. There seems to be limited gene flow from other areas and the Svalbard populations should therefore be considered as demographically independent management units. Overall, these management units have small and/or few populations and are therefore prone to stochastic events which may further increase vulnerability to inbreeding depression, loss of genetic variation, and reduced evolutionary potential. Our results support theory predicting lower levels of genetic diversity in small, isolated and/or peripheral populations and may be of importance for management of other rare plant species in the Arctic.
Universitet i Oslo: ... arrow_drop_down Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2017License: CC BYFull-Text: http://hdl.handle.net/10852/59770Data sources: Bielefeld Academic Search Engine (BASE)Munin - Open Research ArchiveArticle . 2017 . Peer-reviewedData sources: Munin - Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/aobpla/plx001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Universitet i Oslo: ... arrow_drop_down Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2017License: CC BYFull-Text: http://hdl.handle.net/10852/59770Data sources: Bielefeld Academic Search Engine (BASE)Munin - Open Research ArchiveArticle . 2017 . Peer-reviewedData sources: Munin - Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/aobpla/plx001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 NorwayPublisher:Springer Science and Business Media LLC Chris Ware; Chris Ware; Chris Ware; Reidar Elven; Inger Greve Alsos;handle: 10852/50330
Increased human activity and climate change are expected to increase the numbers and impact of alien species in the Arctic, but knowledge of alien species is poor in most Arctic regions. Through field investigations over the last 10 years, and review of alien vascular plant records for the high Arctic Archipelago Svalbard over the past 130 years, we explored long term trends in persistence and phenology. In total, 448 observations of 105 taxa have been recorded from 28 sites. Recent surveys at 18 of these sites revealed that alien species had disappeared at half of them. Investigations at a further 49 sites characterised by former human activity and/or current tourist landing sites did not reveal any alien species. Patterns of alien species distribution suggest that greater alien species richness is more likely to be aligned with ongoing human inhabitation than sites of transient use. The probability of an alien species being in a more advanced phenological stage increased with higher mean July temperatures. As higher mean July temperatures are positively correlated with more recent year, the latter finding suggests a clear warming effect on the increased reproductive potential of alien plants, and thus an increased potential for spread in Svalbard. Given that both human activity and temperatures are expected to increase in the future, there is need to respond in policy and action to reduce the potential for further alien species introduction and spread in the Arctic.
Universitet i Oslo: ... arrow_drop_down Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2015License: CC BYFull-Text: http://hdl.handle.net/10852/50330Data sources: Bielefeld Academic Search Engine (BASE)Munin - Open Research ArchiveArticle . 2015 . Peer-reviewedData sources: Munin - Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10530-015-0937-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Universitet i Oslo: ... arrow_drop_down Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2015License: CC BYFull-Text: http://hdl.handle.net/10852/50330Data sources: Bielefeld Academic Search Engine (BASE)Munin - Open Research ArchiveArticle . 2015 . Peer-reviewedData sources: Munin - Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10530-015-0937-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 United Kingdom, Norway, NorwayPublisher:MDPI AG Funded by:RCN | ECOGEN - Ecosystem change..., EC | IceAGenTRCN| ECOGEN - Ecosystem change and species persistence over time: a genome-based approach ,EC| IceAGenTLucas D. Elliott; Dilli P. Rijal; Antony G. Brown; Jostein Bakke; Lasse Topstad; Peter D. Heintzman; Inger G. Alsos;doi: 10.3390/quat6010007
handle: 10037/28744 , 11250/3061916
Disentangling the effects of glaciers and climate on vegetation is complicated by the confounding role that climate plays in both systems. We reconstructed changes in vegetation occurring over the Holocene at Jøkelvatnet, a lake located directly downstream from the Langfjordjøkel glacier in northern Norway. We used a sedimentary ancient DNA (sedaDNA) metabarcoding dataset of 38 samples from a lake sediment core spanning 10,400 years using primers targeting the P6 loop of the trnL (UAA) intron. A total of 193 plant taxa were identified revealing a pattern of continually increasing richness over the time period. Vegetation surveys conducted around Jøkelvatnet show a high concordance with the taxa identified through sedaDNA metabarcoding. We identified four distinct vegetation assemblage zones with transitions at ca. 9.7, 8.4 and 4.3 ka with the first and last mirroring climatic shifts recorded by the Langfjordjøkel glacier. Soil disturbance trait values of the vegetation increased with glacial activity, suggesting that the glacier had a direct impact on plants growing in the catchment. Temperature optimum and moisture trait values correlated with both glacial activity and reconstructed climatic variables showing direct and indirect effects of climate change on the vegetation. In contrast to other catchments without an active glacier, the vegetation at Jøkelvatnet has displayed an increased sensitivity to climate change throughout the Middle and Late Holocene. Beyond the direct impact of climate change on arctic and alpine vegetation, our results suggest the ongoing disappearance of glaciers will have an additional effect on plant communities.
Quaternary arrow_drop_down QuaternaryOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2571-550X/6/1/7/pdfData sources: Multidisciplinary Digital Publishing InstituteQuaternaryArticleLicense: CC BYFull-Text: https://www.mdpi.com/2571-550X/6/1/7/pdfData sources: SygmaUniversity of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/11250/3061916Data sources: Bielefeld Academic Search Engine (BASE)Munin - Open Research ArchiveArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Munin - Open Research ArchiveBergen Open Research Archive - UiBArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/quat6010007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Quaternary arrow_drop_down QuaternaryOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2571-550X/6/1/7/pdfData sources: Multidisciplinary Digital Publishing InstituteQuaternaryArticleLicense: CC BYFull-Text: https://www.mdpi.com/2571-550X/6/1/7/pdfData sources: SygmaUniversity of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/11250/3061916Data sources: Bielefeld Academic Search Engine (BASE)Munin - Open Research ArchiveArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Munin - Open Research ArchiveBergen Open Research Archive - UiBArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/quat6010007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu