- home
- Advanced Search
- Energy Research
- Energy Research
integration_instructions Research softwarekeyboard_double_arrow_right Software 2020Publisher:Zenodo Funded by:AKA | Towards Nanoscale Organic..., EC | RealNanoPlasmonAKA| Towards Nanoscale Organic Photovoltaics: Tuning the Hot-electron Transfer and Charge-separation in Functionalized Plasmonic Nanoparticles ,EC| RealNanoPlasmonAuthors: Rossi, Tuomas; Erhart, Paul; Kuisma, Mikael;This upload includes the codes and input scripts for reproducing the analysis presented in the article "Hot-Carrier Generation in Plasmonic Nanoparticles: The Importance of Atomic Structure" by Tuomas P. Rossi, Paul Erhart, and Mikael Kuisma. The codes reproduce the data of the article provided at doi:10.5281/zenodo.3927527. See README.md in the upload for a detailed description.
ZENODO arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3964229&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 89visibility views 89 download downloads 25 Powered bymore_vert ZENODO arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3964229&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Embargo end date: 16 Jan 2020 FinlandPublisher:American Chemical Society (ACS) Funded by:AKA | COMP: Centre of Excellenc..., AKA | Towards Nanoscale Organic...AKA| COMP: Centre of Excellence in Computational Nanoscience ,AKA| Towards Nanoscale Organic Photovoltaics: Tuning the Hot-electron Transfer and Charge-separation in Functionalized Plasmonic NanoparticlesKumar, Priyank V.; Rossi, Tuomas P.; Marti-Dafcik, Daniel; Reichmuth, Daniel; Kuisma, Mikael; Erhart, Paul; Puska, Martti J.; Norris; David, J.;pmid: 30768238
Plasmon-induced hot-carrier transfer from a metal nanostructure to an acceptor is known to occur via two key mechanisms: (i) indirect transfer, where the hot carriers are produced in the metal nanostructure and subsequently transferred to the acceptor, and (ii) direct transfer, where the plasmons decay by directly exciting carriers from the metal to the acceptor. Unfortunately, an atomic-level understanding of the direct-transfer process, especially with regard to its quantification, remains elusive even though it is estimated to be more efficient compared to the indirect-transfer process. This is due to experimental challenges in separating direct from indirect transfer as both processes occur simultaneously at femtosecond time scales. Here, we employ time-dependent density-functional theory simulations to isolate and study the direct-transfer process at a model metal-acceptor (Ag147-Cd33Se33) interface. Our simulations show that, for a 10 fs Gaussian laser pulse tuned to the plasmon frequency, the plasmon formed in the Ag147-Cd33Se33 system decays within 10 fs and induces the direct transfer with a probability of about 40%. We decompose the direct-transfer process further and demonstrate that the direct injection of both electrons and holes into the acceptor, termed direct hot-electron transfer (DHET) and direct hot-hole transfer (DHHT), takes place with similar probabilities of about 20% each. Finally, effective strategies to control and tune the probabilities of DHET and DHHT processes are proposed. We envision our work to provide guidelines toward the design of metal-acceptor interfaces that enable more efficient plasmonic hot-carrier devices.
ACS Nano arrow_drop_down Jyväskylä University Digital ArchiveArticle . 2019 . Peer-reviewedData sources: Jyväskylä University Digital ArchiveAaltodoc Publication ArchiveArticle . 2019 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsnano.8b08703&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 96 citations 96 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert ACS Nano arrow_drop_down Jyväskylä University Digital ArchiveArticle . 2019 . Peer-reviewedData sources: Jyväskylä University Digital ArchiveAaltodoc Publication ArchiveArticle . 2019 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsnano.8b08703&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Sweden, FinlandPublisher:American Physical Society (APS) Funded by:EC | RealNanoPlasmon, AKA | COMP: Centre of Excellenc..., AKA | Towards Nanoscale Organic...EC| RealNanoPlasmon ,AKA| COMP: Centre of Excellence in Computational Nanoscience ,AKA| Towards Nanoscale Organic Photovoltaics: Tuning the Hot-electron Transfer and Charge-separation in Functionalized Plasmonic NanoparticlesNayyar, Neha; Rossi, Tuomas; Kuisma, Mikael; Turkowski, Volodymyr; Puska, Martti; Rahman; Talat; Conley, Kevin;The capability of collective excitations, such as localized surface plasmon resonances, to produce a versatile spectrum of optical phenomena is governed by the interactions within the collective and single-particle responses in the finite system. In many practical instances, plasmonic metallic nanoparticles and arrays are either topologically or chemically heterogeneous, which affects both the constituent transitions and their interactions. Here, the formation of collective excitations in weakly Cu- and Pd-doped Au nanoarrays is described using time-dependent density functional theory. The additional impurity-induced modes in the optical response can be thought to result from intricate interactions between separated excitations or transitions. We investigate the heterogeneity at the impurity level, the symmetry aspects related to the impurity position, and the influence of the impurity position on the confinement phenomena. The chemically rich and symmetry-dependent quantum mechanical effects are analyzed with transition contribution maps demonstrating the possibility to develop nanostructures with more controlled collective properties.
https://jyx.jyu.fi/b... arrow_drop_down Jyväskylä University Digital ArchiveArticle . 2020 . Peer-reviewedData sources: Jyväskylä University Digital ArchiveAaltodoc Publication ArchiveArticle . 2020 . Peer-reviewedData sources: Aaltodoc Publication Archivehttps://doi.org/10.1103/physre...Article . 2020 . Peer-reviewedLicense: APS Licenses for Journal Article Re-useData sources: Crossrefhttp://dx.doi.org/10.1103/phys...ArticleLicense: APS Licenses for Journal Article Re-useData sources: Sygmahttp://dx.doi.org/10.1103/phys...Article . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1103/physrevb.101.235132&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert https://jyx.jyu.fi/b... arrow_drop_down Jyväskylä University Digital ArchiveArticle . 2020 . Peer-reviewedData sources: Jyväskylä University Digital ArchiveAaltodoc Publication ArchiveArticle . 2020 . Peer-reviewedData sources: Aaltodoc Publication Archivehttps://doi.org/10.1103/physre...Article . 2020 . Peer-reviewedLicense: APS Licenses for Journal Article Re-useData sources: Crossrefhttp://dx.doi.org/10.1103/phys...ArticleLicense: APS Licenses for Journal Article Re-useData sources: Sygmahttp://dx.doi.org/10.1103/phys...Article . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1103/physrevb.101.235132&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2019Embargo end date: 01 Jan 2018 FinlandPublisher:American Chemical Society (ACS) Funded by:AKA | COMP: Centre of Excellenc..., AKA | Towards Nanoscale Organic...AKA| COMP: Centre of Excellence in Computational Nanoscience ,AKA| Towards Nanoscale Organic Photovoltaics: Tuning the Hot-electron Transfer and Charge-separation in Functionalized Plasmonic NanoparticlesConley, Kevin M.; Nayyar, Neha; Rossi, Tuomas P.; Kuisma, Mikael; Turkowski, Volodymyr; Puska, Martti J.; Rahman; Talat, S.;We study the plasmonic properties of arrays of atomic chains which comprise noble (Cu, Ag, and Au) and transition (Pd, Pt) metal atoms using time-dependent density-functional theory. We show that the response to the electromagnetic radiation is related to both physics, the geometry-dependent confinement of sp-valence electrons, and chemistry, the energy position of d-electrons in the different atomic species and the hybridization between d and sp electrons. As a result it is possible to tune the position of the surface plasmon resonance, split it to several peaks, and eventually achieve broadband absorption of radiation. Mixing the arrays with transition metals can strongly attenuate the plasmonic behaviour. We analyze the origin of these phenomena and show that they arise from rich interactions between single-particle electron-hole and collective electron excitations. The tunability of the plasmonic response of arrays of atomic chains, which can be realized on solid surfaces, opens wide possibilities for their applications. In the present study we obtain guidelines how the desired properties can be achieved.
ACS Nano arrow_drop_down Jyväskylä University Digital ArchiveArticle . 2019 . Peer-reviewedData sources: Jyväskylä University Digital ArchiveAaltodoc Publication ArchiveArticle . 2019 . Peer-reviewedData sources: Aaltodoc Publication Archivehttps://dx.doi.org/10.48550/ar...Article . 2018License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsnano.8b09826&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 32 citations 32 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert ACS Nano arrow_drop_down Jyväskylä University Digital ArchiveArticle . 2019 . Peer-reviewedData sources: Jyväskylä University Digital ArchiveAaltodoc Publication ArchiveArticle . 2019 . Peer-reviewedData sources: Aaltodoc Publication Archivehttps://dx.doi.org/10.48550/ar...Article . 2018License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsnano.8b09826&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal , Other literature type 2021Embargo end date: 01 Jan 2021 FinlandPublisher:AIP Publishing Funded by:AKA | Towards Nanoscale Organic..., AKA | Plasmonic nanocatalysts f...AKA| Towards Nanoscale Organic Photovoltaics: Tuning the Hot-electron Transfer and Charge-separation in Functionalized Plasmonic Nanoparticles ,AKA| Plasmonic nanocatalysts for a sustainable future (PLASMOCAT)Fojt, Jakub; Rossi, Tuomas P.; Antosiewicz, Tomasz J.; Kuisma, Mikael; Erhart; Paul;Strong light–matter interactions facilitate not only emerging applications in quantum and non-linear optics but also modifications of properties of materials. In particular, the latter possibility has spurred the development of advanced theoretical techniques that can accurately capture both quantum optical and quantum chemical degrees of freedom. These methods are, however, computationally very demanding, which limits their application range. Here, we demonstrate that the optical spectra of nanoparticle-molecule assemblies, including strong coupling effects, can be predicted with good accuracy using a subsystem approach, in which the response functions of different units are coupled only at the dipolar level. We demonstrate this approach by comparison with previous time-dependent density functional theory calculations for fully coupled systems of Al nanoparticles and benzene molecules. While the present study only considers few-particle systems, the approach can be readily extended to much larger systems and to include explicit optical-cavity modes.
The Journal of Chemi... arrow_drop_down Jyväskylä University Digital ArchiveArticle . 2021 . Peer-reviewedData sources: Jyväskylä University Digital ArchiveAaltodoc Publication ArchiveArticle . 2021 . Peer-reviewedData sources: Aaltodoc Publication Archivehttps://dx.doi.org/10.48550/ar...Article . 2021License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/5.0037853&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The Journal of Chemi... arrow_drop_down Jyväskylä University Digital ArchiveArticle . 2021 . Peer-reviewedData sources: Jyväskylä University Digital ArchiveAaltodoc Publication ArchiveArticle . 2021 . Peer-reviewedData sources: Aaltodoc Publication Archivehttps://dx.doi.org/10.48550/ar...Article . 2021License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/5.0037853&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Preprint , Journal 2021Embargo end date: 01 Jan 2020 FinlandPublisher:AIP Publishing Funded by:AKA | Towards Nanoscale Organic..., AKA | Plasmonic nanocatalysts f..., AKA | Quantum simulation of met... +4 projectsAKA| Towards Nanoscale Organic Photovoltaics: Tuning the Hot-electron Transfer and Charge-separation in Functionalized Plasmonic Nanoparticles ,AKA| Plasmonic nanocatalysts for a sustainable future (PLASMOCAT) ,AKA| Quantum simulation of metal-organic nanosensors ,AKA| Computational study of fluorescent silver clusters with implications for biosensing and bioimaging applications ,EC| RealNanoPlasmon ,AKA| Quantum simulation of metal-organic nanosensors ,AKA| Computational study of fluorescent silver clusters with implications for biosensing and bioimaging applicationsAsk Hjorth Larsen; Esko Makkonen; Patrick Rinke; Mikael Kuisma; Xi Chen; Olga Lopez-Acevedo; Tuomas P. Rossi; Tuomas P. Rossi;pmid: 33752382
Electronic circular dichroism (ECD) is a powerful spectroscopy method for investigating chiral properties at the molecular level. ECD calculations with the commonly used linear-response time-dependent density functional theory (LR-TDDFT) framework can be prohibitively costly for large systems. To alleviate this problem, we present here an ECD implementation within the projector augmented-wave method in a real-time-propagation TDDFT framework in the open-source GPAW code. Our implementation supports both local atomic basis sets and real-space finite-difference representations of wave functions. We benchmark our implementation against an existing LR-TDDFT implementation in GPAW for small chiral molecules. We then demonstrate the efficiency of our local atomic basis set implementation for a large hybrid nanocluster and discuss the chiroptical properties of the cluster.
The Journal of Chemi... arrow_drop_down Jyväskylä University Digital ArchiveArticle . 2021 . Peer-reviewedData sources: Jyväskylä University Digital ArchiveAaltodoc Publication ArchiveArticle . 2021 . Peer-reviewedData sources: Aaltodoc Publication Archivehttps://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/5.0038904&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The Journal of Chemi... arrow_drop_down Jyväskylä University Digital ArchiveArticle . 2021 . Peer-reviewedData sources: Jyväskylä University Digital ArchiveAaltodoc Publication ArchiveArticle . 2021 . Peer-reviewedData sources: Aaltodoc Publication Archivehttps://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/5.0038904&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Preprint , Journal 2020Embargo end date: 01 Jan 2020 Finland, Sweden, FinlandPublisher:American Chemical Society (ACS) Funded by:EC | RealNanoPlasmon, AKA | Towards Nanoscale Organic...EC| RealNanoPlasmon ,AKA| Towards Nanoscale Organic Photovoltaics: Tuning the Hot-electron Transfer and Charge-separation in Functionalized Plasmonic NanoparticlesAuthors: Rossi, Tuomas P.; Erhart, Paul; Kuisma; Mikael;pmid: 32687311
pmc: PMC7458472
Metal nanoparticles are attractive for plasmon-enhanced generation of hot carriers, which may be harnessed in photochemical reactions. In this work, we analyze the coherent femtosecond dynamics of photon absorption, plasmon formation, and subsequent hot-carrier generation through plasmon dephasing using first-principles simulations. We predict the energetic and spatial hot-carrier distributions in small metal nanoparticles and show that the distribution of hot electrons is very sensitive to the local structure. Our results show that surface sites exhibit enhanced hot-electron generation in comparison to the bulk of the nanoparticle. While the details of the distribution depend on particle size and shape, as a general trend lower-coordinated surface sites such as corners, edges, and {100} facets exhibit a higher proportion of hot electrons than higher-coordinated surface sites such as {111} facets or the core sites. The present results thereby demonstrate how hot carriers could be tailored by careful design of atomic-scale structures in nanoscale systems. 10 pages, 4 figures
ACS Nano arrow_drop_down Jyväskylä University Digital ArchiveArticle . 2020 . Peer-reviewedData sources: Jyväskylä University Digital Archivehttps://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsnano.0c03004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 124 citations 124 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert ACS Nano arrow_drop_down Jyväskylä University Digital ArchiveArticle . 2020 . Peer-reviewedData sources: Jyväskylä University Digital Archivehttps://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsnano.0c03004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:Zenodo Funded by:AKA | Towards Nanoscale Organic..., EC | RealNanoPlasmonAKA| Towards Nanoscale Organic Photovoltaics: Tuning the Hot-electron Transfer and Charge-separation in Functionalized Plasmonic Nanoparticles ,EC| RealNanoPlasmonAuthors: Rossi, Tuomas; Erhart, Paul; Kuisma, Mikael;This upload includes the data presented and analyzed in the article "Hot-Carrier Generation in Plasmonic Nanoparticles: The Importance of Atomic Structure" by Tuomas P. Rossi, Paul Erhart, and Mikael Kuisma. The codes for reproducing the data are provided at doi:10.5281/zenodo.3964229. See README.md in data.zip for a detailed description.
ZENODO arrow_drop_down Smithsonian figshareDataset . 2020License: CC BY SAData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3927526&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert ZENODO arrow_drop_down Smithsonian figshareDataset . 2020License: CC BY SAData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3927526&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Royal Society of Chemistry (RSC) Kumar, Priyank V.; Rossi, Tuomas P.; Kuisma, Mikael; Erhart, Paul; Norris; David, J.;doi: 10.1039/c8fd00154e
pmid: 30855061
An ab initio computational study of direct hot-carrier transfer at metal–molecule interfaces with relevance to plasmonic catalysis.
Faraday Discussions arrow_drop_down Faraday DiscussionsArticle . 2019 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c8fd00154e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Faraday Discussions arrow_drop_down Faraday DiscussionsArticle . 2019 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c8fd00154e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2017Embargo end date: 01 Jan 2017 FinlandPublisher:American Chemical Society (ACS) Funded by:AKA | Towards Nanoscale Organic..., AKA | Centre of Excellence in C..., AKA | COMP: Centre of Excellenc...AKA| Towards Nanoscale Organic Photovoltaics: Tuning the Hot-electron Transfer and Charge-separation in Functionalized Plasmonic Nanoparticles ,AKA| Centre of Excellence in Computational Nanoscience (COMP) ,AKA| COMP: Centre of Excellence in Computational NanoscienceRossi, Tuomas P.; Kuisma, Mikael; Puska, Martti J.; Nieminen, Risto M.; Erhart; Paul;The real-time-propagation formulation of time-dependent density-functional theory (RT-TDDFT) is an efficient method for modeling the optical response of molecules and nanoparticles. Compared to the widely adopted linear-response TDDFT approaches based on, e.g., the Casida equations, RT-TDDFT appears, however, lacking efficient analysis methods. This applies in particular to a decomposition of the response in the basis of the underlying single-electron states. In this work, we overcome this limitation by developing an analysis method for obtaining the Kohn-Sham electron-hole decomposition in RT-TDDFT. We demonstrate the equivalence between the developed method and the Casida approach by a benchmark on small benzene derivatives. Then, we use the method for analyzing the plasmonic response of icosahedral silver nanoparticles up to Ag$_{561}$. Based on the analysis, we conclude that in small nanoparticles individual single-electron transitions can split the plasmon into multiple resonances due to strong single-electron-plasmon coupling whereas in larger nanoparticles a distinct plasmon resonance is formed. 11 pages, 3 figures
Journal of Chemical ... arrow_drop_down Jyväskylä University Digital ArchiveArticle . 2017 . Peer-reviewedData sources: Jyväskylä University Digital Archivehttps://dx.doi.org/10.48550/ar...Article . 2017License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.jctc.7b00589&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 131 citations 131 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Chemical ... arrow_drop_down Jyväskylä University Digital ArchiveArticle . 2017 . Peer-reviewedData sources: Jyväskylä University Digital Archivehttps://dx.doi.org/10.48550/ar...Article . 2017License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.jctc.7b00589&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
integration_instructions Research softwarekeyboard_double_arrow_right Software 2020Publisher:Zenodo Funded by:AKA | Towards Nanoscale Organic..., EC | RealNanoPlasmonAKA| Towards Nanoscale Organic Photovoltaics: Tuning the Hot-electron Transfer and Charge-separation in Functionalized Plasmonic Nanoparticles ,EC| RealNanoPlasmonAuthors: Rossi, Tuomas; Erhart, Paul; Kuisma, Mikael;This upload includes the codes and input scripts for reproducing the analysis presented in the article "Hot-Carrier Generation in Plasmonic Nanoparticles: The Importance of Atomic Structure" by Tuomas P. Rossi, Paul Erhart, and Mikael Kuisma. The codes reproduce the data of the article provided at doi:10.5281/zenodo.3927527. See README.md in the upload for a detailed description.
ZENODO arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3964229&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 89visibility views 89 download downloads 25 Powered bymore_vert ZENODO arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3964229&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Embargo end date: 16 Jan 2020 FinlandPublisher:American Chemical Society (ACS) Funded by:AKA | COMP: Centre of Excellenc..., AKA | Towards Nanoscale Organic...AKA| COMP: Centre of Excellence in Computational Nanoscience ,AKA| Towards Nanoscale Organic Photovoltaics: Tuning the Hot-electron Transfer and Charge-separation in Functionalized Plasmonic NanoparticlesKumar, Priyank V.; Rossi, Tuomas P.; Marti-Dafcik, Daniel; Reichmuth, Daniel; Kuisma, Mikael; Erhart, Paul; Puska, Martti J.; Norris; David, J.;pmid: 30768238
Plasmon-induced hot-carrier transfer from a metal nanostructure to an acceptor is known to occur via two key mechanisms: (i) indirect transfer, where the hot carriers are produced in the metal nanostructure and subsequently transferred to the acceptor, and (ii) direct transfer, where the plasmons decay by directly exciting carriers from the metal to the acceptor. Unfortunately, an atomic-level understanding of the direct-transfer process, especially with regard to its quantification, remains elusive even though it is estimated to be more efficient compared to the indirect-transfer process. This is due to experimental challenges in separating direct from indirect transfer as both processes occur simultaneously at femtosecond time scales. Here, we employ time-dependent density-functional theory simulations to isolate and study the direct-transfer process at a model metal-acceptor (Ag147-Cd33Se33) interface. Our simulations show that, for a 10 fs Gaussian laser pulse tuned to the plasmon frequency, the plasmon formed in the Ag147-Cd33Se33 system decays within 10 fs and induces the direct transfer with a probability of about 40%. We decompose the direct-transfer process further and demonstrate that the direct injection of both electrons and holes into the acceptor, termed direct hot-electron transfer (DHET) and direct hot-hole transfer (DHHT), takes place with similar probabilities of about 20% each. Finally, effective strategies to control and tune the probabilities of DHET and DHHT processes are proposed. We envision our work to provide guidelines toward the design of metal-acceptor interfaces that enable more efficient plasmonic hot-carrier devices.
ACS Nano arrow_drop_down Jyväskylä University Digital ArchiveArticle . 2019 . Peer-reviewedData sources: Jyväskylä University Digital ArchiveAaltodoc Publication ArchiveArticle . 2019 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsnano.8b08703&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 96 citations 96 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert ACS Nano arrow_drop_down Jyväskylä University Digital ArchiveArticle . 2019 . Peer-reviewedData sources: Jyväskylä University Digital ArchiveAaltodoc Publication ArchiveArticle . 2019 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsnano.8b08703&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Sweden, FinlandPublisher:American Physical Society (APS) Funded by:EC | RealNanoPlasmon, AKA | COMP: Centre of Excellenc..., AKA | Towards Nanoscale Organic...EC| RealNanoPlasmon ,AKA| COMP: Centre of Excellence in Computational Nanoscience ,AKA| Towards Nanoscale Organic Photovoltaics: Tuning the Hot-electron Transfer and Charge-separation in Functionalized Plasmonic NanoparticlesNayyar, Neha; Rossi, Tuomas; Kuisma, Mikael; Turkowski, Volodymyr; Puska, Martti; Rahman; Talat; Conley, Kevin;The capability of collective excitations, such as localized surface plasmon resonances, to produce a versatile spectrum of optical phenomena is governed by the interactions within the collective and single-particle responses in the finite system. In many practical instances, plasmonic metallic nanoparticles and arrays are either topologically or chemically heterogeneous, which affects both the constituent transitions and their interactions. Here, the formation of collective excitations in weakly Cu- and Pd-doped Au nanoarrays is described using time-dependent density functional theory. The additional impurity-induced modes in the optical response can be thought to result from intricate interactions between separated excitations or transitions. We investigate the heterogeneity at the impurity level, the symmetry aspects related to the impurity position, and the influence of the impurity position on the confinement phenomena. The chemically rich and symmetry-dependent quantum mechanical effects are analyzed with transition contribution maps demonstrating the possibility to develop nanostructures with more controlled collective properties.
https://jyx.jyu.fi/b... arrow_drop_down Jyväskylä University Digital ArchiveArticle . 2020 . Peer-reviewedData sources: Jyväskylä University Digital ArchiveAaltodoc Publication ArchiveArticle . 2020 . Peer-reviewedData sources: Aaltodoc Publication Archivehttps://doi.org/10.1103/physre...Article . 2020 . Peer-reviewedLicense: APS Licenses for Journal Article Re-useData sources: Crossrefhttp://dx.doi.org/10.1103/phys...ArticleLicense: APS Licenses for Journal Article Re-useData sources: Sygmahttp://dx.doi.org/10.1103/phys...Article . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1103/physrevb.101.235132&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert https://jyx.jyu.fi/b... arrow_drop_down Jyväskylä University Digital ArchiveArticle . 2020 . Peer-reviewedData sources: Jyväskylä University Digital ArchiveAaltodoc Publication ArchiveArticle . 2020 . Peer-reviewedData sources: Aaltodoc Publication Archivehttps://doi.org/10.1103/physre...Article . 2020 . Peer-reviewedLicense: APS Licenses for Journal Article Re-useData sources: Crossrefhttp://dx.doi.org/10.1103/phys...ArticleLicense: APS Licenses for Journal Article Re-useData sources: Sygmahttp://dx.doi.org/10.1103/phys...Article . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1103/physrevb.101.235132&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2019Embargo end date: 01 Jan 2018 FinlandPublisher:American Chemical Society (ACS) Funded by:AKA | COMP: Centre of Excellenc..., AKA | Towards Nanoscale Organic...AKA| COMP: Centre of Excellence in Computational Nanoscience ,AKA| Towards Nanoscale Organic Photovoltaics: Tuning the Hot-electron Transfer and Charge-separation in Functionalized Plasmonic NanoparticlesConley, Kevin M.; Nayyar, Neha; Rossi, Tuomas P.; Kuisma, Mikael; Turkowski, Volodymyr; Puska, Martti J.; Rahman; Talat, S.;We study the plasmonic properties of arrays of atomic chains which comprise noble (Cu, Ag, and Au) and transition (Pd, Pt) metal atoms using time-dependent density-functional theory. We show that the response to the electromagnetic radiation is related to both physics, the geometry-dependent confinement of sp-valence electrons, and chemistry, the energy position of d-electrons in the different atomic species and the hybridization between d and sp electrons. As a result it is possible to tune the position of the surface plasmon resonance, split it to several peaks, and eventually achieve broadband absorption of radiation. Mixing the arrays with transition metals can strongly attenuate the plasmonic behaviour. We analyze the origin of these phenomena and show that they arise from rich interactions between single-particle electron-hole and collective electron excitations. The tunability of the plasmonic response of arrays of atomic chains, which can be realized on solid surfaces, opens wide possibilities for their applications. In the present study we obtain guidelines how the desired properties can be achieved.
ACS Nano arrow_drop_down Jyväskylä University Digital ArchiveArticle . 2019 . Peer-reviewedData sources: Jyväskylä University Digital ArchiveAaltodoc Publication ArchiveArticle . 2019 . Peer-reviewedData sources: Aaltodoc Publication Archivehttps://dx.doi.org/10.48550/ar...Article . 2018License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsnano.8b09826&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 32 citations 32 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert ACS Nano arrow_drop_down Jyväskylä University Digital ArchiveArticle . 2019 . Peer-reviewedData sources: Jyväskylä University Digital ArchiveAaltodoc Publication ArchiveArticle . 2019 . Peer-reviewedData sources: Aaltodoc Publication Archivehttps://dx.doi.org/10.48550/ar...Article . 2018License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsnano.8b09826&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal , Other literature type 2021Embargo end date: 01 Jan 2021 FinlandPublisher:AIP Publishing Funded by:AKA | Towards Nanoscale Organic..., AKA | Plasmonic nanocatalysts f...AKA| Towards Nanoscale Organic Photovoltaics: Tuning the Hot-electron Transfer and Charge-separation in Functionalized Plasmonic Nanoparticles ,AKA| Plasmonic nanocatalysts for a sustainable future (PLASMOCAT)Fojt, Jakub; Rossi, Tuomas P.; Antosiewicz, Tomasz J.; Kuisma, Mikael; Erhart; Paul;Strong light–matter interactions facilitate not only emerging applications in quantum and non-linear optics but also modifications of properties of materials. In particular, the latter possibility has spurred the development of advanced theoretical techniques that can accurately capture both quantum optical and quantum chemical degrees of freedom. These methods are, however, computationally very demanding, which limits their application range. Here, we demonstrate that the optical spectra of nanoparticle-molecule assemblies, including strong coupling effects, can be predicted with good accuracy using a subsystem approach, in which the response functions of different units are coupled only at the dipolar level. We demonstrate this approach by comparison with previous time-dependent density functional theory calculations for fully coupled systems of Al nanoparticles and benzene molecules. While the present study only considers few-particle systems, the approach can be readily extended to much larger systems and to include explicit optical-cavity modes.
The Journal of Chemi... arrow_drop_down Jyväskylä University Digital ArchiveArticle . 2021 . Peer-reviewedData sources: Jyväskylä University Digital ArchiveAaltodoc Publication ArchiveArticle . 2021 . Peer-reviewedData sources: Aaltodoc Publication Archivehttps://dx.doi.org/10.48550/ar...Article . 2021License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/5.0037853&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The Journal of Chemi... arrow_drop_down Jyväskylä University Digital ArchiveArticle . 2021 . Peer-reviewedData sources: Jyväskylä University Digital ArchiveAaltodoc Publication ArchiveArticle . 2021 . Peer-reviewedData sources: Aaltodoc Publication Archivehttps://dx.doi.org/10.48550/ar...Article . 2021License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/5.0037853&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Preprint , Journal 2021Embargo end date: 01 Jan 2020 FinlandPublisher:AIP Publishing Funded by:AKA | Towards Nanoscale Organic..., AKA | Plasmonic nanocatalysts f..., AKA | Quantum simulation of met... +4 projectsAKA| Towards Nanoscale Organic Photovoltaics: Tuning the Hot-electron Transfer and Charge-separation in Functionalized Plasmonic Nanoparticles ,AKA| Plasmonic nanocatalysts for a sustainable future (PLASMOCAT) ,AKA| Quantum simulation of metal-organic nanosensors ,AKA| Computational study of fluorescent silver clusters with implications for biosensing and bioimaging applications ,EC| RealNanoPlasmon ,AKA| Quantum simulation of metal-organic nanosensors ,AKA| Computational study of fluorescent silver clusters with implications for biosensing and bioimaging applicationsAsk Hjorth Larsen; Esko Makkonen; Patrick Rinke; Mikael Kuisma; Xi Chen; Olga Lopez-Acevedo; Tuomas P. Rossi; Tuomas P. Rossi;pmid: 33752382
Electronic circular dichroism (ECD) is a powerful spectroscopy method for investigating chiral properties at the molecular level. ECD calculations with the commonly used linear-response time-dependent density functional theory (LR-TDDFT) framework can be prohibitively costly for large systems. To alleviate this problem, we present here an ECD implementation within the projector augmented-wave method in a real-time-propagation TDDFT framework in the open-source GPAW code. Our implementation supports both local atomic basis sets and real-space finite-difference representations of wave functions. We benchmark our implementation against an existing LR-TDDFT implementation in GPAW for small chiral molecules. We then demonstrate the efficiency of our local atomic basis set implementation for a large hybrid nanocluster and discuss the chiroptical properties of the cluster.
The Journal of Chemi... arrow_drop_down Jyväskylä University Digital ArchiveArticle . 2021 . Peer-reviewedData sources: Jyväskylä University Digital ArchiveAaltodoc Publication ArchiveArticle . 2021 . Peer-reviewedData sources: Aaltodoc Publication Archivehttps://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/5.0038904&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The Journal of Chemi... arrow_drop_down Jyväskylä University Digital ArchiveArticle . 2021 . Peer-reviewedData sources: Jyväskylä University Digital ArchiveAaltodoc Publication ArchiveArticle . 2021 . Peer-reviewedData sources: Aaltodoc Publication Archivehttps://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/5.0038904&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Preprint , Journal 2020Embargo end date: 01 Jan 2020 Finland, Sweden, FinlandPublisher:American Chemical Society (ACS) Funded by:EC | RealNanoPlasmon, AKA | Towards Nanoscale Organic...EC| RealNanoPlasmon ,AKA| Towards Nanoscale Organic Photovoltaics: Tuning the Hot-electron Transfer and Charge-separation in Functionalized Plasmonic NanoparticlesAuthors: Rossi, Tuomas P.; Erhart, Paul; Kuisma; Mikael;pmid: 32687311
pmc: PMC7458472
Metal nanoparticles are attractive for plasmon-enhanced generation of hot carriers, which may be harnessed in photochemical reactions. In this work, we analyze the coherent femtosecond dynamics of photon absorption, plasmon formation, and subsequent hot-carrier generation through plasmon dephasing using first-principles simulations. We predict the energetic and spatial hot-carrier distributions in small metal nanoparticles and show that the distribution of hot electrons is very sensitive to the local structure. Our results show that surface sites exhibit enhanced hot-electron generation in comparison to the bulk of the nanoparticle. While the details of the distribution depend on particle size and shape, as a general trend lower-coordinated surface sites such as corners, edges, and {100} facets exhibit a higher proportion of hot electrons than higher-coordinated surface sites such as {111} facets or the core sites. The present results thereby demonstrate how hot carriers could be tailored by careful design of atomic-scale structures in nanoscale systems. 10 pages, 4 figures
ACS Nano arrow_drop_down Jyväskylä University Digital ArchiveArticle . 2020 . Peer-reviewedData sources: Jyväskylä University Digital Archivehttps://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsnano.0c03004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 124 citations 124 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert ACS Nano arrow_drop_down Jyväskylä University Digital ArchiveArticle . 2020 . Peer-reviewedData sources: Jyväskylä University Digital Archivehttps://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsnano.0c03004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:Zenodo Funded by:AKA | Towards Nanoscale Organic..., EC | RealNanoPlasmonAKA| Towards Nanoscale Organic Photovoltaics: Tuning the Hot-electron Transfer and Charge-separation in Functionalized Plasmonic Nanoparticles ,EC| RealNanoPlasmonAuthors: Rossi, Tuomas; Erhart, Paul; Kuisma, Mikael;This upload includes the data presented and analyzed in the article "Hot-Carrier Generation in Plasmonic Nanoparticles: The Importance of Atomic Structure" by Tuomas P. Rossi, Paul Erhart, and Mikael Kuisma. The codes for reproducing the data are provided at doi:10.5281/zenodo.3964229. See README.md in data.zip for a detailed description.
ZENODO arrow_drop_down Smithsonian figshareDataset . 2020License: CC BY SAData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3927526&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert ZENODO arrow_drop_down Smithsonian figshareDataset . 2020License: CC BY SAData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3927526&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Royal Society of Chemistry (RSC) Kumar, Priyank V.; Rossi, Tuomas P.; Kuisma, Mikael; Erhart, Paul; Norris; David, J.;doi: 10.1039/c8fd00154e
pmid: 30855061
An ab initio computational study of direct hot-carrier transfer at metal–molecule interfaces with relevance to plasmonic catalysis.
Faraday Discussions arrow_drop_down Faraday DiscussionsArticle . 2019 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c8fd00154e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Faraday Discussions arrow_drop_down Faraday DiscussionsArticle . 2019 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c8fd00154e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2017Embargo end date: 01 Jan 2017 FinlandPublisher:American Chemical Society (ACS) Funded by:AKA | Towards Nanoscale Organic..., AKA | Centre of Excellence in C..., AKA | COMP: Centre of Excellenc...AKA| Towards Nanoscale Organic Photovoltaics: Tuning the Hot-electron Transfer and Charge-separation in Functionalized Plasmonic Nanoparticles ,AKA| Centre of Excellence in Computational Nanoscience (COMP) ,AKA| COMP: Centre of Excellence in Computational NanoscienceRossi, Tuomas P.; Kuisma, Mikael; Puska, Martti J.; Nieminen, Risto M.; Erhart; Paul;The real-time-propagation formulation of time-dependent density-functional theory (RT-TDDFT) is an efficient method for modeling the optical response of molecules and nanoparticles. Compared to the widely adopted linear-response TDDFT approaches based on, e.g., the Casida equations, RT-TDDFT appears, however, lacking efficient analysis methods. This applies in particular to a decomposition of the response in the basis of the underlying single-electron states. In this work, we overcome this limitation by developing an analysis method for obtaining the Kohn-Sham electron-hole decomposition in RT-TDDFT. We demonstrate the equivalence between the developed method and the Casida approach by a benchmark on small benzene derivatives. Then, we use the method for analyzing the plasmonic response of icosahedral silver nanoparticles up to Ag$_{561}$. Based on the analysis, we conclude that in small nanoparticles individual single-electron transitions can split the plasmon into multiple resonances due to strong single-electron-plasmon coupling whereas in larger nanoparticles a distinct plasmon resonance is formed. 11 pages, 3 figures
Journal of Chemical ... arrow_drop_down Jyväskylä University Digital ArchiveArticle . 2017 . Peer-reviewedData sources: Jyväskylä University Digital Archivehttps://dx.doi.org/10.48550/ar...Article . 2017License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.jctc.7b00589&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 131 citations 131 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Chemical ... arrow_drop_down Jyväskylä University Digital ArchiveArticle . 2017 . Peer-reviewedData sources: Jyväskylä University Digital Archivehttps://dx.doi.org/10.48550/ar...Article . 2017License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.jctc.7b00589&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu