- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2024 Italy, GermanyPublisher:SAGE Publications Funded by:DFGDFGAuthors:Malfi, Enrica;
Malfi, Enrica
Malfi, Enrica in OpenAIREEsposito, Stefania;
Esposito, Stefania
Esposito, Stefania in OpenAIREDe Felice, Massimiliano;
De Felice, Massimiliano
De Felice, Massimiliano in OpenAIREPitsch, Heinz;
+2 AuthorsPitsch, Heinz
Pitsch, Heinz in OpenAIREMalfi, Enrica;
Malfi, Enrica
Malfi, Enrica in OpenAIREEsposito, Stefania;
Esposito, Stefania
Esposito, Stefania in OpenAIREDe Felice, Massimiliano;
De Felice, Massimiliano
De Felice, Massimiliano in OpenAIREPitsch, Heinz;
Pitsch, Heinz
Pitsch, Heinz in OpenAIREPischinger, Stefan;
Pischinger, Stefan
Pischinger, Stefan in OpenAIREDe Bellis, Vincenzo;
De Bellis, Vincenzo
De Bellis, Vincenzo in OpenAIREhandle: 11588/995716
Considering the strict regulations on the transport sector emissions, predictive models for engine emissions are essential tools to optimize high-efficient low-emission internal combustion engines (ICE) for vehicles. This aspect is of major importance, especially for developing new combustion concepts (e.g. lean, pre-chamber) or using alternative fuels. Among the gaseous emissions from spark-ignition (SI) engines, unburned hydrocarbons (uHC) are the most challenging species to model due to the complexity of the formation mechanisms. Phenomenological models are successfully used in these cases to predict emissions with a reduced computational effort. In this work, uHC phenomenological model approaches by the authors are further developed to improve the model predictivity for multiple variations including engine design, engine operating parameters, as well as different fuels and ignition methods. The model accounts for uHC contributions from piston top-land crevice, wall flame quenching, oil film fuel adsorption/desorption and features a tabulated-chemistry approach to describe uHC post-oxidation. With the support of 3D-CFD simulations, multiple novel modelling assumptions are developed and verified. The model is validated against an extensive measurement database obtained with two small-bore single-cylinder engines (SCE) fuelled with gasoline-like fuel, one with SI and one with pre-chamber, as well as against data from two different ultra-lean large-bore engines fuelled with natural gas (one equipped with a pre-chamber and one dual-fuel with a diesel pilot). The model correctly predicts the trends and absolute values of uHC emissions for all the operating conditions and the engines with an accuracy on average of 11.4%. The results demonstrate the general applicability of the model to different engine designs, the correct description of the main mechanisms contributing to fuel partial oxidation, and the potential to be extended to predict unburned fuel emissions with other fuels.
International Journa... arrow_drop_down International Journal of Engine ResearchArticle . 2024 . Peer-reviewedLicense: CC BY NCData sources: CrossrefPublikationsserver der RWTH Aachen UniversityArticle . 2024Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/14680874241255157&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Engine ResearchArticle . 2024 . Peer-reviewedLicense: CC BY NCData sources: CrossrefPublikationsserver der RWTH Aachen UniversityArticle . 2024Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/14680874241255157&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2018 ItalyPublisher:SAE International Authors:Bozza, Fabio;
Bozza, Fabio
Bozza, Fabio in OpenAIREDe Bellis, Vincenzo;
Teodosio, Luigi;De Bellis, Vincenzo
De Bellis, Vincenzo in OpenAIRETufano, Daniela;
+1 AuthorsTufano, Daniela
Tufano, Daniela in OpenAIREBozza, Fabio;
Bozza, Fabio
Bozza, Fabio in OpenAIREDe Bellis, Vincenzo;
Teodosio, Luigi;De Bellis, Vincenzo
De Bellis, Vincenzo in OpenAIRETufano, Daniela;
Tufano, Daniela
Tufano, Daniela in OpenAIREMalfi, Enrica;
Malfi, Enrica
Malfi, Enrica in OpenAIREdoi: 10.4271/2018-37-0008
handle: 11588/727932
In this work, various techniques are numerically applied to a base engine - vehicle system to estimate their potential CO2 emission reduction. The reference thermal unit is a downsized turbocharged spark-ignition Variable Valve Actuation (VVA) engine, with a Compression Ratio (CR) of 10. In order to improve its fuel consumption, preserving the original full-load torque, various technologies are considered, including an increased CR, an external low-pressure cooled EGR, and a ported Water Injection (WI). The analyses are carried out by a 1D commercial software (GT-PowerTM), enhanced by refined user-models for the description of in-cylinder processes, namely turbulence, combustion, heat transfer and knock. The latter were validated with reference to the base engine architecture in previous activities. To minimize the Brake Specific Fuel Consumption (BSFC) all over the engine operating plane, the control parameters of the base and modified engines are calibrated based on PID controllers. The calibration procedure is also verified with a direct fuel consumption minimization carried out by an external optimizer. The calibration provides the optimal Spark Advance (SA), Air-to-Fuel (A/F) ratio, Waste-Gate (WG) opening, and VVA setting, complying with limitations on knock intensity, turbine inlet temperature, boost level, turbocharger speed and in-cylinder pressure peak. The performance and calibration maps are computed for various combinations of the above technologies, including a two-stage CR system, and are compared to the ones related to the base architecture. The results show that EGR offers some BSFC benefits at low load, mainly thanks to the pumping work reduction, while it is practically ineffective for knock mitigation at high load. On the contrary, WI has the potential to substantially increase the knock resistance, improving the fuel consumption at high load. No substantial advantages are, indeed, detected with WI under knock-free operation. Computed BSFC maps are then embedded in a vehicle model with the aim of estimating the CO2 emission of a segment A vehicle over a WLTC. The proposed results give a clear outlook of the above technique potentials and offer a guideline to assess the trade-off between engine complexity and improved CO2 emission.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2018-37-0008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2018-37-0008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 Italy, FrancePublisher:MDPI AG Funded by:EC | EAGLEEC| EAGLEAuthors:Vincenzo De Bellis;
Vincenzo De Bellis
Vincenzo De Bellis in OpenAIREEnrica Malfi;
Enrica Malfi
Enrica Malfi in OpenAIREJean-Marc Zaccardi;
Jean-Marc Zaccardi
Jean-Marc Zaccardi in OpenAIREdoi: 10.3390/en14040889
handle: 11588/875616
In recent years, the development of hybrid powertrain allowed to substantially reduce the CO2 and pollutant emissions of vehicles. The optimal management of such power units represents a challenging task since more degrees of freedom are available compared to a conventional pure-thermal engine powertrain. The a priori knowledge of the driving mission allows identifying the actual optimal control strategy at the expense of a quite relevant computational effort. This is realized by the off-line optimization strategies, such as Pontryagin minimum principle—PMP—or dynamic programming. On the other hand, for an on-vehicle application, the driving mission is unknown, and a certain performance degradation must be expected, depending on the degree of simplification and the computational burden of the adopted control strategy. This work is focused on the development of a simplified control strategy, labeled as efficient thermal electric skipping strategy—ETESS, which presents performance similar to off-line strategies, but with a much-reduced computational effort. This is based on the alternative vehicle driving by either thermal engine or electric unit (no power-split between the power units). The ETESS is tested in a “backward-facing” vehicle simulator referring to a segment C car, fitted with a hybrid series-parallel powertrain. The reliability of the method is verified along different driving cycles, sizing, and efficiency of the power unit components and assessed with conventional control strategies. The outcomes put into evidence that ETESS gives fuel consumption close to PMP strategy, with the advantage of a drastically reduced computational time. The ETESS is extended to an online implementation by introducing an adaptative factor, resulting in performance similar to the well-assessed equivalent consumption minimization strategy, preserving the computational effort.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/4/889/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14040889&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/4/889/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14040889&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2021 Italy, FrancePublisher:SAE International Funded by:EC | EAGLEEC| EAGLEAuthors:De Bellis V.;
De Bellis V.
De Bellis V. in OpenAIREMalfi E.;
Malfi E.
Malfi E. in OpenAIREBozza F.;
Kumar D.; +3 AuthorsBozza F.
Bozza F. in OpenAIREDe Bellis V.;
De Bellis V.
De Bellis V. in OpenAIREMalfi E.;
Malfi E.
Malfi E. in OpenAIREBozza F.;
Kumar D.; Serrano D.; Dulbecco A.; Zaccardi J. -M.;Bozza F.
Bozza F. in OpenAIREdoi: 10.4271/2021-01-0384
handle: 11588/875619
<div class="section abstract"><div class="htmlview paragraph">Recently, the car manufacturers are moving towards innovative Spark Ignition (SI) engine architectures with unconventional combustion concepts, aiming to comply with the stringent regulation imposed by EU and other legislators. The introduction of burdensome cycles for vehicle homologation, indeed, requires an engine characterized by a high efficiency in the most of its operating conditions, for which a conventional SI engine results to be ineffective. Combustion systems which work with very lean air/fuel mixture have demonstrated to be a promising solution to this concern. Higher specific heat ratio, minor heat losses and increased knock resistance indeed allow improving fuel consumption. Additionally, the lower combustion temperatures enable to reduce NO<sub>X</sub> production.</div><div class="htmlview paragraph">Since conventional SI engines can work with a limited amount of excess air, alternative solutions are being developed to overcome this constraint and reach the above benefit. Among all these solutions, replacing the spark-plug with a Pre-Chamber (PC) ignition system is gaining increasing interest. For this architecture, the combustion process starts in the PC and propagates in the main-chamber in the form of multiple turbulent jets of hot gas, with high-turbulence level. This ensures stable flame propagation even under extremely lean mixtures.</div><div class="htmlview paragraph">In this research activity, an ultra-lean PC SI engine is numerically and experimentally investigated to assess the potential improvement of the thermal efficiency for ultra-lean operations. To this aim, a research single cylinder engine, fuelled with gasoline, is tested at fixed load and speed, realizing an air / fuel ratio sweep. A 1D/0D model of the examined engine is implemented in a commercial modelling framework (GT-Power™), where “in-house developed” sub-models are embedded, simulating in-cylinder phenomena, such as combustion, turbulence, heat transfer and pollutant emissions.</div><div class="htmlview paragraph">The numerical approach, preliminarily tuned against 3D simulations and experimental outcomes, demonstrated to accurately reproduce the engine behaviour, without requiring any case-dependent tuning of the model constants. Both numerical and experimental results proved that working in ultra-lean condition allows to significantly improve the indicated thermal efficiency, abating the NOx emissions, while penalizing the HC production.</div></div>
Archivio della ricer... arrow_drop_down Archivio della ricerca - Università degli studi di Napoli Federico IIArticle . 2021License: CC BY NC NDMémoires en Sciences de l'Information et de la CommunicationConference object . 2021SAE International Journal of Advances and Current Practices in MobilityArticle . 2021 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2021-01-0384&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Archivio della ricer... arrow_drop_down Archivio della ricerca - Università degli studi di Napoli Federico IIArticle . 2021License: CC BY NC NDMémoires en Sciences de l'Information et de la CommunicationConference object . 2021SAE International Journal of Advances and Current Practices in MobilityArticle . 2021 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2021-01-0384&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 ItalyPublisher:Elsevier BV Authors:De Bellis V.;
De Bellis V.
De Bellis V. in OpenAIREMalfi E.;
Lanotte A.; Fasulo G.; +4 AuthorsMalfi E.
Malfi E. in OpenAIREDe Bellis V.;
De Bellis V.
De Bellis V. in OpenAIREMalfi E.;
Lanotte A.; Fasulo G.;Malfi E.
Malfi E. in OpenAIREBozza F.;
Cafari A.; Caputo G.; Hyvonen J.;Bozza F.
Bozza F. in OpenAIREhandle: 11588/895138
Increasingly stringent pollutant and CO2 emission standards require engine manufacturers to investigate innovative solutions. Among these techniques, low-temperature combustion (LTC) concepts have a large potential to simultaneously reduce NOx emissions and fuel consumption. A promising manner to realize LTC consists of adopting ultra-lean mixtures, where the combustion evolution is controlled by a proper spatial distribution of fuels with different chemical reactivities. In this context, depending on the proportion and stratification of the fuels, the heat release can primarily depend on chemistry progression, leading to a Reactivity Controlled Compression Ignition (RCCI) mode, or on flame propagation, locally initiated by a high reactivity fuel. In this work, the combustion characteristics of a large-bore research engine are experimentally investigated. Natural gas is supplied into the intake port, while light fuel oil (LFO) is directly injected in the cylinder. An experimental campaign is carried out including sweeps of engine load, air/fuel proportion, LFO amount, valve timing, and intake air temperature. Global engine operating parameters as well as cylinder pressure traces are recorded and analyzed. Based on the available experimental data, a phenomenological model handling both chemistries of fuels with different reactivities and flame propagation is developed and validated. The model is based on a multi-zone approach, where auto-ignition chemistry is solved by a tabulated method to preserve the computational effort. The proposed numerical approach shows the ability to simulate the experimental data with good accuracy, using a fixed tuning constant set. A dedicated correlation is built to reproduce the expected in-cylinder distribution of the directly injected liquid fuel. Global performance and combustion parameters are predicted with an average error below 5%. The model demonstrates to correctly describe the behavior of the tested engine under different operating conditions and to capture the physics behind such advanced combustion concepts.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.119919&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.119919&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 ItalyPublisher:MDPI AG Funded by:EC | EAGLEEC| EAGLEAuthors:Bozza F.;
Bozza F.
Bozza F. in OpenAIREDe Bellis V.;
De Bellis V.
De Bellis V. in OpenAIREMalfi E.;
Malfi E.
Malfi E. in OpenAIRETeodosio L.;
+1 AuthorsTeodosio L.
Teodosio L. in OpenAIREBozza F.;
Bozza F.
Bozza F. in OpenAIREDe Bellis V.;
De Bellis V.
De Bellis V. in OpenAIREMalfi E.;
Malfi E.
Malfi E. in OpenAIRETeodosio L.;
Tufano D.;Teodosio L.
Teodosio L. in OpenAIREdoi: 10.3390/en13154008
handle: 11588/819370
The complexity of modern hybrid powertrains poses new challenges for the optimal control concerning, on one hand, the thermal engine to maximize its efficiency, and, on the other hand, the vehicle to minimize the noxious emissions and CO2. In this context, the engine calibration has to be conducted by considering simultaneously the powertrain management, the vehicle characteristics, and the driving mission. In this work, a calibration methodology for a two-stage boosted ultra-lean pre-chamber spark ignition (SI) engine is proposed, aiming at minimizing its CO2 and pollutant emissions. The engine features a flexible variable valve timing (VVT) control of the valves and an E-compressor, coupled in series to a turbocharger, to guarantee an adequate boost level needed for ultra-lean operation. The engine is simulated in a refined 1D model. A simplified methodology, based on a network of proportional integral derivative (PID) controllers, is presented for the calibration over the whole operating domain. Two calibration variants are proposed and compared, characterized by different fuel and electric consumptions: the first one aims to exclusively maximize the brake thermal efficiency, and the second one additionally considers the electric energy absorbed by the E-compressor and drained from the battery. After a verification against the outcomes of an automatic optimizer, the calibration strategies are assessed based on pollutant and CO2 emissions along representative driving cycles by vehicle simulations. The results highlight slightly lower CO2 emissions with the calibration approach that minimizes the E-compressor consumption, thus revealing the importance of considering the engine calibration phase, the powertrain management, the vehicle characteristics, and its mission.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/15/4008/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13154008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/15/4008/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13154008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 Italy, Spain, ItalyPublisher:Elsevier BV Authors:V. De Bellis;
V. De Bellis
V. De Bellis in OpenAIREM. Piras;
M. Piras
M. Piras in OpenAIREF. Bozza;
F. Bozza
F. Bozza in OpenAIREE. Malfi;
+3 AuthorsE. Malfi
E. Malfi in OpenAIREV. De Bellis;
V. De Bellis
V. De Bellis in OpenAIREM. Piras;
M. Piras
M. Piras in OpenAIREF. Bozza;
F. Bozza
F. Bozza in OpenAIREE. Malfi;
E. Malfi
E. Malfi in OpenAIRER. Novella;
R. Novella
R. Novella in OpenAIREJ. Gomez-Soriano;
J. Gomez-Soriano
J. Gomez-Soriano in OpenAIREM. Olcina-Girona;
M. Olcina-Girona
M. Olcina-Girona in OpenAIREhandle: 10251/206695 , 11588/959420 , 20.500.14243/535787
[EN] This paper proposes a 1D numerical/experimental study on a single -cylinder research ICE equipped with a hydrogen Port Fuel Injection (PFI) system. The experimental campaign covered tests at the fixed speed of 1500 rpm and different levels of load, from 5 bar to 11 bar IMEP, and of air excess, with a relative air -to -fuel ratio ranging from 1.4 to 4.0. A 0D/1D model of the investigated ICE is developed, including detailed combustion, turbulence, and NOx emission sub -models. In particular, combustion model is based on the fractal approach, k -K -T model is adopted for describing turbulent phenomena and NOx emissions are predicted by the Zeldovich mechanism. A sub -model was developed to assess the influence of Thermo -Diffusive (TD) instabilities on the freely propagating flame speed accounting for equivalence ratio, variable transport coefficients and reaction orders. This evaluation considered the impact of TD instabilities commonly observed in lean premixed hydrogen combustion on the flame front. The engine model calibration process enabled the comparison between numerical predictions and experimental observations, encompassing pressure cycles, burn rate traces, and main engine performance (air flow rate, IMEP, indicated efficiency, and timing of main combustion events). The model replicated the IMEP with an average error of 2.5%, gross indicated efficiency with an average error of 1.6%, main combustion angles with an average error of 3.8 CAD on CA(50), and NOx emissions satisfactorily, showing high sensitivity to operational parameters. Nonetheless, less accurate predictions occur in cases with significantly elevated lambda values (lambda > 3.6), which were attributed to the presence of thickened flames, where some assumptions inherent to the adopted combustion model may fail. Finally, a comparison between the proposed approach and the one proposed in Ballerini et al. (2022) is presented, and readers are provided with recommendations for further development of future models that account for Thermo -Diffusive instabilities in lean hydrogen combustion.
IRIS Cnr arrow_drop_down Archivio della ricerca - Università degli studi di Napoli Federico IIArticle . 2024License: CC BY NC NDEnergy Conversion and ManagementArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2024.118395&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 9 citations 9 popularity Average influence Average impulse Top 10% Powered by BIP!
visibility 17visibility views 17 Powered bymore_vert IRIS Cnr arrow_drop_down Archivio della ricerca - Università degli studi di Napoli Federico IIArticle . 2024License: CC BY NC NDEnergy Conversion and ManagementArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2024.118395&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 ItalyPublisher:MDPI AG Authors:Landolfi, Enrico;
Minervini, Francesco Junior; Minervini, Nicola;Landolfi, Enrico
Landolfi, Enrico in OpenAIREDe Bellis, Vincenzo;
+2 AuthorsDe Bellis, Vincenzo
De Bellis, Vincenzo in OpenAIRELandolfi, Enrico;
Minervini, Francesco Junior; Minervini, Nicola;Landolfi, Enrico
Landolfi, Enrico in OpenAIREDe Bellis, Vincenzo;
De Bellis, Vincenzo
De Bellis, Vincenzo in OpenAIREMalfi, Enrica;
Malfi, Enrica
Malfi, Enrica in OpenAIRENatale, Ciro;
Natale, Ciro
Natale, Ciro in OpenAIREdoi: 10.3390/wevj12030159
handle: 11588/875622 , 11591/472831
In the years to come, Connected and Automated Vehicles (CAVs) are expected to substantially improve the road safety and environmental impact of the road transport sector. The information from the sensors installed on the vehicle has to be properly integrated with data shared by the road infrastructure (smart road) to realize vehicle control, which preserves traffic safety and fuel/energy efficiency. In this context, the present work proposes a real-time implementation of a control strategy able to handle simultaneously motion and hybrid powertrain controls. This strategy features a cascade of two modules, which were implemented through the model-based design approach in MATLAB/Simulink. The first module is a Model Predictive Control (MPC) suitable for any Hybrid Electric Vehicle (HEV) architecture, acting as a high-level controller featuring an intermediate layer between the vehicle powertrain and the smart road. The MPC handles both the lateral and longitudinal vehicle dynamics, acting on the wheel torque and steering angle at the wheels. It is based on a simplified, but complete ego-vehicle model, embedding multiple functionalities such as an adaptive cruise control, lane keeping system, and emergency electronic brake. The second module is a low-level Energy Management Strategy (EMS) of the powertrain realized by a novel and computationally light approach, which is based on the alternative vehicle driving by either a thermal engine or electric unit, named the Efficient Thermal Electric Skipping Strategy (ETESS). The MPC provides the ETESS with a torque request handled by the EMS module, aiming at minimizing the fuel consumption. The MPC and ETESS ran on the same Microcontroller Unit (MCU), and the methodology was verified and validated by processor-in-the-loop tests on the ST Microelectronics board NUCLEO-H743ZI2, simulating on a PC-host the smart road environment and a car-following scenario. From these tests, the ETESS resulted in being 15-times faster than than the well-assessed Equivalent Consumption Minimization Strategy (ECMS). Furthermore, the execution time of both the ETESS and MPC was lower than the typical CAN cycle time for the torque request and steering angle (10 ms). Thus, the obtained result can pave the way to the implementation of additional real-time control strategies, including decision-making and motion-planning modules (such as path-planning algorithms and eco-driving strategies).
World Electric Vehic... arrow_drop_down World Electric Vehicle JournalOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2032-6653/12/3/159/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/wevj12030159&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert World Electric Vehic... arrow_drop_down World Electric Vehicle JournalOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2032-6653/12/3/159/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/wevj12030159&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Spain, Italy, ItalyPublisher:Elsevier BV Authors:M. Piras;
M. Piras
M. Piras in OpenAIREV. De Bellis;
V. De Bellis
V. De Bellis in OpenAIREE. Malfi;
E. Malfi
E. Malfi in OpenAIRER. Novella;
+1 AuthorsR. Novella
R. Novella in OpenAIREM. Piras;
M. Piras
M. Piras in OpenAIREV. De Bellis;
V. De Bellis
V. De Bellis in OpenAIREE. Malfi;
E. Malfi
E. Malfi in OpenAIRER. Novella;
R. Novella
R. Novella in OpenAIREM. Lopez-Juarez;
M. Lopez-Juarez
M. Lopez-Juarez in OpenAIREhandle: 11588/940603 , 20.500.14243/535805 , 10251/204960
[EN] Aiming at reducing pollutant emissions, hydrogen and fuel cell hybrid electric vehicles (FCVs) represent a promising technological solution. In this scenario, this paper proposes an adaptive energy management strategy (A-EMS) based on speed forecasting for a heavy-duty FCV, in order to achieve stable battery charge sustenance in realistic driving conditions. A validated and optimized fuel cell system model has been integrated into a complete vehicle model developed in the GT-Suite environment. A short-term velocity prediction layer based on a long short term memory (LSTM) neural network has been built in the A-EMS framework. The network has been trained and tested with realistic driving data simulated by GT-Real Drive for routes of the Trans-European Transport Network. The vehicle speed prevision has been realized over different forecasting horizons (5, 10, and 20 s). The adaptive equivalent consumption minimization strategy (A-ECMS) combined with short-term vehicle speed prediction is the A-EMS core algorithm of the presented work. Its results are here compared with the standard ECMS (S-ECMS) for four different driving cycles, including both standardized (HDDT) and realistic driving profiles. Three different European routes, with varying characteristics and from different countries, have been selected to test the proposed strategy in various conditions. The short-term prediction layer achieves satisfactory forecasting accuracy, with a RMSE ranging from 1.76 km/h to 13.37 km/h. The A-ECMS provides an improved by an order of magnitude battery charge sustenance, evaluated in terms of maximum battery state of charge (SoC) variation and fluctuation degree, with a hydrogen consumption increase ranging from 3.76% to 11.40% compared to the S-ECMS, for which the driving cycle is supposed to be known beforehand. As an example, in the HDDT cycle, the absolute maximum SoC variation and its fluctuation degree are lowered by about 76% and 79%, respectively. In conclusion, the proposed A-ECMS demonstrated that it is applicable for real driving conditions without prior knowledge of the driving cycle while improving battery charge sustaining for a FCV. This study was funded by the Generalitat Valenciana (Conselleria d'Innovacio, Universitats, Ciencia i Societat Digital) as a part of the DE-FIANCE research project (CIPROM/2021/039) through the PROMETEO funding program. Funding for open access charge: CRUE-Universitat Politecnica de Valencia.
IRIS Cnr arrow_drop_down Energy Conversion and ManagementArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2023.117178&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 24visibility views 24 download downloads 39 Powered bymore_vert IRIS Cnr arrow_drop_down Energy Conversion and ManagementArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2023.117178&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 ItalyPublisher:SAE International Funded by:EC | EAGLEEC| EAGLEAuthors:Bozza F.;
Bozza F.
Bozza F. in OpenAIREde Bellis V.;
Tufano D.;de Bellis V.
de Bellis V. in OpenAIREMalfi E.;
+2 AuthorsMalfi E.
Malfi E. in OpenAIREBozza F.;
Bozza F.
Bozza F. in OpenAIREde Bellis V.;
Tufano D.;de Bellis V.
de Bellis V. in OpenAIREMalfi E.;
Muller C.; Habermann K.;Malfi E.
Malfi E. in OpenAIREhandle: 11588/823717
In recent years, lean-burn gasoline Spark-Ignition (SI) engines have been a major subject of investigations. With this solution, in fact, it is possible to simultaneously reduce NOx raw emissions and fuel consumption due to decreased heat losses, higher thermodynamic efficiency, and enhanced knock resistance. However, the real applicability of this technique is strongly limited by the increase in cyclic variation and the occurrence of misfire, which are typical for the combustion of homogeneous lean air/fuel mixtures. The employment of a Pre-Chamber (PC), in which the combustion begins before proceeding in the main combustion chamber, has already shown the capability of significantly extending the lean-burn limit. In this work, the potential of an ultralean PC SI engine for a decisive improvement of the thermal efficiency is presented by means of numerical and experimental analyses. The SI engine is experimentally investigated with and without the employment of the PC with the aim to analyze the real gain of this innovative combustion system. For both configurations, the engine is tested at various speeds, loads, and air-fuel ratios. A commercial gasoline fuel is directly injected into the Main Chamber (MC), while the PC is fed in a passive or active mode. Compressed Natural Gas (CNG) or Hydrogen (H2) is used in the actual case. A 1D model of the engine under study is implemented in a commercial modeling framework and is integrated with “in-house developed” sub-models for the simulation of the combustion and turbulence phenomena occurring in this unconventional engine. The numerical approach proves to reproduce the experimental data with good accuracy, without requiring any case-dependent tuning of the model constants. Both the numerical and experimental results show an improvement of the indicated thermal efficiency of the active PC, compared to the conventional ignition device, especially at high loads and low speeds. The injection of H2 into the PC leads to a significant benefit only with very lean mixtures. With the passive fueling of the PC, the lean-burn limit is less extended, with the consequent lower improvement potential for thermal efficiency.
Archivio della ricer... arrow_drop_down SAE International Journal of EnginesArticle . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/03-13-02-0012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Archivio della ricer... arrow_drop_down SAE International Journal of EnginesArticle . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/03-13-02-0012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu