- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Embargo end date: 31 Mar 2022 GermanyPublisher:Wiley Funded by:EC | eLTER PLUS, DFGEC| eLTER PLUS ,DFGStefan Stoll; Ronny Richter; Tobias Scharnweber; Johannes Uhler; Jörg Müller; Jörn Buse; Günter Hoenselaar; Stephanie Puffpaff; Tim Bornholdt; Martin Fellendorf; Petr Zajicek; Klaus Mandery; Cristina Ganuza; Mark Frenzel; Sandra Rojas-Botero; Sönke Twietmeyer; Andreas Marten; Sarah Redlich; Cynthia Tobisch; Andrea Kaus-Thiel; Manfred Ayasse; Peter Haase; Peter Haase; Ute Fricke; Ellen A. R. Welti; Alice Classen; Mathias Hippke; Dirk Weis; Wolfgang W. Weisser; Jana Englmeier; Frank Dziock; Rolf A. Engelmann; Carsten Morkel; Daniela Kilian; Sebastian Seibold; Marc I. Förschler; Janika Kerner; Gregor Scheiffarth; Martin Wilmking; Ingolf Steffan-Dewenter; Paul Schmidt Yáñez; Rhena Schumann; Juliane Vogt; Michael T. Monaghan; Michael T. Monaghan;ABSTRACT Among the many concerns for biodiversity in the Anthropocene, recent reports of flying insect loss are particularly alarming, given their importance as pollinators, pest control agents, and as a food source. Few insect monitoring programmes cover the large spatial scales required to provide more generalizable estimates of insect responses to global change drivers. We ask how climate and surrounding habitat affect flying insect biomass using data from the first year of a new monitoring network at 84 locations across Germany comprising a spatial gradient of land cover types from protected to urban and crop areas. Flying insect biomass increased linearly with temperature across Germany. However, the effect of temperature on flying insect biomass flipped to negative in the hot months of June and July when local temperatures most exceeded long‐term averages. Land cover explained little variation in insect biomass, but biomass was lowest in forests. Grasslands, pastures, and orchards harboured the highest insect biomass. The date of peak biomass was primarily driven by surrounding land cover, with grasslands especially having earlier insect biomass phenologies. Standardised, large‐scale monitoring provides key insights into the underlying processes of insect decline and is pivotal for the development of climate‐adapted strategies to promote insect diversity. In a temperate climate region, we find that the positive effects of temperature on flying insect biomass diminish in a German summer at locations where temperatures most exceeded long‐term averages. Our results highlight the importance of local adaptation in climate change‐driven impacts on insect communities.
Insect Conservation ... arrow_drop_down Insect Conservation and DiversityArticle . 2021 . Peer-reviewedLicense: CC BY NCData sources: Crossrefhttps://dx.doi.org/10.17169/re...Other literature type . 2022License: CC BY NCData sources: DataciteRefubium - Repositorium der Freien Universität BerlinArticle . 2022License: CC BY NCData sources: Refubium - Repositorium der Freien Universität BerlinInsect Conservation and DiversityArticle . 2021 . Peer-reviewedData sources: European Union Open Data PortalUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2022Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/icad.12555&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 45 citations 45 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Insect Conservation ... arrow_drop_down Insect Conservation and DiversityArticle . 2021 . Peer-reviewedLicense: CC BY NCData sources: Crossrefhttps://dx.doi.org/10.17169/re...Other literature type . 2022License: CC BY NCData sources: DataciteRefubium - Repositorium der Freien Universität BerlinArticle . 2022License: CC BY NCData sources: Refubium - Repositorium der Freien Universität BerlinInsect Conservation and DiversityArticle . 2021 . Peer-reviewedData sources: European Union Open Data PortalUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2022Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/icad.12555&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Spain, France, Spain, Netherlands, Netherlands, Netherlands, Brazil, Australia, Netherlands, Netherlands, Spain, United States, Netherlands, New Zealand, United StatesPublisher:American Association for the Advancement of Science (AAAS) Funded by:NSF | Collaborative Research: N..., EC | ECOWORM, ARC | Discovery Projects - Gran... +5 projectsNSF| Collaborative Research: NSFDEB-NERC: Tropical deadwood carbon fluxes: Improving carbon models by incorporating termites and microbes ,EC| ECOWORM ,ARC| Discovery Projects - Grant ID: DP160103765 ,NSF| Coastal SEES Collaborative Research: Salinization of the Coastal Plain through Saltwater Intrusion - Landscapes in Transition along the Leading Edge of Climate Change ,DFG| German Centre for Integrative Biodiversity Research - iDiv ,UKRI| BIODIVERSITY AND LAND-USE IMPACTS ON TROPICAL ECOSYSTEM FUNCTION (BALI) ,NSF| CAREER: Trajectories of ecosystem recovery in coastal wetlands under a changing climate: connecting the dots with student research, citizen science, and classroom data analyses ,NSF| LTER: Luquillo LTER VI: Understanding Ecosystem Change in Northeastern Puerto RicoAmy E. Zanne; Habacuc Flores-Moreno; Jeff R. Powell; William K. Cornwell; James W. Dalling; Amy T. Austin; Aimée T. Classen; Paul Eggleton; Kei-ichi Okada; Catherine L. Parr; E. Carol Adair; Stephen Adu-Bredu; Md Azharul Alam; Carolina Alvarez-Garzón; Deborah Apgaua; Roxana Aragón; Marcelo Ardon; Stefan K. Arndt; Louise A. Ashton; Nicholas A. Barber; Jacques Beauchêne; Matty P. Berg; Jason Beringer; Matthias M. Boer; José Antonio Bonet; Katherine Bunney; Tynan J. Burkhardt; Dulcinéia Carvalho; Dennis Castillo-Figueroa; Lucas A. Cernusak; Alexander W. Cheesman; Tainá M. Cirne-Silva; Jamie R. Cleverly; Johannes H. C. Cornelissen; Timothy J. Curran; André M. D’Angioli; Caroline Dallstream; Nico Eisenhauer; Fidele Evouna Ondo; Alex Fajardo; Romina D. Fernandez; Astrid Ferrer; Marco A. L. Fontes; Mark L. Galatowitsch; Grizelle González; Felix Gottschall; Peter R. Grace; Elena Granda; Hannah M. Griffiths; Mariana Guerra Lara; Motohiro Hasegawa; Mariet M. Hefting; Nina Hinko-Najera; Lindsay B. Hutley; Jennifer Jones; Anja Kahl; Mirko Karan; Joost A. Keuskamp; Tim Lardner; Michael Liddell; Craig Macfarlane; Cate Macinnis-Ng; Ravi F. Mariano; M. Soledad Méndez; Wayne S. Meyer; Akira S. Mori; Aloysio S. Moura; Matthew Northwood; Romà Ogaya; Rafael S. Oliveira; Alberto Orgiazzi; Juliana Pardo; Guille Peguero; Josep Penuelas; Luis I. Perez; Juan M. Posada; Cecilia M. Prada; Tomáš Přívětivý; Suzanne M. Prober; Jonathan Prunier; Gabriel W. Quansah; Víctor Resco de Dios; Ronny Richter; Mark P. Robertson; Lucas F. Rocha; Megan A. Rúa; Carolina Sarmiento; Richard P. Silberstein; Mateus C. Silva; Flávia Freire Siqueira; Matthew Glenn Stillwagon; Jacqui Stol; Melanie K. Taylor; François P. Teste; David Y. P. Tng; David Tucker; Manfred Türke; Michael D. Ulyshen; Oscar J. Valverde-Barrantes; Eduardo van den Berg; Richard S. P. van Logtestijn; G. F. (Ciska) Veen; Jason G. Vogel; Timothy J. Wardlaw; Georg Wiehl; Christian Wirth; Michaela J. Woods; Paul-Camilo Zalamea;pmid: 36137034
Deadwood is a large global carbon store with its store size partially determined by biotic decay. Microbial wood decay rates are known to respond to changing temperature and precipitation. Termites are also important decomposers in the tropics but are less well studied. An understanding of their climate sensitivities is needed to estimate climate change effects on wood carbon pools. Using data from 133 sites spanning six continents, we found that termite wood discovery and consumption were highly sensitive to temperature (with decay increasing >6.8 times per 10°C increase in temperature)—even more so than microbes. Termite decay effects were greatest in tropical seasonal forests, tropical savannas, and subtropical deserts. With tropicalization (i.e., warming shifts to tropical climates), termite wood decay will likely increase as termites access more of Earth’s surface.
Queensland Universit... arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2022Full-Text: http://hdl.handle.net/10072/421793Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2022Data sources: Diposit Digital de Documents de la UABJames Cook University, Australia: ResearchOnline@JCUArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Lincoln University (New Zealand): Lincoln U Research ArchiveArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Repositório Institucional da UFLAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Wright State University: CORE Scholar (Campus Online Repository)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.abo3856&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 77 citations 77 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Queensland Universit... arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2022Full-Text: http://hdl.handle.net/10072/421793Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2022Data sources: Diposit Digital de Documents de la UABJames Cook University, Australia: ResearchOnline@JCUArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Lincoln University (New Zealand): Lincoln U Research ArchiveArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Repositório Institucional da UFLAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Wright State University: CORE Scholar (Campus Online Repository)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.abo3856&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type 2022Publisher:OpenAlex Amy E. Zanne; Habacuc Flores‐Moreno; Jeff R. Powell; William K. Cornwell; James W. Dalling; Amy T. Austin; Aimée T. Classen; Paul Eggleton; Kunihiko Okada; Catherine Parr; Elizabeth C. Adair; Stephen Adu‐Bredu; Md Azharul Alam; Carolina Alvarez-Garzón; Deborah M. G. Apgaua; Roxana Aragón; Marcelo Ardón; Stefan K. Arndt; Louise A. Ashton; Nicholas A. Barber; Jacques Beauchêne; Matty P. Berg; Jason Beringer; Matthias M. Boer; J. A. Bonet; Katherine Bunney; Tynan Burkhardt; Dulcinéia de Carvalho; Dennis Castillo-Figueroa; Lucas A. Cernusak; Alexander W. Cheesman; Taina Cirne-Silva; Jamie Cleverly; Johannes H. C. Cornelissen; Timothy J. Curran; André D'Angioli; Caroline Dallstream; Nico Eisenhauer; Fidèle Evouna Ondo; Alex Fajardo; Romina Fernández; Astrid Ferrer; Marco Aurélio Leite Fontes; Mark L. Galatowitsch; Grizelle González; Felix Gottschall; Peter Grace; Elena Granda; Hannah Griffiths; Mariana Guerra Lara; Motohiro Hasegawa; Mariet M. Hefting; Nina Hinko‐Najera; Lindsay B. Hutley; Jennifer Jones; Anja Kahl; Mirko Karan; Joost A. Keuskamp; Tim Lardner; Michael J. Liddell; Craig Macfarlane; Cate Macinnis‐Ng; Ravi Fernandes Mariano; Wayne S. Meyer; Akira Mori; Aloysio Souza de Moura; Matthew Northwood; Romà Ogaya; Rafael S. Oliveira; Alberto Orgiazzi; Juliana Pardo; Guille Peguero; Josep Peñuelas; Luis I. Pérez; Juan M. Posada; Cecilia Prada; Tomáš Přívětivý; Suzanne M. Prober; Jonathan Prunier; Gabriel W. Quansah; Víctor Resco de Dios; Ronny Richter; Mark P. Robertson; Lucas Fernandes Rocha; Megan A. Rúa; Carolina Sarmiento; Richard Silberstein; Mateus Silva; Flávia Freire de Siqueira; Matthew Glenn Stillwagon; Jacqui Stol; Melanie K. Taylor; François P. Teste; David Y. P. Tng; David Tucker; Manfred Türke; Michael D. Ulyshen; Oscar J. Valverde‐Barrantes; Eduardo van den Berg; Richard S. P. van Logtestijn;Résumé Les animaux, tels que les termites, ont été largement négligés en tant que moteurs à l'échelle mondiale des cycles biogéochimiques 1,2 , malgré les résultats spécifiques au site 3,4 . Le renouvellement du bois mort, une composante importante du cycle du carbone, est entraîné par de multiples agents de désintégration. Des études se sont concentrées sur les systèmes tempérés 5,6 , où les microbes dominent la désintégration 7 . La désintégration microbienne est sensible à la température, doublant généralement pour une augmentation de 10 °C (désintégration efficace Q 10 = ~2) 8–10 . Les termites sont des désintégrateurs importants dans les systèmes tropicaux 3,11–13 et diffèrent des microbes par leur dynamique de population, leur dispersion et leur découverte de substrat 14–16 , ce qui signifie que leurs sensibilités climatiques diffèrent également. En utilisant un réseau de 133 sites couvrant 6 continents, nous rapportons la première quantification mondiale sur le terrain des sensibilités à la température et aux précipitations pour les termites et les microbes, fournissant de nouvelles compréhensions de leur réponse aux changements climatiques. La sensibilité à la température de la désintégration microbienne se situait dans les estimations précédentes. La découverte et la consommation de termites étaient toutes deux beaucoup plus sensibles à la température (désintégration effective Q 10 = 6,53), ce qui entraînait des différences frappantes dans le taux de renouvellement du bois mort dans les zones avec et sans termites. Les impacts de termites ont été les plus importants dans les forêts tropicales saisonnières, les savanes et les déserts subtropicaux. Avec la tropicalisation 17 (c.-à-d., le réchauffement se déplace vers un climat tropical), la contribution des termites à la décomposition mondiale du bois augmentera à mesure qu'une plus grande partie de la surface de la terre deviendra accessible aux termites. Resumen Los animales, como las termitas, se han pasado por alto en gran medida como impulsores a escala mundial de los ciclos biogeoquímicos 1,2 , a pesar de los hallazgos específicos del sitio 3,4 . La rotación de la madera muerta, un componente importante del ciclo del carbono, es impulsada por múltiples agentes de descomposición. Los estudios se han centrado en los sistemas templados 5,6 , donde los microbios dominan la descomposición 7 . La descomposición microbiana es sensible a la temperatura, por lo general se duplica por cada aumento de 10 ° C (Q efectiva de descomposición 10 = ~2) 8–10 . Las termitas son desintegradores importantes en los sistemas tropicales 3,11–13 y difieren de los microbios en su dinámica de población, dispersión y descubrimiento de sustratos 14–16 , lo que significa que sus sensibilidades climáticas también difieren. Utilizando una red de 133 sitios que abarcan 6 continentes, informamos la primera cuantificación global basada en el campo de las sensibilidades a la temperatura y la precipitación para termitas y microbios, proporcionando una comprensión novedosa de su respuesta a los climas cambiantes. La sensibilidad a la temperatura de la descomposición microbiana estaba dentro de las estimaciones anteriores. El descubrimiento y el consumo de termitas fueron mucho más sensibles a la temperatura (descomposición efectiva Q 10 = 6.53), lo que llevó a diferencias sorprendentes en la rotación de madera muerta en áreas con y sin termitas. Los impactos de termitas fueron mayores en los bosques tropicales estacionales, las sabanas y los desiertos subtropicales. Con la tropicalización 17 (es decir, el calentamiento cambia a un clima tropical), la contribución de las termitas a la descomposición global de la madera aumentará a medida que más de la superficie de la tierra se vuelva accesible para las termitas. Abstract Animals, such as termites, have largely been overlooked as global-scale drivers of biogeochemical cycles 1,2 , despite site-specific findings 3,4 . Deadwood turnover, an important component of the carbon cycle, is driven by multiple decay agents. Studies have focused on temperate systems 5,6 , where microbes dominate decay 7 . Microbial decay is sensitive to temperature, typically doubling per 10°C increase (decay effective Q 10 = ~2) 8–10 . Termites are important decayers in tropical systems 3,11–13 and differ from microbes in their population dynamics, dispersal, and substrate discovery 14–16 , meaning their climate sensitivities also differ. Using a network of 133 sites spanning 6 continents, we report the first global field-based quantification of temperature and precipitation sensitivities for termites and microbes, providing novel understandings of their response to changing climates. Temperature sensitivity of microbial decay was within previous estimates. Termite discovery and consumption were both much more sensitive to temperature (decay effective Q 10 = 6.53), leading to striking differences in deadwood turnover in areas with and without termites. Termite impacts were greatest in tropical seasonal forests and savannas and subtropical deserts. With tropicalization 17 (i.e., warming shifts to a tropical climate), the termite contribution to global wood decay will increase as more of the earth's surface becomes accessible to termites. تم التغاضي إلى حد كبير عن الحيوانات، مثل النمل الأبيض، كمحركات عالمية النطاق للدورات الكيميائية الجيولوجية الحيوية 1،2 ، على الرغم من النتائج الخاصة بالموقع 3،4 . دوران الخشب الميت، وهو عنصر مهم في دورة الكربون، مدفوع بعوامل اضمحلال متعددة. وقد ركزت الدراسات على النظم المعتدلة 5،6 ، حيث تهيمن الميكروبات على الاضمحلال 7 . يكون الاضمحلال الميكروبي حساسًا لدرجة الحرارة، وعادة ما يتضاعف لكل زيادة 10 درجات مئوية (الاضمحلال الفعال Q 10 =~2) 8–10 . النمل الأبيض من المتحللين المهمين في الأنظمة الاستوائية 3،11-13 ويختلف عن الميكروبات في ديناميكياتها السكانية وانتشارها واكتشاف الركائز 14–16 ، مما يعني أن حساسياتها المناخية تختلف أيضًا. باستخدام شبكة من 133 موقعًا تمتد عبر 6 قارات، نبلغ عن أول قياس كمي ميداني عالمي لدرجات الحرارة وحساسيات هطول الأمطار للنمل الأبيض والميكروبات، مما يوفر فهمًا جديدًا لاستجابتها للمناخ المتغير. كانت حساسية درجة حرارة الاضمحلال الميكروبي ضمن التقديرات السابقة. كان اكتشاف النمل الأبيض واستهلاكه أكثر حساسية لدرجة الحرارة (التحلل الفعال Q 10 = 6.53)، مما أدى إلى اختلافات صارخة في دوران الأخشاب الميتة في المناطق التي تحتوي على النمل الأبيض أو لا تحتوي عليه. كانت آثار النمل الأبيض أكبر في الغابات الموسمية الاستوائية والسافانا والصحاري شبه الاستوائية. مع الاستوائية 17 (أي، يتحول الاحترار إلى مناخ استوائي)، ستزداد مساهمة النمل الأبيض في تحلل الخشب العالمي مع وصول المزيد من سطح الأرض إلى النمل الأبيض.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60692/pxvgc-cd909&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60692/pxvgc-cd909&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 GermanyPublisher:Wiley Funded by:DFGDFGFlorian Schnabel; Sarah Purrucker; Lara Schmitt; Rolf A. Engelmann; Anja Kahl; Ronny Richter; Carolin Seele‐Dilbat; Georgios Skiadaresis; Christian Wirth;pmid: 34927360
AbstractDroughts increasingly threaten the world's forests and their potential to mitigate climate change. In 2018–2019, Central European forests were hit by two consecutive hotter drought years, an unprecedented phenomenon that is likely to occur more frequently with climate change. Here, we examine tree growth and physiological stress responses (increase in carbon isotope composition; Δδ13C) to this consecutive drought based on tree rings of dominant tree species in a Central European floodplain forest. Tree growth was not reduced for most species in 2018, indicating that water supply in floodplain forests can partly buffer meteorological water deficits. Drought stress responses in 2018 were comparable to former single drought years but the hotter drought in 2018 induced drought legacies in tree growth while former droughts did not. We observed strong decreases in tree growth and increases in Δδ13C across all tree species in 2019, which are likely driven by the cumulative stress both consecutive hotter droughts exerted. Our results show that consecutive hotter droughts pose a novel threat to forests under climate change, even in forest ecosystems with comparably high levels of water supply.
University of Freibu... arrow_drop_down University of Freiburg: FreiDokArticle . 2022Full-Text: https://freidok.uni-freiburg.de/data/224458Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1101/2021.0...Article . 2021 . Peer-reviewedLicense: CC BY NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 55 citations 55 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Freibu... arrow_drop_down University of Freiburg: FreiDokArticle . 2022Full-Text: https://freidok.uni-freiburg.de/data/224458Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1101/2021.0...Article . 2021 . Peer-reviewedLicense: CC BY NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Embargo end date: 31 Mar 2022 GermanyPublisher:Wiley Funded by:EC | eLTER PLUS, DFGEC| eLTER PLUS ,DFGStefan Stoll; Ronny Richter; Tobias Scharnweber; Johannes Uhler; Jörg Müller; Jörn Buse; Günter Hoenselaar; Stephanie Puffpaff; Tim Bornholdt; Martin Fellendorf; Petr Zajicek; Klaus Mandery; Cristina Ganuza; Mark Frenzel; Sandra Rojas-Botero; Sönke Twietmeyer; Andreas Marten; Sarah Redlich; Cynthia Tobisch; Andrea Kaus-Thiel; Manfred Ayasse; Peter Haase; Peter Haase; Ute Fricke; Ellen A. R. Welti; Alice Classen; Mathias Hippke; Dirk Weis; Wolfgang W. Weisser; Jana Englmeier; Frank Dziock; Rolf A. Engelmann; Carsten Morkel; Daniela Kilian; Sebastian Seibold; Marc I. Förschler; Janika Kerner; Gregor Scheiffarth; Martin Wilmking; Ingolf Steffan-Dewenter; Paul Schmidt Yáñez; Rhena Schumann; Juliane Vogt; Michael T. Monaghan; Michael T. Monaghan;ABSTRACT Among the many concerns for biodiversity in the Anthropocene, recent reports of flying insect loss are particularly alarming, given their importance as pollinators, pest control agents, and as a food source. Few insect monitoring programmes cover the large spatial scales required to provide more generalizable estimates of insect responses to global change drivers. We ask how climate and surrounding habitat affect flying insect biomass using data from the first year of a new monitoring network at 84 locations across Germany comprising a spatial gradient of land cover types from protected to urban and crop areas. Flying insect biomass increased linearly with temperature across Germany. However, the effect of temperature on flying insect biomass flipped to negative in the hot months of June and July when local temperatures most exceeded long‐term averages. Land cover explained little variation in insect biomass, but biomass was lowest in forests. Grasslands, pastures, and orchards harboured the highest insect biomass. The date of peak biomass was primarily driven by surrounding land cover, with grasslands especially having earlier insect biomass phenologies. Standardised, large‐scale monitoring provides key insights into the underlying processes of insect decline and is pivotal for the development of climate‐adapted strategies to promote insect diversity. In a temperate climate region, we find that the positive effects of temperature on flying insect biomass diminish in a German summer at locations where temperatures most exceeded long‐term averages. Our results highlight the importance of local adaptation in climate change‐driven impacts on insect communities.
Insect Conservation ... arrow_drop_down Insect Conservation and DiversityArticle . 2021 . Peer-reviewedLicense: CC BY NCData sources: Crossrefhttps://dx.doi.org/10.17169/re...Other literature type . 2022License: CC BY NCData sources: DataciteRefubium - Repositorium der Freien Universität BerlinArticle . 2022License: CC BY NCData sources: Refubium - Repositorium der Freien Universität BerlinInsect Conservation and DiversityArticle . 2021 . Peer-reviewedData sources: European Union Open Data PortalUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2022Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/icad.12555&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 45 citations 45 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Insect Conservation ... arrow_drop_down Insect Conservation and DiversityArticle . 2021 . Peer-reviewedLicense: CC BY NCData sources: Crossrefhttps://dx.doi.org/10.17169/re...Other literature type . 2022License: CC BY NCData sources: DataciteRefubium - Repositorium der Freien Universität BerlinArticle . 2022License: CC BY NCData sources: Refubium - Repositorium der Freien Universität BerlinInsect Conservation and DiversityArticle . 2021 . Peer-reviewedData sources: European Union Open Data PortalUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2022Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/icad.12555&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Spain, France, Spain, Netherlands, Netherlands, Netherlands, Brazil, Australia, Netherlands, Netherlands, Spain, United States, Netherlands, New Zealand, United StatesPublisher:American Association for the Advancement of Science (AAAS) Funded by:NSF | Collaborative Research: N..., EC | ECOWORM, ARC | Discovery Projects - Gran... +5 projectsNSF| Collaborative Research: NSFDEB-NERC: Tropical deadwood carbon fluxes: Improving carbon models by incorporating termites and microbes ,EC| ECOWORM ,ARC| Discovery Projects - Grant ID: DP160103765 ,NSF| Coastal SEES Collaborative Research: Salinization of the Coastal Plain through Saltwater Intrusion - Landscapes in Transition along the Leading Edge of Climate Change ,DFG| German Centre for Integrative Biodiversity Research - iDiv ,UKRI| BIODIVERSITY AND LAND-USE IMPACTS ON TROPICAL ECOSYSTEM FUNCTION (BALI) ,NSF| CAREER: Trajectories of ecosystem recovery in coastal wetlands under a changing climate: connecting the dots with student research, citizen science, and classroom data analyses ,NSF| LTER: Luquillo LTER VI: Understanding Ecosystem Change in Northeastern Puerto RicoAmy E. Zanne; Habacuc Flores-Moreno; Jeff R. Powell; William K. Cornwell; James W. Dalling; Amy T. Austin; Aimée T. Classen; Paul Eggleton; Kei-ichi Okada; Catherine L. Parr; E. Carol Adair; Stephen Adu-Bredu; Md Azharul Alam; Carolina Alvarez-Garzón; Deborah Apgaua; Roxana Aragón; Marcelo Ardon; Stefan K. Arndt; Louise A. Ashton; Nicholas A. Barber; Jacques Beauchêne; Matty P. Berg; Jason Beringer; Matthias M. Boer; José Antonio Bonet; Katherine Bunney; Tynan J. Burkhardt; Dulcinéia Carvalho; Dennis Castillo-Figueroa; Lucas A. Cernusak; Alexander W. Cheesman; Tainá M. Cirne-Silva; Jamie R. Cleverly; Johannes H. C. Cornelissen; Timothy J. Curran; André M. D’Angioli; Caroline Dallstream; Nico Eisenhauer; Fidele Evouna Ondo; Alex Fajardo; Romina D. Fernandez; Astrid Ferrer; Marco A. L. Fontes; Mark L. Galatowitsch; Grizelle González; Felix Gottschall; Peter R. Grace; Elena Granda; Hannah M. Griffiths; Mariana Guerra Lara; Motohiro Hasegawa; Mariet M. Hefting; Nina Hinko-Najera; Lindsay B. Hutley; Jennifer Jones; Anja Kahl; Mirko Karan; Joost A. Keuskamp; Tim Lardner; Michael Liddell; Craig Macfarlane; Cate Macinnis-Ng; Ravi F. Mariano; M. Soledad Méndez; Wayne S. Meyer; Akira S. Mori; Aloysio S. Moura; Matthew Northwood; Romà Ogaya; Rafael S. Oliveira; Alberto Orgiazzi; Juliana Pardo; Guille Peguero; Josep Penuelas; Luis I. Perez; Juan M. Posada; Cecilia M. Prada; Tomáš Přívětivý; Suzanne M. Prober; Jonathan Prunier; Gabriel W. Quansah; Víctor Resco de Dios; Ronny Richter; Mark P. Robertson; Lucas F. Rocha; Megan A. Rúa; Carolina Sarmiento; Richard P. Silberstein; Mateus C. Silva; Flávia Freire Siqueira; Matthew Glenn Stillwagon; Jacqui Stol; Melanie K. Taylor; François P. Teste; David Y. P. Tng; David Tucker; Manfred Türke; Michael D. Ulyshen; Oscar J. Valverde-Barrantes; Eduardo van den Berg; Richard S. P. van Logtestijn; G. F. (Ciska) Veen; Jason G. Vogel; Timothy J. Wardlaw; Georg Wiehl; Christian Wirth; Michaela J. Woods; Paul-Camilo Zalamea;pmid: 36137034
Deadwood is a large global carbon store with its store size partially determined by biotic decay. Microbial wood decay rates are known to respond to changing temperature and precipitation. Termites are also important decomposers in the tropics but are less well studied. An understanding of their climate sensitivities is needed to estimate climate change effects on wood carbon pools. Using data from 133 sites spanning six continents, we found that termite wood discovery and consumption were highly sensitive to temperature (with decay increasing >6.8 times per 10°C increase in temperature)—even more so than microbes. Termite decay effects were greatest in tropical seasonal forests, tropical savannas, and subtropical deserts. With tropicalization (i.e., warming shifts to tropical climates), termite wood decay will likely increase as termites access more of Earth’s surface.
Queensland Universit... arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2022Full-Text: http://hdl.handle.net/10072/421793Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2022Data sources: Diposit Digital de Documents de la UABJames Cook University, Australia: ResearchOnline@JCUArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Lincoln University (New Zealand): Lincoln U Research ArchiveArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Repositório Institucional da UFLAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Wright State University: CORE Scholar (Campus Online Repository)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.abo3856&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 77 citations 77 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Queensland Universit... arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2022Full-Text: http://hdl.handle.net/10072/421793Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2022Data sources: Diposit Digital de Documents de la UABJames Cook University, Australia: ResearchOnline@JCUArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Lincoln University (New Zealand): Lincoln U Research ArchiveArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Repositório Institucional da UFLAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Wright State University: CORE Scholar (Campus Online Repository)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.abo3856&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type 2022Publisher:OpenAlex Amy E. Zanne; Habacuc Flores‐Moreno; Jeff R. Powell; William K. Cornwell; James W. Dalling; Amy T. Austin; Aimée T. Classen; Paul Eggleton; Kunihiko Okada; Catherine Parr; Elizabeth C. Adair; Stephen Adu‐Bredu; Md Azharul Alam; Carolina Alvarez-Garzón; Deborah M. G. Apgaua; Roxana Aragón; Marcelo Ardón; Stefan K. Arndt; Louise A. Ashton; Nicholas A. Barber; Jacques Beauchêne; Matty P. Berg; Jason Beringer; Matthias M. Boer; J. A. Bonet; Katherine Bunney; Tynan Burkhardt; Dulcinéia de Carvalho; Dennis Castillo-Figueroa; Lucas A. Cernusak; Alexander W. Cheesman; Taina Cirne-Silva; Jamie Cleverly; Johannes H. C. Cornelissen; Timothy J. Curran; André D'Angioli; Caroline Dallstream; Nico Eisenhauer; Fidèle Evouna Ondo; Alex Fajardo; Romina Fernández; Astrid Ferrer; Marco Aurélio Leite Fontes; Mark L. Galatowitsch; Grizelle González; Felix Gottschall; Peter Grace; Elena Granda; Hannah Griffiths; Mariana Guerra Lara; Motohiro Hasegawa; Mariet M. Hefting; Nina Hinko‐Najera; Lindsay B. Hutley; Jennifer Jones; Anja Kahl; Mirko Karan; Joost A. Keuskamp; Tim Lardner; Michael J. Liddell; Craig Macfarlane; Cate Macinnis‐Ng; Ravi Fernandes Mariano; Wayne S. Meyer; Akira Mori; Aloysio Souza de Moura; Matthew Northwood; Romà Ogaya; Rafael S. Oliveira; Alberto Orgiazzi; Juliana Pardo; Guille Peguero; Josep Peñuelas; Luis I. Pérez; Juan M. Posada; Cecilia Prada; Tomáš Přívětivý; Suzanne M. Prober; Jonathan Prunier; Gabriel W. Quansah; Víctor Resco de Dios; Ronny Richter; Mark P. Robertson; Lucas Fernandes Rocha; Megan A. Rúa; Carolina Sarmiento; Richard Silberstein; Mateus Silva; Flávia Freire de Siqueira; Matthew Glenn Stillwagon; Jacqui Stol; Melanie K. Taylor; François P. Teste; David Y. P. Tng; David Tucker; Manfred Türke; Michael D. Ulyshen; Oscar J. Valverde‐Barrantes; Eduardo van den Berg; Richard S. P. van Logtestijn;Résumé Les animaux, tels que les termites, ont été largement négligés en tant que moteurs à l'échelle mondiale des cycles biogéochimiques 1,2 , malgré les résultats spécifiques au site 3,4 . Le renouvellement du bois mort, une composante importante du cycle du carbone, est entraîné par de multiples agents de désintégration. Des études se sont concentrées sur les systèmes tempérés 5,6 , où les microbes dominent la désintégration 7 . La désintégration microbienne est sensible à la température, doublant généralement pour une augmentation de 10 °C (désintégration efficace Q 10 = ~2) 8–10 . Les termites sont des désintégrateurs importants dans les systèmes tropicaux 3,11–13 et diffèrent des microbes par leur dynamique de population, leur dispersion et leur découverte de substrat 14–16 , ce qui signifie que leurs sensibilités climatiques diffèrent également. En utilisant un réseau de 133 sites couvrant 6 continents, nous rapportons la première quantification mondiale sur le terrain des sensibilités à la température et aux précipitations pour les termites et les microbes, fournissant de nouvelles compréhensions de leur réponse aux changements climatiques. La sensibilité à la température de la désintégration microbienne se situait dans les estimations précédentes. La découverte et la consommation de termites étaient toutes deux beaucoup plus sensibles à la température (désintégration effective Q 10 = 6,53), ce qui entraînait des différences frappantes dans le taux de renouvellement du bois mort dans les zones avec et sans termites. Les impacts de termites ont été les plus importants dans les forêts tropicales saisonnières, les savanes et les déserts subtropicaux. Avec la tropicalisation 17 (c.-à-d., le réchauffement se déplace vers un climat tropical), la contribution des termites à la décomposition mondiale du bois augmentera à mesure qu'une plus grande partie de la surface de la terre deviendra accessible aux termites. Resumen Los animales, como las termitas, se han pasado por alto en gran medida como impulsores a escala mundial de los ciclos biogeoquímicos 1,2 , a pesar de los hallazgos específicos del sitio 3,4 . La rotación de la madera muerta, un componente importante del ciclo del carbono, es impulsada por múltiples agentes de descomposición. Los estudios se han centrado en los sistemas templados 5,6 , donde los microbios dominan la descomposición 7 . La descomposición microbiana es sensible a la temperatura, por lo general se duplica por cada aumento de 10 ° C (Q efectiva de descomposición 10 = ~2) 8–10 . Las termitas son desintegradores importantes en los sistemas tropicales 3,11–13 y difieren de los microbios en su dinámica de población, dispersión y descubrimiento de sustratos 14–16 , lo que significa que sus sensibilidades climáticas también difieren. Utilizando una red de 133 sitios que abarcan 6 continentes, informamos la primera cuantificación global basada en el campo de las sensibilidades a la temperatura y la precipitación para termitas y microbios, proporcionando una comprensión novedosa de su respuesta a los climas cambiantes. La sensibilidad a la temperatura de la descomposición microbiana estaba dentro de las estimaciones anteriores. El descubrimiento y el consumo de termitas fueron mucho más sensibles a la temperatura (descomposición efectiva Q 10 = 6.53), lo que llevó a diferencias sorprendentes en la rotación de madera muerta en áreas con y sin termitas. Los impactos de termitas fueron mayores en los bosques tropicales estacionales, las sabanas y los desiertos subtropicales. Con la tropicalización 17 (es decir, el calentamiento cambia a un clima tropical), la contribución de las termitas a la descomposición global de la madera aumentará a medida que más de la superficie de la tierra se vuelva accesible para las termitas. Abstract Animals, such as termites, have largely been overlooked as global-scale drivers of biogeochemical cycles 1,2 , despite site-specific findings 3,4 . Deadwood turnover, an important component of the carbon cycle, is driven by multiple decay agents. Studies have focused on temperate systems 5,6 , where microbes dominate decay 7 . Microbial decay is sensitive to temperature, typically doubling per 10°C increase (decay effective Q 10 = ~2) 8–10 . Termites are important decayers in tropical systems 3,11–13 and differ from microbes in their population dynamics, dispersal, and substrate discovery 14–16 , meaning their climate sensitivities also differ. Using a network of 133 sites spanning 6 continents, we report the first global field-based quantification of temperature and precipitation sensitivities for termites and microbes, providing novel understandings of their response to changing climates. Temperature sensitivity of microbial decay was within previous estimates. Termite discovery and consumption were both much more sensitive to temperature (decay effective Q 10 = 6.53), leading to striking differences in deadwood turnover in areas with and without termites. Termite impacts were greatest in tropical seasonal forests and savannas and subtropical deserts. With tropicalization 17 (i.e., warming shifts to a tropical climate), the termite contribution to global wood decay will increase as more of the earth's surface becomes accessible to termites. تم التغاضي إلى حد كبير عن الحيوانات، مثل النمل الأبيض، كمحركات عالمية النطاق للدورات الكيميائية الجيولوجية الحيوية 1،2 ، على الرغم من النتائج الخاصة بالموقع 3،4 . دوران الخشب الميت، وهو عنصر مهم في دورة الكربون، مدفوع بعوامل اضمحلال متعددة. وقد ركزت الدراسات على النظم المعتدلة 5،6 ، حيث تهيمن الميكروبات على الاضمحلال 7 . يكون الاضمحلال الميكروبي حساسًا لدرجة الحرارة، وعادة ما يتضاعف لكل زيادة 10 درجات مئوية (الاضمحلال الفعال Q 10 =~2) 8–10 . النمل الأبيض من المتحللين المهمين في الأنظمة الاستوائية 3،11-13 ويختلف عن الميكروبات في ديناميكياتها السكانية وانتشارها واكتشاف الركائز 14–16 ، مما يعني أن حساسياتها المناخية تختلف أيضًا. باستخدام شبكة من 133 موقعًا تمتد عبر 6 قارات، نبلغ عن أول قياس كمي ميداني عالمي لدرجات الحرارة وحساسيات هطول الأمطار للنمل الأبيض والميكروبات، مما يوفر فهمًا جديدًا لاستجابتها للمناخ المتغير. كانت حساسية درجة حرارة الاضمحلال الميكروبي ضمن التقديرات السابقة. كان اكتشاف النمل الأبيض واستهلاكه أكثر حساسية لدرجة الحرارة (التحلل الفعال Q 10 = 6.53)، مما أدى إلى اختلافات صارخة في دوران الأخشاب الميتة في المناطق التي تحتوي على النمل الأبيض أو لا تحتوي عليه. كانت آثار النمل الأبيض أكبر في الغابات الموسمية الاستوائية والسافانا والصحاري شبه الاستوائية. مع الاستوائية 17 (أي، يتحول الاحترار إلى مناخ استوائي)، ستزداد مساهمة النمل الأبيض في تحلل الخشب العالمي مع وصول المزيد من سطح الأرض إلى النمل الأبيض.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60692/pxvgc-cd909&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60692/pxvgc-cd909&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 GermanyPublisher:Wiley Funded by:DFGDFGFlorian Schnabel; Sarah Purrucker; Lara Schmitt; Rolf A. Engelmann; Anja Kahl; Ronny Richter; Carolin Seele‐Dilbat; Georgios Skiadaresis; Christian Wirth;pmid: 34927360
AbstractDroughts increasingly threaten the world's forests and their potential to mitigate climate change. In 2018–2019, Central European forests were hit by two consecutive hotter drought years, an unprecedented phenomenon that is likely to occur more frequently with climate change. Here, we examine tree growth and physiological stress responses (increase in carbon isotope composition; Δδ13C) to this consecutive drought based on tree rings of dominant tree species in a Central European floodplain forest. Tree growth was not reduced for most species in 2018, indicating that water supply in floodplain forests can partly buffer meteorological water deficits. Drought stress responses in 2018 were comparable to former single drought years but the hotter drought in 2018 induced drought legacies in tree growth while former droughts did not. We observed strong decreases in tree growth and increases in Δδ13C across all tree species in 2019, which are likely driven by the cumulative stress both consecutive hotter droughts exerted. Our results show that consecutive hotter droughts pose a novel threat to forests under climate change, even in forest ecosystems with comparably high levels of water supply.
University of Freibu... arrow_drop_down University of Freiburg: FreiDokArticle . 2022Full-Text: https://freidok.uni-freiburg.de/data/224458Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1101/2021.0...Article . 2021 . Peer-reviewedLicense: CC BY NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 55 citations 55 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Freibu... arrow_drop_down University of Freiburg: FreiDokArticle . 2022Full-Text: https://freidok.uni-freiburg.de/data/224458Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1101/2021.0...Article . 2021 . Peer-reviewedLicense: CC BY NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu