- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors: Lung-Chien Chen; Ching-Ho Tien; Yang-Cheng Jhou; Wei-Cheng Lin;doi: 10.3390/en13102438
Use of a lead–tin mixed perovskite is generally considered an effective method to broaden the absorption wavelength of perovskite thin films. However, the preparation of lead–tin mixed perovskites is a major challenge due to the multivalent state of tin and stability in the atmosphere. This study attempted to replace the organic cation and metal elements of perovskites with a relatively thermal stable formamidinium (FA+) and a more environmentally friendly tin element. MA0.5FA0.5Pb0.8Sn0.2I3 lead–tin mixed perovskite thin films were prepared with the one-step spin-coating method. By adjusting the dimethylformamide (DMF):dimethyl sulfoxide (DMSO) concentration ratio of the lead–tin mixed perovskite precursor solution, the surface morphologies, crystallinity, and light-absorbing properties of the films were changed during synthesis to optimize the lead–tin mixed perovskite films as a light-absorbing layer of the inverted perovskite solar cells. The quality of the prepared lead–tin mixed perovskite film was the highest when the ratio of DMF:DMSO = 1:4. The power-conversion efficiency of the perovskite solar cell prepared with the film was 8.05%.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/10/2438/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13102438&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/10/2438/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13102438&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors: Lung-Chien Chen; Ching-Ho Tien; Yang-Cheng Jhou; Wei-Cheng Lin;doi: 10.3390/en13102438
Use of a lead–tin mixed perovskite is generally considered an effective method to broaden the absorption wavelength of perovskite thin films. However, the preparation of lead–tin mixed perovskites is a major challenge due to the multivalent state of tin and stability in the atmosphere. This study attempted to replace the organic cation and metal elements of perovskites with a relatively thermal stable formamidinium (FA+) and a more environmentally friendly tin element. MA0.5FA0.5Pb0.8Sn0.2I3 lead–tin mixed perovskite thin films were prepared with the one-step spin-coating method. By adjusting the dimethylformamide (DMF):dimethyl sulfoxide (DMSO) concentration ratio of the lead–tin mixed perovskite precursor solution, the surface morphologies, crystallinity, and light-absorbing properties of the films were changed during synthesis to optimize the lead–tin mixed perovskite films as a light-absorbing layer of the inverted perovskite solar cells. The quality of the prepared lead–tin mixed perovskite film was the highest when the ratio of DMF:DMSO = 1:4. The power-conversion efficiency of the perovskite solar cell prepared with the film was 8.05%.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/10/2438/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13102438&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/10/2438/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13102438&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Elsevier BV Authors: Ching-Ho Tien; Hong-Ye Lai; Lung-Chien Chen;AbstractPerovskite solar cells (PeSCs) have been introduced as a new photovoltaic device due to their excellent power conversion efficiency (PCE) and low cost. However, due to the limitations of the perovskite film itself, the existence of defects was inevitable, which seriously affects the number and mobility of carriers in perovskite solar cells, thus restricting PeSCs improved efficiency and stability. Interface passivation to improve the stability of perovskite solar cells is an important and effective strategy. Here, we use methylammonium halide salts (MAX, X = Cl, Br, I) to effectively passivate defects at or near the interface of perovskite quantum dots (PeQDs)/triple-cation perovskite films. The MAI passivation layer increased the open circuit voltage of PeQDs/triple-cation PeSC by 63 mV up to 1.04 V, with a high short-circuit current density of 24.6 mA cm−2 and a PCE of 20.4%, which demonstrated a significant suppression of interfacial recombination.
Scientific Reports arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4289962&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Scientific Reports arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4289962&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Elsevier BV Authors: Ching-Ho Tien; Hong-Ye Lai; Lung-Chien Chen;AbstractPerovskite solar cells (PeSCs) have been introduced as a new photovoltaic device due to their excellent power conversion efficiency (PCE) and low cost. However, due to the limitations of the perovskite film itself, the existence of defects was inevitable, which seriously affects the number and mobility of carriers in perovskite solar cells, thus restricting PeSCs improved efficiency and stability. Interface passivation to improve the stability of perovskite solar cells is an important and effective strategy. Here, we use methylammonium halide salts (MAX, X = Cl, Br, I) to effectively passivate defects at or near the interface of perovskite quantum dots (PeQDs)/triple-cation perovskite films. The MAI passivation layer increased the open circuit voltage of PeQDs/triple-cation PeSC by 63 mV up to 1.04 V, with a high short-circuit current density of 24.6 mA cm−2 and a PCE of 20.4%, which demonstrated a significant suppression of interfacial recombination.
Scientific Reports arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4289962&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Scientific Reports arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4289962&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Ching-Ho Tien; Lung-Chien Chen; Kun-Yi Lee; Zong-Liang Tseng; Yu-Shen Dong; Zi-Jun Lin;doi: 10.3390/en12183507
High-quality perovskite CsPbBr3 quantum dots (QDs-CsPbBr3) were prepared using the ultrasonic oscillation method, which is simple and provides variable yield according to requirements. The emission spectra over a large portion of the visible spectral region (450–650 nm) of QD-CsPbX3 (X = Cl, Br, and I) have tunable compositions that can be halide exchanged using the halide anion exchange technique and quantum size-effects. A strong peak with high intensity of (200) lattice plane of purified QDs-CsPbBr3 film is obtained, confirming the formation of an orthorhombic perovskite crystal structure of the Pnma space group. The photoluminescence of QDs-CsPbBr3 was characterized using a narrow line-width emission of 20 nm, with high quantum yields of up to 99.2%, and radioactive lifetime increasing to 26 ns. Finally, through the excellent advantages of QDs-CsPbBr3 mentioned above, purified perovskite QDs-CsPbBr3 as an active layer was utilized in perovskite quantum dot light-emitting diodes structure applications. As a result, the perovskite QDs-CsPbBr3 light-emitting diodes (LEDs) exhibits a turn-on voltage of 7 V and a maximum luminance of 5.1 cd/m2.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/18/3507/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12183507&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/18/3507/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12183507&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Ching-Ho Tien; Lung-Chien Chen; Kun-Yi Lee; Zong-Liang Tseng; Yu-Shen Dong; Zi-Jun Lin;doi: 10.3390/en12183507
High-quality perovskite CsPbBr3 quantum dots (QDs-CsPbBr3) were prepared using the ultrasonic oscillation method, which is simple and provides variable yield according to requirements. The emission spectra over a large portion of the visible spectral region (450–650 nm) of QD-CsPbX3 (X = Cl, Br, and I) have tunable compositions that can be halide exchanged using the halide anion exchange technique and quantum size-effects. A strong peak with high intensity of (200) lattice plane of purified QDs-CsPbBr3 film is obtained, confirming the formation of an orthorhombic perovskite crystal structure of the Pnma space group. The photoluminescence of QDs-CsPbBr3 was characterized using a narrow line-width emission of 20 nm, with high quantum yields of up to 99.2%, and radioactive lifetime increasing to 26 ns. Finally, through the excellent advantages of QDs-CsPbBr3 mentioned above, purified perovskite QDs-CsPbBr3 as an active layer was utilized in perovskite quantum dot light-emitting diodes structure applications. As a result, the perovskite QDs-CsPbBr3 light-emitting diodes (LEDs) exhibits a turn-on voltage of 7 V and a maximum luminance of 5.1 cd/m2.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/18/3507/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12183507&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/18/3507/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12183507&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Yi-Tsung Chang; Ching-Ho Tien; Kun-Yi Lee; Yu-Shen Tung; Lung-Chien Chen;doi: 10.3390/en14082145
The power conversion efficiency (PCE) of an Ag/spiro-OMeTAD/CH3NH3PbI3 (MAPbI3)/PCBM/mesoporous TiO2/compact TiO2/FTO planar solar cell with different annealing temperatures of PbI2 and MAPbI3 films was investigated in this study. The morphology control of a MAPbI3 thin film plays key roles in high-efficiency perovskite solar cells. The PbI2 films were prepared by using thermal vacuum evaporation technology, and the MAPbI3 perovskite films were synthesized with two-step synthesis. The X-ray spectra and surface morphologies of the PbI2 and MAPbI3 films were examined at annealing temperatures of 80, 100, 120, and 140 °C for 10 min. The performance of the perovskite planar solar cell at an annealing temperature of 100 °C for 10 min was demonstrated. The power conversion efficiency (PCE) was about 8.66%, the open-circuit voltage (Voc) was 0.965 V, the short-circuit current (Jsc) was 13.6 mA/cm2, and the fill factor (FF) was 0.66 by scanning the density–voltage (J–V) curve.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/8/2145/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14082145&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/8/2145/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14082145&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Yi-Tsung Chang; Ching-Ho Tien; Kun-Yi Lee; Yu-Shen Tung; Lung-Chien Chen;doi: 10.3390/en14082145
The power conversion efficiency (PCE) of an Ag/spiro-OMeTAD/CH3NH3PbI3 (MAPbI3)/PCBM/mesoporous TiO2/compact TiO2/FTO planar solar cell with different annealing temperatures of PbI2 and MAPbI3 films was investigated in this study. The morphology control of a MAPbI3 thin film plays key roles in high-efficiency perovskite solar cells. The PbI2 films were prepared by using thermal vacuum evaporation technology, and the MAPbI3 perovskite films were synthesized with two-step synthesis. The X-ray spectra and surface morphologies of the PbI2 and MAPbI3 films were examined at annealing temperatures of 80, 100, 120, and 140 °C for 10 min. The performance of the perovskite planar solar cell at an annealing temperature of 100 °C for 10 min was demonstrated. The power conversion efficiency (PCE) was about 8.66%, the open-circuit voltage (Voc) was 0.965 V, the short-circuit current (Jsc) was 13.6 mA/cm2, and the fill factor (FF) was 0.66 by scanning the density–voltage (J–V) curve.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/8/2145/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14082145&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/8/2145/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14082145&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Zhi Ting Ye; Chin Lung Chen; Lung-Chien Chen; Ching Ho Tien; Hong Thai Nguyen; Hsiang-Chen Wang;doi: 10.3390/en12142755
Light-emitting diodes (LEDs) have numerous advantages. However, LEDs only offer a point light source. Therefore, transforming LEDs into planar light sources is a new objective in general lighting applications. Solid light guides have strong uniformity but are marred by their material absorption characteristics and weight. Hollow light guides constitute a solution to the weight problem but exhibit poor uniformity and necessitate sacrificing efficiency to enhance uniformity. To resolve the uniformity, weight, and efficiency problems simultaneously, we propose a hollow light guide architecture involving mini-LEDs with asymmetric luminous intensity. To develop this guide module, we first optimized the aspect ratio of the cavity and then modulated the light path by using varied angles of the reflection surface on the end wall of the module. We then designed a beveled reflection surface near the mini-LEDs to further enhance uniformity. An archetype of the proposed architecture for planar light source modules had a width and depth of 51.5 and 9.95 mm, respectively. Experimental results revealed a total efficiency of 83.9% and uniformity of 92.3%. The module weight was determined to be 215 g, which was 40% lighter than that of similarly sized solid light guide modules.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/14/2755/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12142755&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/14/2755/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12142755&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Zhi Ting Ye; Chin Lung Chen; Lung-Chien Chen; Ching Ho Tien; Hong Thai Nguyen; Hsiang-Chen Wang;doi: 10.3390/en12142755
Light-emitting diodes (LEDs) have numerous advantages. However, LEDs only offer a point light source. Therefore, transforming LEDs into planar light sources is a new objective in general lighting applications. Solid light guides have strong uniformity but are marred by their material absorption characteristics and weight. Hollow light guides constitute a solution to the weight problem but exhibit poor uniformity and necessitate sacrificing efficiency to enhance uniformity. To resolve the uniformity, weight, and efficiency problems simultaneously, we propose a hollow light guide architecture involving mini-LEDs with asymmetric luminous intensity. To develop this guide module, we first optimized the aspect ratio of the cavity and then modulated the light path by using varied angles of the reflection surface on the end wall of the module. We then designed a beveled reflection surface near the mini-LEDs to further enhance uniformity. An archetype of the proposed architecture for planar light source modules had a width and depth of 51.5 and 9.95 mm, respectively. Experimental results revealed a total efficiency of 83.9% and uniformity of 92.3%. The module weight was determined to be 215 g, which was 40% lighter than that of similarly sized solid light guide modules.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/14/2755/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12142755&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/14/2755/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12142755&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 TaiwanPublisher:Optica Publishing Group Authors: Tien, Ching-Ho; Chen, Ken-Yen; Hsu, Chen-Peng; Horng, Ray-Hua;The characteristics of high-voltage light-emitting diodes (HVLEDs) consisting of a 64-cell LED array were investigated by employing various LED structures. Two types of HVLED were examined: a standard HVLED with a single roughened indium tin oxide (ITO) surface grown on a sapphire substrate and a thin-film HVLED (TF-HVLED) with a roughened n-GaN and ITO double side transferred to a mirror/silicon substrate. At an injection current of 24 mA, the output powers of the HVLEDs fabricated using a sapphire substrate and those fabricated using a mirror/silicon substrate were 170 and 216 mW, respectively. Because the TF-HVLED exhibited improved thermal dissipation and light extraction, it produced a greater output power than the HVLED fabricated using the sapphire substrate did.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1364/oe.22.0a1462&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1364/oe.22.0a1462&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 TaiwanPublisher:Optica Publishing Group Authors: Tien, Ching-Ho; Chen, Ken-Yen; Hsu, Chen-Peng; Horng, Ray-Hua;The characteristics of high-voltage light-emitting diodes (HVLEDs) consisting of a 64-cell LED array were investigated by employing various LED structures. Two types of HVLED were examined: a standard HVLED with a single roughened indium tin oxide (ITO) surface grown on a sapphire substrate and a thin-film HVLED (TF-HVLED) with a roughened n-GaN and ITO double side transferred to a mirror/silicon substrate. At an injection current of 24 mA, the output powers of the HVLEDs fabricated using a sapphire substrate and those fabricated using a mirror/silicon substrate were 170 and 216 mW, respectively. Because the TF-HVLED exhibited improved thermal dissipation and light extraction, it produced a greater output power than the HVLED fabricated using the sapphire substrate did.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1364/oe.22.0a1462&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1364/oe.22.0a1462&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors: Lung-Chien Chen; Ching-Ho Tien; Kuan-Lin Lee; Yu-Ting Kao;doi: 10.3390/en13061471
We demonstrate a method to enhance the power conversion efficiency (PCE) of MAPbI3 perovskite solar cells through localized surface plasmon (LSP) coupling with gold nanoparticles:CsPbBr3 hybrid perovskite quantum dots (AuNPs:QD-CsPbBr3). The plasmonic AuNPs:QD-CsPbBr3 possess the features of high light-harvesting capacity and fast charge transfer through the LSP resonance effect, thus improving the short-circuit current density and the fill factor. Compared to the original device without Au NPs, a 27.8% enhancement in PCE of plasmonic AuNPs:QD-CsPbBr3/MAPbI3 perovskite solar cells was achieved upon 120 μL Au NP solution doping. This improvement can be attributed to the formation of surface plasmon resonance and light scattering effects in Au NPs embedded in QD-CsPbBr3, resulting in improved light absorption due to plasmonic nanoparticles.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/6/1471/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13061471&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/6/1471/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13061471&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors: Lung-Chien Chen; Ching-Ho Tien; Kuan-Lin Lee; Yu-Ting Kao;doi: 10.3390/en13061471
We demonstrate a method to enhance the power conversion efficiency (PCE) of MAPbI3 perovskite solar cells through localized surface plasmon (LSP) coupling with gold nanoparticles:CsPbBr3 hybrid perovskite quantum dots (AuNPs:QD-CsPbBr3). The plasmonic AuNPs:QD-CsPbBr3 possess the features of high light-harvesting capacity and fast charge transfer through the LSP resonance effect, thus improving the short-circuit current density and the fill factor. Compared to the original device without Au NPs, a 27.8% enhancement in PCE of plasmonic AuNPs:QD-CsPbBr3/MAPbI3 perovskite solar cells was achieved upon 120 μL Au NP solution doping. This improvement can be attributed to the formation of surface plasmon resonance and light scattering effects in Au NPs embedded in QD-CsPbBr3, resulting in improved light absorption due to plasmonic nanoparticles.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/6/1471/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13061471&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/6/1471/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13061471&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Lung-Chien Chen; Ching-Ho Tien; Sin-Liang Ou; Kun-Yi Lee; Jianjun Tian; Zong-Liang Tseng; Hao-Tian Chen; Hao-Chung Kuo; An-Cheng Sun;doi: 10.3390/en12061117
Perovskite CsPbBr3 quantum dot (CsPbBr3-QD) recovery was performed using lead scrap from lead storage batteries. The perovskite CsPbBr3-QD characteristics were analyzed using different PbO/recycled PbO2 ratios. Scanning electron microscopy (SEM) was used to observe the film surface morphology and cross-section. High-resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) were used to observe the perovskite CsPbBr3-QDs’ structural characteristics. A photoluminescence (PL) measurement system was used to analyze the optical properties. The results show that lead scrap from lead–acid batteries as a material for perovskite CsPbBr3-QD production can be successfully synthesized. This saves material and also proves that recycling is valuable. The proposed approach is helpful for future material shortages and materials not easily accessible. Although the efficiency is not very high, this process will be purified using recycled lead in the future to achieve higher quantum yield.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/6/1117/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12061117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/6/1117/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12061117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Lung-Chien Chen; Ching-Ho Tien; Sin-Liang Ou; Kun-Yi Lee; Jianjun Tian; Zong-Liang Tseng; Hao-Tian Chen; Hao-Chung Kuo; An-Cheng Sun;doi: 10.3390/en12061117
Perovskite CsPbBr3 quantum dot (CsPbBr3-QD) recovery was performed using lead scrap from lead storage batteries. The perovskite CsPbBr3-QD characteristics were analyzed using different PbO/recycled PbO2 ratios. Scanning electron microscopy (SEM) was used to observe the film surface morphology and cross-section. High-resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) were used to observe the perovskite CsPbBr3-QDs’ structural characteristics. A photoluminescence (PL) measurement system was used to analyze the optical properties. The results show that lead scrap from lead–acid batteries as a material for perovskite CsPbBr3-QD production can be successfully synthesized. This saves material and also proves that recycling is valuable. The proposed approach is helpful for future material shortages and materials not easily accessible. Although the efficiency is not very high, this process will be purified using recycled lead in the future to achieve higher quantum yield.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/6/1117/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12061117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/6/1117/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12061117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors: Lung-Chien Chen; Ching-Ho Tien; Yang-Cheng Jhou; Wei-Cheng Lin;doi: 10.3390/en13102438
Use of a lead–tin mixed perovskite is generally considered an effective method to broaden the absorption wavelength of perovskite thin films. However, the preparation of lead–tin mixed perovskites is a major challenge due to the multivalent state of tin and stability in the atmosphere. This study attempted to replace the organic cation and metal elements of perovskites with a relatively thermal stable formamidinium (FA+) and a more environmentally friendly tin element. MA0.5FA0.5Pb0.8Sn0.2I3 lead–tin mixed perovskite thin films were prepared with the one-step spin-coating method. By adjusting the dimethylformamide (DMF):dimethyl sulfoxide (DMSO) concentration ratio of the lead–tin mixed perovskite precursor solution, the surface morphologies, crystallinity, and light-absorbing properties of the films were changed during synthesis to optimize the lead–tin mixed perovskite films as a light-absorbing layer of the inverted perovskite solar cells. The quality of the prepared lead–tin mixed perovskite film was the highest when the ratio of DMF:DMSO = 1:4. The power-conversion efficiency of the perovskite solar cell prepared with the film was 8.05%.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/10/2438/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13102438&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/10/2438/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13102438&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors: Lung-Chien Chen; Ching-Ho Tien; Yang-Cheng Jhou; Wei-Cheng Lin;doi: 10.3390/en13102438
Use of a lead–tin mixed perovskite is generally considered an effective method to broaden the absorption wavelength of perovskite thin films. However, the preparation of lead–tin mixed perovskites is a major challenge due to the multivalent state of tin and stability in the atmosphere. This study attempted to replace the organic cation and metal elements of perovskites with a relatively thermal stable formamidinium (FA+) and a more environmentally friendly tin element. MA0.5FA0.5Pb0.8Sn0.2I3 lead–tin mixed perovskite thin films were prepared with the one-step spin-coating method. By adjusting the dimethylformamide (DMF):dimethyl sulfoxide (DMSO) concentration ratio of the lead–tin mixed perovskite precursor solution, the surface morphologies, crystallinity, and light-absorbing properties of the films were changed during synthesis to optimize the lead–tin mixed perovskite films as a light-absorbing layer of the inverted perovskite solar cells. The quality of the prepared lead–tin mixed perovskite film was the highest when the ratio of DMF:DMSO = 1:4. The power-conversion efficiency of the perovskite solar cell prepared with the film was 8.05%.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/10/2438/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13102438&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/10/2438/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13102438&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Elsevier BV Authors: Ching-Ho Tien; Hong-Ye Lai; Lung-Chien Chen;AbstractPerovskite solar cells (PeSCs) have been introduced as a new photovoltaic device due to their excellent power conversion efficiency (PCE) and low cost. However, due to the limitations of the perovskite film itself, the existence of defects was inevitable, which seriously affects the number and mobility of carriers in perovskite solar cells, thus restricting PeSCs improved efficiency and stability. Interface passivation to improve the stability of perovskite solar cells is an important and effective strategy. Here, we use methylammonium halide salts (MAX, X = Cl, Br, I) to effectively passivate defects at or near the interface of perovskite quantum dots (PeQDs)/triple-cation perovskite films. The MAI passivation layer increased the open circuit voltage of PeQDs/triple-cation PeSC by 63 mV up to 1.04 V, with a high short-circuit current density of 24.6 mA cm−2 and a PCE of 20.4%, which demonstrated a significant suppression of interfacial recombination.
Scientific Reports arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4289962&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Scientific Reports arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4289962&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Elsevier BV Authors: Ching-Ho Tien; Hong-Ye Lai; Lung-Chien Chen;AbstractPerovskite solar cells (PeSCs) have been introduced as a new photovoltaic device due to their excellent power conversion efficiency (PCE) and low cost. However, due to the limitations of the perovskite film itself, the existence of defects was inevitable, which seriously affects the number and mobility of carriers in perovskite solar cells, thus restricting PeSCs improved efficiency and stability. Interface passivation to improve the stability of perovskite solar cells is an important and effective strategy. Here, we use methylammonium halide salts (MAX, X = Cl, Br, I) to effectively passivate defects at or near the interface of perovskite quantum dots (PeQDs)/triple-cation perovskite films. The MAI passivation layer increased the open circuit voltage of PeQDs/triple-cation PeSC by 63 mV up to 1.04 V, with a high short-circuit current density of 24.6 mA cm−2 and a PCE of 20.4%, which demonstrated a significant suppression of interfacial recombination.
Scientific Reports arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4289962&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Scientific Reports arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4289962&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Ching-Ho Tien; Lung-Chien Chen; Kun-Yi Lee; Zong-Liang Tseng; Yu-Shen Dong; Zi-Jun Lin;doi: 10.3390/en12183507
High-quality perovskite CsPbBr3 quantum dots (QDs-CsPbBr3) were prepared using the ultrasonic oscillation method, which is simple and provides variable yield according to requirements. The emission spectra over a large portion of the visible spectral region (450–650 nm) of QD-CsPbX3 (X = Cl, Br, and I) have tunable compositions that can be halide exchanged using the halide anion exchange technique and quantum size-effects. A strong peak with high intensity of (200) lattice plane of purified QDs-CsPbBr3 film is obtained, confirming the formation of an orthorhombic perovskite crystal structure of the Pnma space group. The photoluminescence of QDs-CsPbBr3 was characterized using a narrow line-width emission of 20 nm, with high quantum yields of up to 99.2%, and radioactive lifetime increasing to 26 ns. Finally, through the excellent advantages of QDs-CsPbBr3 mentioned above, purified perovskite QDs-CsPbBr3 as an active layer was utilized in perovskite quantum dot light-emitting diodes structure applications. As a result, the perovskite QDs-CsPbBr3 light-emitting diodes (LEDs) exhibits a turn-on voltage of 7 V and a maximum luminance of 5.1 cd/m2.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/18/3507/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12183507&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/18/3507/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12183507&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Ching-Ho Tien; Lung-Chien Chen; Kun-Yi Lee; Zong-Liang Tseng; Yu-Shen Dong; Zi-Jun Lin;doi: 10.3390/en12183507
High-quality perovskite CsPbBr3 quantum dots (QDs-CsPbBr3) were prepared using the ultrasonic oscillation method, which is simple and provides variable yield according to requirements. The emission spectra over a large portion of the visible spectral region (450–650 nm) of QD-CsPbX3 (X = Cl, Br, and I) have tunable compositions that can be halide exchanged using the halide anion exchange technique and quantum size-effects. A strong peak with high intensity of (200) lattice plane of purified QDs-CsPbBr3 film is obtained, confirming the formation of an orthorhombic perovskite crystal structure of the Pnma space group. The photoluminescence of QDs-CsPbBr3 was characterized using a narrow line-width emission of 20 nm, with high quantum yields of up to 99.2%, and radioactive lifetime increasing to 26 ns. Finally, through the excellent advantages of QDs-CsPbBr3 mentioned above, purified perovskite QDs-CsPbBr3 as an active layer was utilized in perovskite quantum dot light-emitting diodes structure applications. As a result, the perovskite QDs-CsPbBr3 light-emitting diodes (LEDs) exhibits a turn-on voltage of 7 V and a maximum luminance of 5.1 cd/m2.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/18/3507/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12183507&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/18/3507/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12183507&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Yi-Tsung Chang; Ching-Ho Tien; Kun-Yi Lee; Yu-Shen Tung; Lung-Chien Chen;doi: 10.3390/en14082145
The power conversion efficiency (PCE) of an Ag/spiro-OMeTAD/CH3NH3PbI3 (MAPbI3)/PCBM/mesoporous TiO2/compact TiO2/FTO planar solar cell with different annealing temperatures of PbI2 and MAPbI3 films was investigated in this study. The morphology control of a MAPbI3 thin film plays key roles in high-efficiency perovskite solar cells. The PbI2 films were prepared by using thermal vacuum evaporation technology, and the MAPbI3 perovskite films were synthesized with two-step synthesis. The X-ray spectra and surface morphologies of the PbI2 and MAPbI3 films were examined at annealing temperatures of 80, 100, 120, and 140 °C for 10 min. The performance of the perovskite planar solar cell at an annealing temperature of 100 °C for 10 min was demonstrated. The power conversion efficiency (PCE) was about 8.66%, the open-circuit voltage (Voc) was 0.965 V, the short-circuit current (Jsc) was 13.6 mA/cm2, and the fill factor (FF) was 0.66 by scanning the density–voltage (J–V) curve.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/8/2145/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14082145&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/8/2145/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14082145&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Yi-Tsung Chang; Ching-Ho Tien; Kun-Yi Lee; Yu-Shen Tung; Lung-Chien Chen;doi: 10.3390/en14082145
The power conversion efficiency (PCE) of an Ag/spiro-OMeTAD/CH3NH3PbI3 (MAPbI3)/PCBM/mesoporous TiO2/compact TiO2/FTO planar solar cell with different annealing temperatures of PbI2 and MAPbI3 films was investigated in this study. The morphology control of a MAPbI3 thin film plays key roles in high-efficiency perovskite solar cells. The PbI2 films were prepared by using thermal vacuum evaporation technology, and the MAPbI3 perovskite films were synthesized with two-step synthesis. The X-ray spectra and surface morphologies of the PbI2 and MAPbI3 films were examined at annealing temperatures of 80, 100, 120, and 140 °C for 10 min. The performance of the perovskite planar solar cell at an annealing temperature of 100 °C for 10 min was demonstrated. The power conversion efficiency (PCE) was about 8.66%, the open-circuit voltage (Voc) was 0.965 V, the short-circuit current (Jsc) was 13.6 mA/cm2, and the fill factor (FF) was 0.66 by scanning the density–voltage (J–V) curve.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/8/2145/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14082145&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/8/2145/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14082145&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Zhi Ting Ye; Chin Lung Chen; Lung-Chien Chen; Ching Ho Tien; Hong Thai Nguyen; Hsiang-Chen Wang;doi: 10.3390/en12142755
Light-emitting diodes (LEDs) have numerous advantages. However, LEDs only offer a point light source. Therefore, transforming LEDs into planar light sources is a new objective in general lighting applications. Solid light guides have strong uniformity but are marred by their material absorption characteristics and weight. Hollow light guides constitute a solution to the weight problem but exhibit poor uniformity and necessitate sacrificing efficiency to enhance uniformity. To resolve the uniformity, weight, and efficiency problems simultaneously, we propose a hollow light guide architecture involving mini-LEDs with asymmetric luminous intensity. To develop this guide module, we first optimized the aspect ratio of the cavity and then modulated the light path by using varied angles of the reflection surface on the end wall of the module. We then designed a beveled reflection surface near the mini-LEDs to further enhance uniformity. An archetype of the proposed architecture for planar light source modules had a width and depth of 51.5 and 9.95 mm, respectively. Experimental results revealed a total efficiency of 83.9% and uniformity of 92.3%. The module weight was determined to be 215 g, which was 40% lighter than that of similarly sized solid light guide modules.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/14/2755/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12142755&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/14/2755/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12142755&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Zhi Ting Ye; Chin Lung Chen; Lung-Chien Chen; Ching Ho Tien; Hong Thai Nguyen; Hsiang-Chen Wang;doi: 10.3390/en12142755
Light-emitting diodes (LEDs) have numerous advantages. However, LEDs only offer a point light source. Therefore, transforming LEDs into planar light sources is a new objective in general lighting applications. Solid light guides have strong uniformity but are marred by their material absorption characteristics and weight. Hollow light guides constitute a solution to the weight problem but exhibit poor uniformity and necessitate sacrificing efficiency to enhance uniformity. To resolve the uniformity, weight, and efficiency problems simultaneously, we propose a hollow light guide architecture involving mini-LEDs with asymmetric luminous intensity. To develop this guide module, we first optimized the aspect ratio of the cavity and then modulated the light path by using varied angles of the reflection surface on the end wall of the module. We then designed a beveled reflection surface near the mini-LEDs to further enhance uniformity. An archetype of the proposed architecture for planar light source modules had a width and depth of 51.5 and 9.95 mm, respectively. Experimental results revealed a total efficiency of 83.9% and uniformity of 92.3%. The module weight was determined to be 215 g, which was 40% lighter than that of similarly sized solid light guide modules.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/14/2755/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12142755&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/14/2755/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12142755&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 TaiwanPublisher:Optica Publishing Group Authors: Tien, Ching-Ho; Chen, Ken-Yen; Hsu, Chen-Peng; Horng, Ray-Hua;The characteristics of high-voltage light-emitting diodes (HVLEDs) consisting of a 64-cell LED array were investigated by employing various LED structures. Two types of HVLED were examined: a standard HVLED with a single roughened indium tin oxide (ITO) surface grown on a sapphire substrate and a thin-film HVLED (TF-HVLED) with a roughened n-GaN and ITO double side transferred to a mirror/silicon substrate. At an injection current of 24 mA, the output powers of the HVLEDs fabricated using a sapphire substrate and those fabricated using a mirror/silicon substrate were 170 and 216 mW, respectively. Because the TF-HVLED exhibited improved thermal dissipation and light extraction, it produced a greater output power than the HVLED fabricated using the sapphire substrate did.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1364/oe.22.0a1462&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1364/oe.22.0a1462&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 TaiwanPublisher:Optica Publishing Group Authors: Tien, Ching-Ho; Chen, Ken-Yen; Hsu, Chen-Peng; Horng, Ray-Hua;The characteristics of high-voltage light-emitting diodes (HVLEDs) consisting of a 64-cell LED array were investigated by employing various LED structures. Two types of HVLED were examined: a standard HVLED with a single roughened indium tin oxide (ITO) surface grown on a sapphire substrate and a thin-film HVLED (TF-HVLED) with a roughened n-GaN and ITO double side transferred to a mirror/silicon substrate. At an injection current of 24 mA, the output powers of the HVLEDs fabricated using a sapphire substrate and those fabricated using a mirror/silicon substrate were 170 and 216 mW, respectively. Because the TF-HVLED exhibited improved thermal dissipation and light extraction, it produced a greater output power than the HVLED fabricated using the sapphire substrate did.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1364/oe.22.0a1462&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1364/oe.22.0a1462&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors: Lung-Chien Chen; Ching-Ho Tien; Kuan-Lin Lee; Yu-Ting Kao;doi: 10.3390/en13061471
We demonstrate a method to enhance the power conversion efficiency (PCE) of MAPbI3 perovskite solar cells through localized surface plasmon (LSP) coupling with gold nanoparticles:CsPbBr3 hybrid perovskite quantum dots (AuNPs:QD-CsPbBr3). The plasmonic AuNPs:QD-CsPbBr3 possess the features of high light-harvesting capacity and fast charge transfer through the LSP resonance effect, thus improving the short-circuit current density and the fill factor. Compared to the original device without Au NPs, a 27.8% enhancement in PCE of plasmonic AuNPs:QD-CsPbBr3/MAPbI3 perovskite solar cells was achieved upon 120 μL Au NP solution doping. This improvement can be attributed to the formation of surface plasmon resonance and light scattering effects in Au NPs embedded in QD-CsPbBr3, resulting in improved light absorption due to plasmonic nanoparticles.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/6/1471/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13061471&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/6/1471/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13061471&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors: Lung-Chien Chen; Ching-Ho Tien; Kuan-Lin Lee; Yu-Ting Kao;doi: 10.3390/en13061471
We demonstrate a method to enhance the power conversion efficiency (PCE) of MAPbI3 perovskite solar cells through localized surface plasmon (LSP) coupling with gold nanoparticles:CsPbBr3 hybrid perovskite quantum dots (AuNPs:QD-CsPbBr3). The plasmonic AuNPs:QD-CsPbBr3 possess the features of high light-harvesting capacity and fast charge transfer through the LSP resonance effect, thus improving the short-circuit current density and the fill factor. Compared to the original device without Au NPs, a 27.8% enhancement in PCE of plasmonic AuNPs:QD-CsPbBr3/MAPbI3 perovskite solar cells was achieved upon 120 μL Au NP solution doping. This improvement can be attributed to the formation of surface plasmon resonance and light scattering effects in Au NPs embedded in QD-CsPbBr3, resulting in improved light absorption due to plasmonic nanoparticles.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/6/1471/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13061471&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/6/1471/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13061471&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Lung-Chien Chen; Ching-Ho Tien; Sin-Liang Ou; Kun-Yi Lee; Jianjun Tian; Zong-Liang Tseng; Hao-Tian Chen; Hao-Chung Kuo; An-Cheng Sun;doi: 10.3390/en12061117
Perovskite CsPbBr3 quantum dot (CsPbBr3-QD) recovery was performed using lead scrap from lead storage batteries. The perovskite CsPbBr3-QD characteristics were analyzed using different PbO/recycled PbO2 ratios. Scanning electron microscopy (SEM) was used to observe the film surface morphology and cross-section. High-resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) were used to observe the perovskite CsPbBr3-QDs’ structural characteristics. A photoluminescence (PL) measurement system was used to analyze the optical properties. The results show that lead scrap from lead–acid batteries as a material for perovskite CsPbBr3-QD production can be successfully synthesized. This saves material and also proves that recycling is valuable. The proposed approach is helpful for future material shortages and materials not easily accessible. Although the efficiency is not very high, this process will be purified using recycled lead in the future to achieve higher quantum yield.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/6/1117/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12061117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/6/1117/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12061117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Lung-Chien Chen; Ching-Ho Tien; Sin-Liang Ou; Kun-Yi Lee; Jianjun Tian; Zong-Liang Tseng; Hao-Tian Chen; Hao-Chung Kuo; An-Cheng Sun;doi: 10.3390/en12061117
Perovskite CsPbBr3 quantum dot (CsPbBr3-QD) recovery was performed using lead scrap from lead storage batteries. The perovskite CsPbBr3-QD characteristics were analyzed using different PbO/recycled PbO2 ratios. Scanning electron microscopy (SEM) was used to observe the film surface morphology and cross-section. High-resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) were used to observe the perovskite CsPbBr3-QDs’ structural characteristics. A photoluminescence (PL) measurement system was used to analyze the optical properties. The results show that lead scrap from lead–acid batteries as a material for perovskite CsPbBr3-QD production can be successfully synthesized. This saves material and also proves that recycling is valuable. The proposed approach is helpful for future material shortages and materials not easily accessible. Although the efficiency is not very high, this process will be purified using recycled lead in the future to achieve higher quantum yield.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/6/1117/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12061117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/6/1117/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12061117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu