- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Sweden, France, Italy, Netherlands, France, Italy, Spain, Netherlands, Italy, Norway, United Kingdom, Italy, Netherlands, United Kingdom, Denmark, Belgium, Portugal, Finland, SwedenPublisher:Springer Science and Business Media LLC Funded by:EC | eLTER PLUS, UKRI | UK Status, Change and Pro..., FCT | Centre for Functional Eco...EC| eLTER PLUS ,UKRI| UK Status, Change and Projections of the Environment (UK-SCaPE) ,FCT| Centre for Functional EcologyD. A. Beaumont; Don Monteith; Herman Hummel; Henning Meesenburg; Audrey Alignier; Filipe Martinho; D. Pallett; Vesela Evtimova; Liat Hadar; Renate Alber; Patricia Cardoso; Francesca Pilotto; Francesca Pilotto; Bogdan Jaroszewicz; Ricardo García-González; Susanne C. Schneider; Radoslav Stanchev; Dāvis Ozoliņš; Luc Barbaro; Daniel Gómez García; Anne Thimonier; Sue Benham; Marcus Schaub; Tanja Pipan; Bachisio Mario Padedda; Karline Soetaert; Juha Pöyry; Daniel Oro; Reima Leinonen; Lisa Sundqvist; Lubos Halada; Gunther Van Ryckegem; Ingrid Kröncke; Agnija Skuja; Elisa Camatti; Gert Van Hoey; Gert Everaert; Christopher Andrews; Vincent Bretagnolle; Miguel Ângelo Pardal; Marco Pansera; Henrik Kalivoda; Ingolf Kühn; Ingolf Kühn; Natalie Beenaerts; Stefan Stoll; Stefan Stoll; Rita Adrian; Thomas C. Jensen; Boris P. Nikolov; Kaisa-Leena Huttunen; David S. Boukal; David S. Boukal; Bruno J. Ens; Roberto Canullo; Stefano Minerbi; Ulf Grandin; Gunta Spriņģe; Julia S. Meyer; Heidrun Feuchtmayr; Samuel Vorhauser; Melinda Halassy; Bruno Petriccione; Jerzy M. Gutowski; Jenni A. Stockan; S. Schafer; Peter Haase; Peter Haase; Jaana Bäck; Inger Kappel Schmidt; Marcel E. Visser;pmid: 32661354
pmc: PMC7359034
AbstractLocal biodiversity trends over time are likely to be decoupled from global trends, as local processes may compensate or counteract global change. We analyze 161 long-term biological time series (15–91 years) collected across Europe, using a comprehensive dataset comprising ~6,200 marine, freshwater and terrestrial taxa. We test whether (i) local long-term biodiversity trends are consistent among biogeoregions, realms and taxonomic groups, and (ii) changes in biodiversity correlate with regional climate and local conditions. Our results reveal that local trends of abundance, richness and diversity differ among biogeoregions, realms and taxonomic groups, demonstrating that biodiversity changes at local scale are often complex and cannot be easily generalized. However, we find increases in richness and abundance with increasing temperature and naturalness as well as a clear spatial pattern in changes in community composition (i.e. temporal taxonomic turnover) in most biogeoregions of Northern and Eastern Europe.
NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAHELDA - Digital Repository of the University of HelsinkiArticle . 2020 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiUniversity of Oulu Repository - JultikaArticle . 2020Data sources: University of Oulu Repository - JultikaCopenhagen University Research Information SystemArticle . 2020Data sources: Copenhagen University Research Information SystemPublikationer från Umeå universitetArticle . 2020 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Universitätsbibliographie, Universität Duisburg-EssenArticle . 2020Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-17171-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 374 citations 374 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 45visibility views 45 download downloads 72 Powered bymore_vert NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAHELDA - Digital Repository of the University of HelsinkiArticle . 2020 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiUniversity of Oulu Repository - JultikaArticle . 2020Data sources: University of Oulu Repository - JultikaCopenhagen University Research Information SystemArticle . 2020Data sources: Copenhagen University Research Information SystemPublikationer från Umeå universitetArticle . 2020 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Universitätsbibliographie, Universität Duisburg-EssenArticle . 2020Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-17171-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United KingdomPublisher:Elsevier BV Monteith, Don; Henrys, Peter; Banin, Lindsay; Smith, Ron; Morecroft, Mike; Scott, Tony; Andrews, Chris; Beaumont, Deborah; Benham, Sue; Bowmaker, Victoria; Corbett, Stuart; Dick, Jan; Dodd, Bev; Dodd, Nicki; McKenna, Colm; McMillan, Simon; Pallett, Denise; Pereira, M. Gloria; Poskitt, Jan; Rennie, Sue; Rose, Rob; Schafer, Stefanie; Sherrin, Lorna; Tang, Sim; Turner, Alex; Watson, Helen;We characterised temporal trends and variability in key indicators of climate and atmospheric deposition chemistry at the twelve terrestrial UK Environmental Change Network (ECN) sites over the first two decades of ECN monitoring (1993–2012) using various statistical approaches. Mean air temperatures for the monitoring period were approximately 0.7 °C higher than those modelled for 1961–1990, but there was little evidence for significant change in air temperature over either the full monthly records or within individual seasons. Some upland ECN sites, however, warmed significantly over the first decade before cooling in the second. Summers at most sites became progressively wetter, and extremes in daily rainfall increased in magnitude. Average wind speeds in winter and spring declined at the majority of sites. Directional trends in summer precipitation could be linked to an atypically prolonged negative deviation in the summer North Atlantic Oscillation (NAO) Index. Several aspects of air quality improved markedly. Concentrations and fluxes of sulphate in precipitation declined significantly and substantially across the network, particularly during the earlier years and at the most polluted sites in the south and east. Precipitation concentrations of nitrate and ammonium, and atmospheric concentrations of nitrogen dioxide also decreased at most sites. There was less evidence for reductions in the loads of wet deposited nitrogen species, while trends in atmospheric ammonia concentration varied in direction and strength between sites. Reductions in acid deposition are likely to account for widespread gradual increases in the pH of soil water at ECN sites, representing partial recovery from acidification. Overall, therefore, ECN sites have experienced marked changes in atmospheric chemistry and weather regimes over the last two decades that might be expected to have exerted detectable effects on ecosystem structure and function. While the downward trend in acid deposition is unlikely to be reversed, it is too early to conclude whether the trend towards wetter summers simply represents a phase in a multi-decadal cycle, or is indicative of a more directional shift in climate. Conversely, the first two decades of ECN now provide a relatively stable long-term baseline with respect to air temperature, against which effects of anticipated future warming on these ecosystems should be able to be assessed robustly.
NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2016License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecolind.2016.01.061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2016License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecolind.2016.01.061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Sweden, France, Italy, Netherlands, France, Italy, Spain, Netherlands, Italy, Norway, United Kingdom, Italy, Netherlands, United Kingdom, Denmark, Belgium, Portugal, Finland, SwedenPublisher:Springer Science and Business Media LLC Funded by:EC | eLTER PLUS, UKRI | UK Status, Change and Pro..., FCT | Centre for Functional Eco...EC| eLTER PLUS ,UKRI| UK Status, Change and Projections of the Environment (UK-SCaPE) ,FCT| Centre for Functional EcologyD. A. Beaumont; Don Monteith; Herman Hummel; Henning Meesenburg; Audrey Alignier; Filipe Martinho; D. Pallett; Vesela Evtimova; Liat Hadar; Renate Alber; Patricia Cardoso; Francesca Pilotto; Francesca Pilotto; Bogdan Jaroszewicz; Ricardo García-González; Susanne C. Schneider; Radoslav Stanchev; Dāvis Ozoliņš; Luc Barbaro; Daniel Gómez García; Anne Thimonier; Sue Benham; Marcus Schaub; Tanja Pipan; Bachisio Mario Padedda; Karline Soetaert; Juha Pöyry; Daniel Oro; Reima Leinonen; Lisa Sundqvist; Lubos Halada; Gunther Van Ryckegem; Ingrid Kröncke; Agnija Skuja; Elisa Camatti; Gert Van Hoey; Gert Everaert; Christopher Andrews; Vincent Bretagnolle; Miguel Ângelo Pardal; Marco Pansera; Henrik Kalivoda; Ingolf Kühn; Ingolf Kühn; Natalie Beenaerts; Stefan Stoll; Stefan Stoll; Rita Adrian; Thomas C. Jensen; Boris P. Nikolov; Kaisa-Leena Huttunen; David S. Boukal; David S. Boukal; Bruno J. Ens; Roberto Canullo; Stefano Minerbi; Ulf Grandin; Gunta Spriņģe; Julia S. Meyer; Heidrun Feuchtmayr; Samuel Vorhauser; Melinda Halassy; Bruno Petriccione; Jerzy M. Gutowski; Jenni A. Stockan; S. Schafer; Peter Haase; Peter Haase; Jaana Bäck; Inger Kappel Schmidt; Marcel E. Visser;pmid: 32661354
pmc: PMC7359034
AbstractLocal biodiversity trends over time are likely to be decoupled from global trends, as local processes may compensate or counteract global change. We analyze 161 long-term biological time series (15–91 years) collected across Europe, using a comprehensive dataset comprising ~6,200 marine, freshwater and terrestrial taxa. We test whether (i) local long-term biodiversity trends are consistent among biogeoregions, realms and taxonomic groups, and (ii) changes in biodiversity correlate with regional climate and local conditions. Our results reveal that local trends of abundance, richness and diversity differ among biogeoregions, realms and taxonomic groups, demonstrating that biodiversity changes at local scale are often complex and cannot be easily generalized. However, we find increases in richness and abundance with increasing temperature and naturalness as well as a clear spatial pattern in changes in community composition (i.e. temporal taxonomic turnover) in most biogeoregions of Northern and Eastern Europe.
NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAHELDA - Digital Repository of the University of HelsinkiArticle . 2020 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiUniversity of Oulu Repository - JultikaArticle . 2020Data sources: University of Oulu Repository - JultikaCopenhagen University Research Information SystemArticle . 2020Data sources: Copenhagen University Research Information SystemPublikationer från Umeå universitetArticle . 2020 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Universitätsbibliographie, Universität Duisburg-EssenArticle . 2020Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-17171-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 374 citations 374 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 45visibility views 45 download downloads 72 Powered bymore_vert NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAHELDA - Digital Repository of the University of HelsinkiArticle . 2020 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiUniversity of Oulu Repository - JultikaArticle . 2020Data sources: University of Oulu Repository - JultikaCopenhagen University Research Information SystemArticle . 2020Data sources: Copenhagen University Research Information SystemPublikationer från Umeå universitetArticle . 2020 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Universitätsbibliographie, Universität Duisburg-EssenArticle . 2020Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-17171-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United KingdomPublisher:Elsevier BV Monteith, Don; Henrys, Peter; Banin, Lindsay; Smith, Ron; Morecroft, Mike; Scott, Tony; Andrews, Chris; Beaumont, Deborah; Benham, Sue; Bowmaker, Victoria; Corbett, Stuart; Dick, Jan; Dodd, Bev; Dodd, Nicki; McKenna, Colm; McMillan, Simon; Pallett, Denise; Pereira, M. Gloria; Poskitt, Jan; Rennie, Sue; Rose, Rob; Schafer, Stefanie; Sherrin, Lorna; Tang, Sim; Turner, Alex; Watson, Helen;We characterised temporal trends and variability in key indicators of climate and atmospheric deposition chemistry at the twelve terrestrial UK Environmental Change Network (ECN) sites over the first two decades of ECN monitoring (1993–2012) using various statistical approaches. Mean air temperatures for the monitoring period were approximately 0.7 °C higher than those modelled for 1961–1990, but there was little evidence for significant change in air temperature over either the full monthly records or within individual seasons. Some upland ECN sites, however, warmed significantly over the first decade before cooling in the second. Summers at most sites became progressively wetter, and extremes in daily rainfall increased in magnitude. Average wind speeds in winter and spring declined at the majority of sites. Directional trends in summer precipitation could be linked to an atypically prolonged negative deviation in the summer North Atlantic Oscillation (NAO) Index. Several aspects of air quality improved markedly. Concentrations and fluxes of sulphate in precipitation declined significantly and substantially across the network, particularly during the earlier years and at the most polluted sites in the south and east. Precipitation concentrations of nitrate and ammonium, and atmospheric concentrations of nitrogen dioxide also decreased at most sites. There was less evidence for reductions in the loads of wet deposited nitrogen species, while trends in atmospheric ammonia concentration varied in direction and strength between sites. Reductions in acid deposition are likely to account for widespread gradual increases in the pH of soil water at ECN sites, representing partial recovery from acidification. Overall, therefore, ECN sites have experienced marked changes in atmospheric chemistry and weather regimes over the last two decades that might be expected to have exerted detectable effects on ecosystem structure and function. While the downward trend in acid deposition is unlikely to be reversed, it is too early to conclude whether the trend towards wetter summers simply represents a phase in a multi-decadal cycle, or is indicative of a more directional shift in climate. Conversely, the first two decades of ECN now provide a relatively stable long-term baseline with respect to air temperature, against which effects of anticipated future warming on these ecosystems should be able to be assessed robustly.
NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2016License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecolind.2016.01.061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2016License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecolind.2016.01.061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu