- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2021 ItalyPublisher:MDPI AG Balassone G.; Manfredi C.; Vasca E.; Bianco M.; Boni M.; Di Nunzio A.; Lombardo F.; Mozzillo R.; Marino A.; Mormone A.; Mura G.; Trifuoggi M.; Mondillo N.;doi: 10.3390/su132414000
handle: 11588/867147 , 11386/4777463
The present research represents an approach toward the recycling of extractive waste inspired by circular economy and sustainability that is developed in accordance with Goal 12 of the United Nations 2030 Agenda for Sustainable Development Goals. A new procedure for the recovery of REEs from fluorite–barite–galena ores with calcite gangue from the Silius mine (Sardinia, Italy) is presented. The considered samples are waste materials of Silius mineralization, collected in the old processing plant of Assemini (near Cagliari). In this orebody, REE minerals consist of prevailing synchysite (a REE-bearing fluorocarbonate) and subordinate xenotime-Y (a Y-bearing phosphate). REE fluorocarbonates are extracted using 50% K2CO3 as the leaching solution, at 100 °C. Using a solution (mL)/sample (g) ratio of 25, about 10% of the total REE content of the considered sample is extracted within 1 h. At the laboratory scale, such alkaline leaching of REE from the waste materials allows the recovery of the CO2 produced as K2CO3 from concentrated KOH, in accordance with a circular flow. Further work is ongoing to scale up the process into a pilot plant, to prove that the method developed within this research can be economically feasible, socially suitable, and environmentally respectful.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing InstituteArchivio della Ricerca - Università di SalernoArticle . 2021Data sources: Archivio della Ricerca - Università di Salernoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132414000&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing InstituteArchivio della Ricerca - Università di SalernoArticle . 2021Data sources: Archivio della Ricerca - Università di Salernoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132414000&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2021 ItalyPublisher:MDPI AG Balassone G.; Manfredi C.; Vasca E.; Bianco M.; Boni M.; Di Nunzio A.; Lombardo F.; Mozzillo R.; Marino A.; Mormone A.; Mura G.; Trifuoggi M.; Mondillo N.;doi: 10.3390/su132414000
handle: 11588/867147 , 11386/4777463
The present research represents an approach toward the recycling of extractive waste inspired by circular economy and sustainability that is developed in accordance with Goal 12 of the United Nations 2030 Agenda for Sustainable Development Goals. A new procedure for the recovery of REEs from fluorite–barite–galena ores with calcite gangue from the Silius mine (Sardinia, Italy) is presented. The considered samples are waste materials of Silius mineralization, collected in the old processing plant of Assemini (near Cagliari). In this orebody, REE minerals consist of prevailing synchysite (a REE-bearing fluorocarbonate) and subordinate xenotime-Y (a Y-bearing phosphate). REE fluorocarbonates are extracted using 50% K2CO3 as the leaching solution, at 100 °C. Using a solution (mL)/sample (g) ratio of 25, about 10% of the total REE content of the considered sample is extracted within 1 h. At the laboratory scale, such alkaline leaching of REE from the waste materials allows the recovery of the CO2 produced as K2CO3 from concentrated KOH, in accordance with a circular flow. Further work is ongoing to scale up the process into a pilot plant, to prove that the method developed within this research can be economically feasible, socially suitable, and environmentally respectful.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing InstituteArchivio della Ricerca - Università di SalernoArticle . 2021Data sources: Archivio della Ricerca - Università di Salernoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132414000&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing InstituteArchivio della Ricerca - Università di SalernoArticle . 2021Data sources: Archivio della Ricerca - Università di Salernoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132414000&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu