- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 01 Jan 2020 Switzerland, BrazilPublisher:Frontiers Media SA Authors: Luiz G. M. Silva; Luiz G. M. Silva;Nathan Ning;
Craig A. Boys; +8 AuthorsNathan Ning
Nathan Ning in OpenAIRELuiz G. M. Silva; Luiz G. M. Silva;Nathan Ning;
Craig A. Boys; Craig A. Boys;Nathan Ning
Nathan Ning in OpenAIRETao Fu;
Eduardo Meneguzzi Brambilla; Jan A. du Preez;Z. Daniel Deng;
Z. Daniel Deng
Z. Daniel Deng in OpenAIREWayne Robinson;
Katherine E. Doyle;Wayne Robinson
Wayne Robinson in OpenAIRELee J. Baumgartner;
Lee J. Baumgartner
Lee J. Baumgartner in OpenAIREhandle: 11449/208922
Pumped hydroelectric energy storage (PHES) projects are being considered worldwide to achieve renewable energy targets and to stabilize baseload energy supply from intermittent renewable energy sources. Unlike conventional hydroelectric systems that only pass water downstream, a feature of PHES schemes is that they rely on bi-directional water flow. In some cases, this flow can be across different waterbodies or catchments, posing a risk of inadvertently expanding the range of aquatic biota such as fish. The risk of this happening depends on the likelihood of survival of individuals, which remains poorly understood for turbines that are pumping rather than generating. This study quantified the survival of a globally widespread and invasive poeciliid fish, Eastern gambusia (Gambusia holbrooki), when exposed to three hydraulic stresses characteristic of those experienced through a PHES during the pumping phase. A shear flume and hyperbaric chamber were used to expose fish to different strain rates and rapid and sustained pressurization, respectively. Blade strike models were also used to predict fish survival through a Francis dual turbine/pump. Simulated ranges were based on design and operational conditions provided for a PHES scheme proposed in south-eastern Australia. All gambusia tested survived high levels of shear stress (up to 1,853 s−1), extremely high pressurization (up to 7,600 kPa gauge pressure) and the majority (>93%) were unlikely to be struck by a turbine blade. Given their tolerance to these extreme simulated stresses, we conclude that gambusia will likely survive passage through the simulated PHES scheme if they are entrained at the intake. Therefore, where a new PHES project poses the risk of inadvertently expanding the range of gambusia or similar poeciliid species, measures to minimize their spread or mitigate their ecosystem impacts should be considered. Frontiers in Environmental Science, 8 ISSN:2296-665X
Frontiers in Environ... arrow_drop_down Frontiers in Environmental ScienceArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefUniversidade Estadual Paulista São Paulo: Repositório Institucional UNESPArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenvs.2020.563654&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Frontiers in Environ... arrow_drop_down Frontiers in Environmental ScienceArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefUniversidade Estadual Paulista São Paulo: Repositório Institucional UNESPArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenvs.2020.563654&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 01 Jan 2020 Switzerland, BrazilPublisher:Frontiers Media SA Authors: Luiz G. M. Silva; Luiz G. M. Silva;Nathan Ning;
Craig A. Boys; +8 AuthorsNathan Ning
Nathan Ning in OpenAIRELuiz G. M. Silva; Luiz G. M. Silva;Nathan Ning;
Craig A. Boys; Craig A. Boys;Nathan Ning
Nathan Ning in OpenAIRETao Fu;
Eduardo Meneguzzi Brambilla; Jan A. du Preez;Z. Daniel Deng;
Z. Daniel Deng
Z. Daniel Deng in OpenAIREWayne Robinson;
Katherine E. Doyle;Wayne Robinson
Wayne Robinson in OpenAIRELee J. Baumgartner;
Lee J. Baumgartner
Lee J. Baumgartner in OpenAIREhandle: 11449/208922
Pumped hydroelectric energy storage (PHES) projects are being considered worldwide to achieve renewable energy targets and to stabilize baseload energy supply from intermittent renewable energy sources. Unlike conventional hydroelectric systems that only pass water downstream, a feature of PHES schemes is that they rely on bi-directional water flow. In some cases, this flow can be across different waterbodies or catchments, posing a risk of inadvertently expanding the range of aquatic biota such as fish. The risk of this happening depends on the likelihood of survival of individuals, which remains poorly understood for turbines that are pumping rather than generating. This study quantified the survival of a globally widespread and invasive poeciliid fish, Eastern gambusia (Gambusia holbrooki), when exposed to three hydraulic stresses characteristic of those experienced through a PHES during the pumping phase. A shear flume and hyperbaric chamber were used to expose fish to different strain rates and rapid and sustained pressurization, respectively. Blade strike models were also used to predict fish survival through a Francis dual turbine/pump. Simulated ranges were based on design and operational conditions provided for a PHES scheme proposed in south-eastern Australia. All gambusia tested survived high levels of shear stress (up to 1,853 s−1), extremely high pressurization (up to 7,600 kPa gauge pressure) and the majority (>93%) were unlikely to be struck by a turbine blade. Given their tolerance to these extreme simulated stresses, we conclude that gambusia will likely survive passage through the simulated PHES scheme if they are entrained at the intake. Therefore, where a new PHES project poses the risk of inadvertently expanding the range of gambusia or similar poeciliid species, measures to minimize their spread or mitigate their ecosystem impacts should be considered. Frontiers in Environmental Science, 8 ISSN:2296-665X
Frontiers in Environ... arrow_drop_down Frontiers in Environmental ScienceArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefUniversidade Estadual Paulista São Paulo: Repositório Institucional UNESPArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenvs.2020.563654&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Frontiers in Environ... arrow_drop_down Frontiers in Environmental ScienceArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefUniversidade Estadual Paulista São Paulo: Repositório Institucional UNESPArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenvs.2020.563654&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 AustraliaPublisher:CSIRO Publishing Authors: Lucrezi, S;Schlacher, T;
Schlacher, T
Schlacher, T in OpenAIRERobinson, W A;
Robinson, W A
Robinson, W A in OpenAIREdoi: 10.1071/mf09259
Increased storminess is a likely consequence of global climate change; its effects may be most dramatic on coasts dominated by sandy beaches. This scenario demands that the impacts of storms and the role of armouring structures, constructed as storm defences, are better understood. Here, we assess how a relatively small storm affected beach morphology and macrobenthos, and whether a seawall can modulate such impacts. The study system was a small (<1.5 km long) beach, bisected into parts with and without a seawall. The beach became narrower and steeper during the storm, when 26% of the subaerial sediment prism eroded from the armoured section; sand losses on the unarmoured part were one-fifth of those on the armoured part. Densities of ghost crabs (Ocypode) dropped significantly (36%) and were to some extent modulated by shore armouring; losses were high (62%) just seawards of the seawall where post-storm densities remained consistently lower. There was no ecological recovery in the short term, with most (83%) post-storm density values of crabs being lower, and crab counts in front of the seawall being depressed up to 3 months after the storm. Seawalls can change the resilience of beaches to storms, which may result in stronger ecological effects on armoured coasts.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1071/mf09259&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu61 citations 61 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1071/mf09259&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 AustraliaPublisher:CSIRO Publishing Authors: Lucrezi, S;Schlacher, T;
Schlacher, T
Schlacher, T in OpenAIRERobinson, W A;
Robinson, W A
Robinson, W A in OpenAIREdoi: 10.1071/mf09259
Increased storminess is a likely consequence of global climate change; its effects may be most dramatic on coasts dominated by sandy beaches. This scenario demands that the impacts of storms and the role of armouring structures, constructed as storm defences, are better understood. Here, we assess how a relatively small storm affected beach morphology and macrobenthos, and whether a seawall can modulate such impacts. The study system was a small (<1.5 km long) beach, bisected into parts with and without a seawall. The beach became narrower and steeper during the storm, when 26% of the subaerial sediment prism eroded from the armoured section; sand losses on the unarmoured part were one-fifth of those on the armoured part. Densities of ghost crabs (Ocypode) dropped significantly (36%) and were to some extent modulated by shore armouring; losses were high (62%) just seawards of the seawall where post-storm densities remained consistently lower. There was no ecological recovery in the short term, with most (83%) post-storm density values of crabs being lower, and crab counts in front of the seawall being depressed up to 3 months after the storm. Seawalls can change the resilience of beaches to storms, which may result in stronger ecological effects on armoured coasts.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1071/mf09259&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu61 citations 61 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1071/mf09259&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016Publisher:The Company of Biologists Craig A. Boys; Brett D. Pflugrath; Brett Miller; Richard S. Brown;Anna Navarro;
Anna Navarro
Anna Navarro in OpenAIRELee J. Baumgartner;
Lee J. Baumgartner;Lee J. Baumgartner
Lee J. Baumgartner in OpenAIREWayne Robinson;
Wayne Robinson
Wayne Robinson in OpenAIREZhiqun Deng;
Zhiqun Deng
Zhiqun Deng in OpenAIREABSTRACTEgg and larval fish that drift downstream are likely to encounter river infrastructure and consequently rapid decompression, which may result in significant injury. Pressure-related injury (or barotrauma) has been shown in juvenile fishes when pressure falls sufficiently below that at which the fish has acclimated. There is a presumption that eggs and larvae may be at least as, if not more, susceptible to barotrauma injury because they are far less-developed and more fragile than juveniles, but studies to date report inconsistent results and none have considered the relationship between pressure change and barotrauma over a sufficiently broad range of pressure changes to enable tolerances to be properly determined. To address this, we exposed eggs and larvae of three physoclistic species to rapid decompression in a barometric chamber over a broad range of discrete pressure changes. Eggs, but not larvae, were unaffected by all levels of decompression tested. At exposure pressures below ∼40 kPa, or ∼40% of surface pressure, swim bladder deflation occurred in all species and internal haemorrhage was observed in one species. None of these injuries killed the fish within 24 h, but subsequent mortality cannot be excluded. Consequently, if larval drift is expected where river infrastructure is present, adopting design or operational features which maintain exposure pressures at 40% or more of the pressure to which drifting larvae are acclimated may afford greater protection for resident fishes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1242/bio.017491&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1242/bio.017491&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016Publisher:The Company of Biologists Craig A. Boys; Brett D. Pflugrath; Brett Miller; Richard S. Brown;Anna Navarro;
Anna Navarro
Anna Navarro in OpenAIRELee J. Baumgartner;
Lee J. Baumgartner;Lee J. Baumgartner
Lee J. Baumgartner in OpenAIREWayne Robinson;
Wayne Robinson
Wayne Robinson in OpenAIREZhiqun Deng;
Zhiqun Deng
Zhiqun Deng in OpenAIREABSTRACTEgg and larval fish that drift downstream are likely to encounter river infrastructure and consequently rapid decompression, which may result in significant injury. Pressure-related injury (or barotrauma) has been shown in juvenile fishes when pressure falls sufficiently below that at which the fish has acclimated. There is a presumption that eggs and larvae may be at least as, if not more, susceptible to barotrauma injury because they are far less-developed and more fragile than juveniles, but studies to date report inconsistent results and none have considered the relationship between pressure change and barotrauma over a sufficiently broad range of pressure changes to enable tolerances to be properly determined. To address this, we exposed eggs and larvae of three physoclistic species to rapid decompression in a barometric chamber over a broad range of discrete pressure changes. Eggs, but not larvae, were unaffected by all levels of decompression tested. At exposure pressures below ∼40 kPa, or ∼40% of surface pressure, swim bladder deflation occurred in all species and internal haemorrhage was observed in one species. None of these injuries killed the fish within 24 h, but subsequent mortality cannot be excluded. Consequently, if larval drift is expected where river infrastructure is present, adopting design or operational features which maintain exposure pressures at 40% or more of the pressure to which drifting larvae are acclimated may afford greater protection for resident fishes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1242/bio.017491&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1242/bio.017491&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2014 Netherlands, United StatesPublisher:Springer Science and Business Media LLC Authors:Buss, Daniel F.;
Carlisle, Daren M.; Chon, Tae-Soo; Culp, Joseph; +6 AuthorsBuss, Daniel F.
Buss, Daniel F. in OpenAIREBuss, Daniel F.;
Carlisle, Daren M.; Chon, Tae-Soo; Culp, Joseph; Harding, Jon S.; Keizer-Vlek, Hanneke E.;Buss, Daniel F.
Buss, Daniel F. in OpenAIRERobinson, Wayne A.;
Strachan, Stephanie; Thirion, Christa; Hughes, Robert M.;Robinson, Wayne A.
Robinson, Wayne A. in OpenAIREpmid: 25487459
Water quality agencies and scientists are increasingly adopting standardized sampling methodologies because of the challenges associated with interpreting data derived from dissimilar protocols. Here, we compare 13 protocols for monitoring streams from different regions and countries around the globe. Despite the spatially diverse range of countries assessed, many aspects of bioassessment structure and protocols were similar, thereby providing evidence of key characteristics that might be incorporated in a global sampling methodology. Similarities were found regarding sampler type, mesh size, sampling period, subsampling methods, and taxonomic resolution. Consistent field and laboratory methods are essential for merging data sets collected by multiple institutions to enable large-scale comparisons. We discuss the similarities and differences among protocols and present current trends and future recommendations for monitoring programs, especially for regions where large-scale protocols do not yet exist. We summarize the current state in one of these regions, Latin America, and comment on the possible development path for these techniques in this region. We conclude that several aspects of stream biomonitoring need additional performance evaluation (accuracy, precision, discriminatory power, relative costs), particularly when comparing targeted habitat (only the commonest habitat type) versus site-wide sampling (multiple habitat types), appropriate levels of sampling and processing effort, and standardized indicators to resolve dissimilarities among biomonitoring methods. Global issues such as climate change are creating an environment where there is an increasing need to have universally consistent data collection, processing and storage to enable large-scale trend analysis. Biomonitoring programs following standardized methods could aid international data sharing and interpretation.
Environmental Monito... arrow_drop_down Environmental Monitoring and AssessmentArticle . 2015Data sources: DANS (Data Archiving and Networked Services)Environmental Monitoring and AssessmentArticle . 2014 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10661-014-4132-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu237 citations 237 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Environmental Monito... arrow_drop_down Environmental Monitoring and AssessmentArticle . 2015Data sources: DANS (Data Archiving and Networked Services)Environmental Monitoring and AssessmentArticle . 2014 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10661-014-4132-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2014 Netherlands, United StatesPublisher:Springer Science and Business Media LLC Authors:Buss, Daniel F.;
Carlisle, Daren M.; Chon, Tae-Soo; Culp, Joseph; +6 AuthorsBuss, Daniel F.
Buss, Daniel F. in OpenAIREBuss, Daniel F.;
Carlisle, Daren M.; Chon, Tae-Soo; Culp, Joseph; Harding, Jon S.; Keizer-Vlek, Hanneke E.;Buss, Daniel F.
Buss, Daniel F. in OpenAIRERobinson, Wayne A.;
Strachan, Stephanie; Thirion, Christa; Hughes, Robert M.;Robinson, Wayne A.
Robinson, Wayne A. in OpenAIREpmid: 25487459
Water quality agencies and scientists are increasingly adopting standardized sampling methodologies because of the challenges associated with interpreting data derived from dissimilar protocols. Here, we compare 13 protocols for monitoring streams from different regions and countries around the globe. Despite the spatially diverse range of countries assessed, many aspects of bioassessment structure and protocols were similar, thereby providing evidence of key characteristics that might be incorporated in a global sampling methodology. Similarities were found regarding sampler type, mesh size, sampling period, subsampling methods, and taxonomic resolution. Consistent field and laboratory methods are essential for merging data sets collected by multiple institutions to enable large-scale comparisons. We discuss the similarities and differences among protocols and present current trends and future recommendations for monitoring programs, especially for regions where large-scale protocols do not yet exist. We summarize the current state in one of these regions, Latin America, and comment on the possible development path for these techniques in this region. We conclude that several aspects of stream biomonitoring need additional performance evaluation (accuracy, precision, discriminatory power, relative costs), particularly when comparing targeted habitat (only the commonest habitat type) versus site-wide sampling (multiple habitat types), appropriate levels of sampling and processing effort, and standardized indicators to resolve dissimilarities among biomonitoring methods. Global issues such as climate change are creating an environment where there is an increasing need to have universally consistent data collection, processing and storage to enable large-scale trend analysis. Biomonitoring programs following standardized methods could aid international data sharing and interpretation.
Environmental Monito... arrow_drop_down Environmental Monitoring and AssessmentArticle . 2015Data sources: DANS (Data Archiving and Networked Services)Environmental Monitoring and AssessmentArticle . 2014 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10661-014-4132-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu237 citations 237 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Environmental Monito... arrow_drop_down Environmental Monitoring and AssessmentArticle . 2015Data sources: DANS (Data Archiving and Networked Services)Environmental Monitoring and AssessmentArticle . 2014 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10661-014-4132-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Dana Lee;Jackman C. Eschenroeder;
Jackman C. Eschenroeder
Jackman C. Eschenroeder in OpenAIRELee J. Baumgartner;
Lee J. Baumgartner
Lee J. Baumgartner in OpenAIREBunyeth Chan;
+13 AuthorsBunyeth Chan
Bunyeth Chan in OpenAIREDana Lee;Jackman C. Eschenroeder;
Jackman C. Eschenroeder
Jackman C. Eschenroeder in OpenAIRELee J. Baumgartner;
Lee J. Baumgartner
Lee J. Baumgartner in OpenAIREBunyeth Chan;
Sudeep Chandra;Bunyeth Chan
Bunyeth Chan in OpenAIRESeila Chea;
Sothearoth Chea; Chheana Chhut;Seila Chea
Seila Chea in OpenAIREElizabeth Everest;
Radong Hom; Kong Heng; Stefan Lovgren; Sinsamout Ounboundisane;Elizabeth Everest
Elizabeth Everest in OpenAIREWayne Robinson;
Lykheang Seat; Sobot Soth;Wayne Robinson
Wayne Robinson in OpenAIREZeb S. Hogan;
Zeb S. Hogan
Zeb S. Hogan in OpenAIREdoi: 10.3390/w15101936
The Mekong River is one of the most biodiverse, productive rivers in the world, supporting more than 1000 fish species and the livelihoods of tens of millions of people. The spatial dynamics and population status of many Mekong fish species, especially megafishes, are poorly understood. Therefore, this information is rarely incorporated into environmental risk assessments for large infrastructure projects, such as mainstream hydropower developments, which have been accelerating rapidly in the Mekong Basin. In this study, we present initial findings from the ongoing, collaborative, transnational acoustic telemetry monitoring of nearly 300 tagged fishes representing 27 species, which yield important insights into the potential impacts that proposed hydropower dams would have on populations of ecologically and economically important fish species. Included in these data are more than ten months of hydrophone records tracking the location of a 300 kg giant freshwater stingray, Urogymnus polylepis (Bleeker, 1852), currently the world’s largest known freshwater fish, used to detect its migration behavior and distribution patterns. The telemetry data, combined with fisher surveys used to gather local ecological knowledge, provide evidence that the proposed dams would fragment the existing populations of this iconic species as well as those of other fish species that support river food web balance and local food systems. Furthermore, the existence of giant freshwater stringray populations and other unique megafauna reinforces the universal natural heritage value of the stretch of the Mekong River between the Lao People’s Democratic Republic/Cambodia border and the city of Kratie. This stretch of river is located between two proposed megadams, the 900 MW Stung Treng Dam and the 2300 MW Sambor Dam. However, the Cambodian Ministry of Environment has also proposed this area for designation as a UNESCO World Heritage Site (Biosphere Reserve). The documentation of the movement of migratory fishes through this reach of the river using acoustic telemetry, the surprising discovery of the world’s largest freshwater fish, the potential threat posed by dam construction, and the management ramifications of UNESCO World Heritage Site designation underscore the importance of scientific research and community involvement in landscape-scale development decisions. The decisions made today will affect the fate of this global biodiversity hotspot, the world’s most productive inland fisheries, and the livelihoods of millions of people throughout the Lower Mekong Basin.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w15101936&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w15101936&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Dana Lee;Jackman C. Eschenroeder;
Jackman C. Eschenroeder
Jackman C. Eschenroeder in OpenAIRELee J. Baumgartner;
Lee J. Baumgartner
Lee J. Baumgartner in OpenAIREBunyeth Chan;
+13 AuthorsBunyeth Chan
Bunyeth Chan in OpenAIREDana Lee;Jackman C. Eschenroeder;
Jackman C. Eschenroeder
Jackman C. Eschenroeder in OpenAIRELee J. Baumgartner;
Lee J. Baumgartner
Lee J. Baumgartner in OpenAIREBunyeth Chan;
Sudeep Chandra;Bunyeth Chan
Bunyeth Chan in OpenAIRESeila Chea;
Sothearoth Chea; Chheana Chhut;Seila Chea
Seila Chea in OpenAIREElizabeth Everest;
Radong Hom; Kong Heng; Stefan Lovgren; Sinsamout Ounboundisane;Elizabeth Everest
Elizabeth Everest in OpenAIREWayne Robinson;
Lykheang Seat; Sobot Soth;Wayne Robinson
Wayne Robinson in OpenAIREZeb S. Hogan;
Zeb S. Hogan
Zeb S. Hogan in OpenAIREdoi: 10.3390/w15101936
The Mekong River is one of the most biodiverse, productive rivers in the world, supporting more than 1000 fish species and the livelihoods of tens of millions of people. The spatial dynamics and population status of many Mekong fish species, especially megafishes, are poorly understood. Therefore, this information is rarely incorporated into environmental risk assessments for large infrastructure projects, such as mainstream hydropower developments, which have been accelerating rapidly in the Mekong Basin. In this study, we present initial findings from the ongoing, collaborative, transnational acoustic telemetry monitoring of nearly 300 tagged fishes representing 27 species, which yield important insights into the potential impacts that proposed hydropower dams would have on populations of ecologically and economically important fish species. Included in these data are more than ten months of hydrophone records tracking the location of a 300 kg giant freshwater stingray, Urogymnus polylepis (Bleeker, 1852), currently the world’s largest known freshwater fish, used to detect its migration behavior and distribution patterns. The telemetry data, combined with fisher surveys used to gather local ecological knowledge, provide evidence that the proposed dams would fragment the existing populations of this iconic species as well as those of other fish species that support river food web balance and local food systems. Furthermore, the existence of giant freshwater stringray populations and other unique megafauna reinforces the universal natural heritage value of the stretch of the Mekong River between the Lao People’s Democratic Republic/Cambodia border and the city of Kratie. This stretch of river is located between two proposed megadams, the 900 MW Stung Treng Dam and the 2300 MW Sambor Dam. However, the Cambodian Ministry of Environment has also proposed this area for designation as a UNESCO World Heritage Site (Biosphere Reserve). The documentation of the movement of migratory fishes through this reach of the river using acoustic telemetry, the surprising discovery of the world’s largest freshwater fish, the potential threat posed by dam construction, and the management ramifications of UNESCO World Heritage Site designation underscore the importance of scientific research and community involvement in landscape-scale development decisions. The decisions made today will affect the fate of this global biodiversity hotspot, the world’s most productive inland fisheries, and the livelihoods of millions of people throughout the Lower Mekong Basin.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w15101936&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w15101936&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu