- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2021 FrancePublisher:Oxford University Press (OUP) Authors: Christine Girousse; Lauren Inchboard; Jean-Charles Deswarte; Karine Chenu;doi: 10.1093/jxb/erab282
pmid: 34125876
Abstract Wheat grain yield is anticipated to suffer from the increased temperatures expected under climate change. In particular, the effects of post-anthesis temperatures on grain growth and development must be better understood in order to improve crop models. Grain growth and development involve several processes, and we hypothesized that some of the most important processes, namely grain dry biomass and water accumulation, grain volume expansion, and endosperm cell proliferation, will have different thermal sensitivity. To assess this, we established temperature–response curves of these processes for steady post-anthesis temperatures between 15 °C and 36 °C. From anthesis to maturity, grain dry mass, water mass, volume, and endosperm cell number were monitored, whilst considering grain temperature. Different sensitivities to heat of these various processes were revealed. The rate of grain dry biomass accumulation increased linearly up to 25 °C, while the reciprocal of its duration increased linearly up to at least 32 °C. In contrast, the growth rates of traits contributing to grain expansion, such as increase in grain volume and cell numbers, had higher optimum temperatures, while the reciprocal of their durations were significantly lower. These temperature–response curves can contribute to improve current crop models, and allow targeting of specific mechanisms for genetic and genomic studies.
Institut National de... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Full-Text: https://hal.inrae.fr/hal-03293623Data sources: Bielefeld Academic Search Engine (BASE)Journal of Experimental BotanyArticle . 2021 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/jxb/erab282&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Institut National de... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Full-Text: https://hal.inrae.fr/hal-03293623Data sources: Bielefeld Academic Search Engine (BASE)Journal of Experimental BotanyArticle . 2021 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/jxb/erab282&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 France, France, France, NetherlandsPublisher:Oxford University Press (OUP) Fang, Liang; Struik, Paul; Girousse, Christine; Yin, Xinyou; Martre, Pierre;Abstract Grain filling is a critical process for improving crop production under adverse conditions caused by climate change. Here, using a quantitative method, we quantified post-anthesis source–sink relationships of a large dataset to assess the contribution of remobilized pre-anthesis assimilates to grain growth for both biomass and nitrogen. The dataset came from 13 years of semi-controlled field experimentation, in which six bread wheat genotypes were grown at plot scale under contrasting temperature, water, and nitrogen regimes. On average, grain biomass was ~10% higher than post-anthesis above-ground biomass accumulation across regimes and genotypes. Overall, the estimated relative contribution (%) of remobilized assimilates to grain biomass became increasingly significant with increasing stress intensity, ranging from virtually nil to 100%. This percentage was altered more by water and nitrogen regimes than by temperature, indicating the greater impact of water or nitrogen regimes relative to high temperatures under our experimental conditions. Relationships between grain nitrogen demand and post-anthesis nitrogen uptake were generally insensitive to environmental conditions, as there was always significant remobilization of nitrogen from vegetative organs, which helped to stabilize the amount of grain nitrogen. Moreover, variations in the relative contribution of remobilized assimilates with environmental variables were genotype dependent. Our analysis provides an overall picture of post-anthesis source–sink relationships and pre-anthesis assimilate contributions to grain filling across (non-)environmental factors, and highlights that designing wheat adaptation to climate change should account for complex multifactor interactions.
Journal of Experimen... arrow_drop_down Journal of Experimental BotanyArticle . 2024 . Peer-reviewedLicense: CC BY NCData sources: CrossrefWageningen Staff PublicationsArticle . 2024License: CC BY NCData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/jxb/erae310&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Experimen... arrow_drop_down Journal of Experimental BotanyArticle . 2024 . Peer-reviewedLicense: CC BY NCData sources: CrossrefWageningen Staff PublicationsArticle . 2024License: CC BY NCData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/jxb/erae310&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 United Kingdom, France, France, Australia, Finland, France, France, France, Netherlands, Netherlands, France, GermanyPublisher:Wiley Funded by:EC | AGREENSKILLSEC| AGREENSKILLSPierre Stratonovitch; Belay T. Kassie; Sara Minoli; Kurt Christian Kersebaum; Iwan Supit; Christian Biernath; Reimund P. Rötter; Andrew J. Challinor; Andrew J. Challinor; Soora Naresh Kumar; Zhao Zhang; Pierre Martre; Taru Palosuo; Daniel Wallach; Heidi Horan; Andrea Maiorano; Bruno Basso; Claudio O. Stöckle; Garry O'Leary; Mukhtar Ahmed; Mukhtar Ahmed; Davide Cammarano; Thilo Streck; Mikhail A. Semenov; Joost Wolf; Sebastian Gayler; Pramod K. Aggarwal; Ann-Kristin Koehler; Frank Ewert; Bing Liu; Bing Liu; Martin K. van Ittersum; Peter J. Thorburn; Yujing Gao; Benjamin Dumont; Claas Nendel; Fulu Tao; Curtis D Jones; Eckart Priesack; Christian Klein; Senthold Asseng; Christoph Müller; Christine Girousse; Gerrit Hoogenboom; Elias Fereres; Dominique Ripoche; Margarita Garcia-Vila; Ehsan Eyshi Rezaei; Giacomo De Sanctis; Roberto C. Izaurralde; Roberto C. Izaurralde; Glenn J. Fitzgerald;AbstractA recent innovation in assessment of climate change impact on agricultural production has been to use crop multimodel ensembles (MMEs). These studies usually find large variability between individual models but that the ensemble mean (e‐mean) and median (e‐median) often seem to predict quite well. However, few studies have specifically been concerned with the predictive quality of those ensemble predictors. We ask what is the predictive quality of e‐mean and e‐median, and how does that depend on the ensemble characteristics. Our empirical results are based on five MME studies applied to wheat, using different data sets but the same 25 crop models. We show that the ensemble predictors have quite high skill and are better than most and sometimes all individual models for most groups of environments and most response variables. Mean squared error of e‐mean decreases monotonically with the size of the ensemble if models are added at random, but has a minimum at usually 2–6 models if best‐fit models are added first. Our theoretical results describe the ensemble using four parameters: average bias, model effect variance, environment effect variance, and interaction variance. We show analytically that mean squared error of prediction (MSEP) of e‐mean will always be smaller than MSEP averaged over models and will be less than MSEP of the best model if squared bias is less than the interaction variance. If models are added to the ensemble at random, MSEP of e‐mean will decrease as the inverse of ensemble size, with a minimum equal to squared bias plus interaction variance. This minimum value is not necessarily small, and so it is important to evaluate the predictive quality of e‐mean for each target population of environments. These results provide new information on the advantages of ensemble predictors, but also show their limitations.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/97157Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2020Institut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14411&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 129 citations 129 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/97157Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2020Institut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14411&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 United Kingdom, United Kingdom, France, United Kingdom, France, France, Australia, France, Spain, Finland, Germany, Italy, France, Italy, France, United Kingdom, France, United Kingdom, Denmark, NetherlandsPublisher:Wiley Funded by:AKA | Integrated modelling of N..., AKA | Integrated modelling of N..., AKA | Pathways for linking unce... +1 projectsAKA| Integrated modelling of Nordic farming systems for sustainable intensification under climate change (NORFASYS) ,AKA| Integrated modelling of Nordic farming systems for sustainable intensification under climate change (NORFASYS) ,AKA| Pathways for linking uncertainties in model projections of climate and its effects / Consortium: PLUMES ,EC| AGREENSKILLSDavide Cammarano; Mikhail A. Semenov; Heidi Horan; Yujing Gao; Frank Ewert; Jørgen E. Olesen; Joost Wolf; Curtis D. Jones; M. Ali Babar; Belay T. Kassie; Manuel Montesino San Martin; Sebastian Gayler; Andrea Maiorano; Dominique Ripoche; Bing Liu; Bing Liu; Pierre Stratonovitch; Zhigan Zhao; Zhigan Zhao; Bruno Basso; Zhao Zhang; Liujun Xiao; Pierre Martre; Claudio O. Stöckle; Garry O'Leary; Mukhtar Ahmed; Mukhtar Ahmed; Elias Fereres; Taru Palosuo; Daniel Wallach; R. Cesar Izaurralde; R. Cesar Izaurralde; Matthew P. Reynolds; Reimund P. Rötter; Ann-Kristin Koehler; Marijn van der Velde; Andrew J. Challinor; Andrew J. Challinor; Peter J. Thorburn; Mohamed Jabloun; Rosella Motzo; Sara Minoli; Benjamin Dumont; Kurt Christian Kersebaum; Claas Nendel; Glenn J. Fitzgerald; Juraj Balkovic; Juraj Balkovic; Marco Bindi; Eckart Priesack; Heidi Webber; Enli Wang; Giacomo De Sanctis; Christian Klein; Christoph Müller; Gerrit Hoogenboom; Francesco Giunta; Alex C. Ruane; Christine Girousse; Margarita Garcia-Vila; Ehsan Eyshi Rezaei; Ehsan Eyshi Rezaei; Thilo Streck; Iwan Supit; Roberto Ferrise; Christian Biernath; Soora Naresh Kumar; Pramod K. Aggarwal; Fulu Tao; Katharina Waha; Yan Zhu; Senthold Asseng; Ahmed M. S. Kheir; John R. Porter; John R. Porter; John R. Porter;doi: 10.1111/gcb.14481
pmid: 30549200
handle: 10261/207120 , 11388/220816 , 2158/1147460 , 11343/284917 , 10568/106685
doi: 10.1111/gcb.14481
pmid: 30549200
handle: 10261/207120 , 11388/220816 , 2158/1147460 , 11343/284917 , 10568/106685
AbstractWheat grain protein concentration is an important determinant of wheat quality for human nutrition that is often overlooked in efforts to improve crop production. We tested and applied a 32‐multi‐model ensemble to simulate global wheat yield and quality in a changing climate. Potential benefits of elevated atmospheric CO2 concentration by 2050 on global wheat grain and protein yield are likely to be negated by impacts from rising temperature and changes in rainfall, but with considerable disparities between regions. Grain and protein yields are expected to be lower and more variable in most low‐rainfall regions, with nitrogen availability limiting growth stimulus from elevated CO2. Introducing genotypes adapted to warmer temperatures (and also considering changes in CO2 and rainfall) could boost global wheat yield by 7% and protein yield by 2%, but grain protein concentration would be reduced by −1.1 percentage points, representing a relative change of −8.6%. Climate change adaptations that benefit grain yield are not always positive for grain quality, putting additional pressure on global wheat production.
CORE arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2020Full-Text: https://hdl.handle.net/10568/106685Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAPublikationenserver der Georg-August-Universität GöttingenArticle . 2020Copenhagen University Research Information SystemArticle . 2019Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14481&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 386 citations 386 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 48visibility views 48 download downloads 74 Powered bymore_vert CORE arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2020Full-Text: https://hdl.handle.net/10568/106685Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAPublikationenserver der Georg-August-Universität GöttingenArticle . 2020Copenhagen University Research Information SystemArticle . 2019Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14481&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021 FrancePublisher:Oxford University Press (OUP) Authors: Christine Girousse; Lauren Inchboard; Jean-Charles Deswarte; Karine Chenu;doi: 10.1093/jxb/erab282
pmid: 34125876
Abstract Wheat grain yield is anticipated to suffer from the increased temperatures expected under climate change. In particular, the effects of post-anthesis temperatures on grain growth and development must be better understood in order to improve crop models. Grain growth and development involve several processes, and we hypothesized that some of the most important processes, namely grain dry biomass and water accumulation, grain volume expansion, and endosperm cell proliferation, will have different thermal sensitivity. To assess this, we established temperature–response curves of these processes for steady post-anthesis temperatures between 15 °C and 36 °C. From anthesis to maturity, grain dry mass, water mass, volume, and endosperm cell number were monitored, whilst considering grain temperature. Different sensitivities to heat of these various processes were revealed. The rate of grain dry biomass accumulation increased linearly up to 25 °C, while the reciprocal of its duration increased linearly up to at least 32 °C. In contrast, the growth rates of traits contributing to grain expansion, such as increase in grain volume and cell numbers, had higher optimum temperatures, while the reciprocal of their durations were significantly lower. These temperature–response curves can contribute to improve current crop models, and allow targeting of specific mechanisms for genetic and genomic studies.
Institut National de... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Full-Text: https://hal.inrae.fr/hal-03293623Data sources: Bielefeld Academic Search Engine (BASE)Journal of Experimental BotanyArticle . 2021 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/jxb/erab282&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Institut National de... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Full-Text: https://hal.inrae.fr/hal-03293623Data sources: Bielefeld Academic Search Engine (BASE)Journal of Experimental BotanyArticle . 2021 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/jxb/erab282&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 France, France, France, NetherlandsPublisher:Oxford University Press (OUP) Fang, Liang; Struik, Paul; Girousse, Christine; Yin, Xinyou; Martre, Pierre;Abstract Grain filling is a critical process for improving crop production under adverse conditions caused by climate change. Here, using a quantitative method, we quantified post-anthesis source–sink relationships of a large dataset to assess the contribution of remobilized pre-anthesis assimilates to grain growth for both biomass and nitrogen. The dataset came from 13 years of semi-controlled field experimentation, in which six bread wheat genotypes were grown at plot scale under contrasting temperature, water, and nitrogen regimes. On average, grain biomass was ~10% higher than post-anthesis above-ground biomass accumulation across regimes and genotypes. Overall, the estimated relative contribution (%) of remobilized assimilates to grain biomass became increasingly significant with increasing stress intensity, ranging from virtually nil to 100%. This percentage was altered more by water and nitrogen regimes than by temperature, indicating the greater impact of water or nitrogen regimes relative to high temperatures under our experimental conditions. Relationships between grain nitrogen demand and post-anthesis nitrogen uptake were generally insensitive to environmental conditions, as there was always significant remobilization of nitrogen from vegetative organs, which helped to stabilize the amount of grain nitrogen. Moreover, variations in the relative contribution of remobilized assimilates with environmental variables were genotype dependent. Our analysis provides an overall picture of post-anthesis source–sink relationships and pre-anthesis assimilate contributions to grain filling across (non-)environmental factors, and highlights that designing wheat adaptation to climate change should account for complex multifactor interactions.
Journal of Experimen... arrow_drop_down Journal of Experimental BotanyArticle . 2024 . Peer-reviewedLicense: CC BY NCData sources: CrossrefWageningen Staff PublicationsArticle . 2024License: CC BY NCData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/jxb/erae310&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Experimen... arrow_drop_down Journal of Experimental BotanyArticle . 2024 . Peer-reviewedLicense: CC BY NCData sources: CrossrefWageningen Staff PublicationsArticle . 2024License: CC BY NCData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/jxb/erae310&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 United Kingdom, France, France, Australia, Finland, France, France, France, Netherlands, Netherlands, France, GermanyPublisher:Wiley Funded by:EC | AGREENSKILLSEC| AGREENSKILLSPierre Stratonovitch; Belay T. Kassie; Sara Minoli; Kurt Christian Kersebaum; Iwan Supit; Christian Biernath; Reimund P. Rötter; Andrew J. Challinor; Andrew J. Challinor; Soora Naresh Kumar; Zhao Zhang; Pierre Martre; Taru Palosuo; Daniel Wallach; Heidi Horan; Andrea Maiorano; Bruno Basso; Claudio O. Stöckle; Garry O'Leary; Mukhtar Ahmed; Mukhtar Ahmed; Davide Cammarano; Thilo Streck; Mikhail A. Semenov; Joost Wolf; Sebastian Gayler; Pramod K. Aggarwal; Ann-Kristin Koehler; Frank Ewert; Bing Liu; Bing Liu; Martin K. van Ittersum; Peter J. Thorburn; Yujing Gao; Benjamin Dumont; Claas Nendel; Fulu Tao; Curtis D Jones; Eckart Priesack; Christian Klein; Senthold Asseng; Christoph Müller; Christine Girousse; Gerrit Hoogenboom; Elias Fereres; Dominique Ripoche; Margarita Garcia-Vila; Ehsan Eyshi Rezaei; Giacomo De Sanctis; Roberto C. Izaurralde; Roberto C. Izaurralde; Glenn J. Fitzgerald;AbstractA recent innovation in assessment of climate change impact on agricultural production has been to use crop multimodel ensembles (MMEs). These studies usually find large variability between individual models but that the ensemble mean (e‐mean) and median (e‐median) often seem to predict quite well. However, few studies have specifically been concerned with the predictive quality of those ensemble predictors. We ask what is the predictive quality of e‐mean and e‐median, and how does that depend on the ensemble characteristics. Our empirical results are based on five MME studies applied to wheat, using different data sets but the same 25 crop models. We show that the ensemble predictors have quite high skill and are better than most and sometimes all individual models for most groups of environments and most response variables. Mean squared error of e‐mean decreases monotonically with the size of the ensemble if models are added at random, but has a minimum at usually 2–6 models if best‐fit models are added first. Our theoretical results describe the ensemble using four parameters: average bias, model effect variance, environment effect variance, and interaction variance. We show analytically that mean squared error of prediction (MSEP) of e‐mean will always be smaller than MSEP averaged over models and will be less than MSEP of the best model if squared bias is less than the interaction variance. If models are added to the ensemble at random, MSEP of e‐mean will decrease as the inverse of ensemble size, with a minimum equal to squared bias plus interaction variance. This minimum value is not necessarily small, and so it is important to evaluate the predictive quality of e‐mean for each target population of environments. These results provide new information on the advantages of ensemble predictors, but also show their limitations.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/97157Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2020Institut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14411&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 129 citations 129 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/97157Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2020Institut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14411&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 United Kingdom, United Kingdom, France, United Kingdom, France, France, Australia, France, Spain, Finland, Germany, Italy, France, Italy, France, United Kingdom, France, United Kingdom, Denmark, NetherlandsPublisher:Wiley Funded by:AKA | Integrated modelling of N..., AKA | Integrated modelling of N..., AKA | Pathways for linking unce... +1 projectsAKA| Integrated modelling of Nordic farming systems for sustainable intensification under climate change (NORFASYS) ,AKA| Integrated modelling of Nordic farming systems for sustainable intensification under climate change (NORFASYS) ,AKA| Pathways for linking uncertainties in model projections of climate and its effects / Consortium: PLUMES ,EC| AGREENSKILLSDavide Cammarano; Mikhail A. Semenov; Heidi Horan; Yujing Gao; Frank Ewert; Jørgen E. Olesen; Joost Wolf; Curtis D. Jones; M. Ali Babar; Belay T. Kassie; Manuel Montesino San Martin; Sebastian Gayler; Andrea Maiorano; Dominique Ripoche; Bing Liu; Bing Liu; Pierre Stratonovitch; Zhigan Zhao; Zhigan Zhao; Bruno Basso; Zhao Zhang; Liujun Xiao; Pierre Martre; Claudio O. Stöckle; Garry O'Leary; Mukhtar Ahmed; Mukhtar Ahmed; Elias Fereres; Taru Palosuo; Daniel Wallach; R. Cesar Izaurralde; R. Cesar Izaurralde; Matthew P. Reynolds; Reimund P. Rötter; Ann-Kristin Koehler; Marijn van der Velde; Andrew J. Challinor; Andrew J. Challinor; Peter J. Thorburn; Mohamed Jabloun; Rosella Motzo; Sara Minoli; Benjamin Dumont; Kurt Christian Kersebaum; Claas Nendel; Glenn J. Fitzgerald; Juraj Balkovic; Juraj Balkovic; Marco Bindi; Eckart Priesack; Heidi Webber; Enli Wang; Giacomo De Sanctis; Christian Klein; Christoph Müller; Gerrit Hoogenboom; Francesco Giunta; Alex C. Ruane; Christine Girousse; Margarita Garcia-Vila; Ehsan Eyshi Rezaei; Ehsan Eyshi Rezaei; Thilo Streck; Iwan Supit; Roberto Ferrise; Christian Biernath; Soora Naresh Kumar; Pramod K. Aggarwal; Fulu Tao; Katharina Waha; Yan Zhu; Senthold Asseng; Ahmed M. S. Kheir; John R. Porter; John R. Porter; John R. Porter;doi: 10.1111/gcb.14481
pmid: 30549200
handle: 10261/207120 , 11388/220816 , 2158/1147460 , 11343/284917 , 10568/106685
doi: 10.1111/gcb.14481
pmid: 30549200
handle: 10261/207120 , 11388/220816 , 2158/1147460 , 11343/284917 , 10568/106685
AbstractWheat grain protein concentration is an important determinant of wheat quality for human nutrition that is often overlooked in efforts to improve crop production. We tested and applied a 32‐multi‐model ensemble to simulate global wheat yield and quality in a changing climate. Potential benefits of elevated atmospheric CO2 concentration by 2050 on global wheat grain and protein yield are likely to be negated by impacts from rising temperature and changes in rainfall, but with considerable disparities between regions. Grain and protein yields are expected to be lower and more variable in most low‐rainfall regions, with nitrogen availability limiting growth stimulus from elevated CO2. Introducing genotypes adapted to warmer temperatures (and also considering changes in CO2 and rainfall) could boost global wheat yield by 7% and protein yield by 2%, but grain protein concentration would be reduced by −1.1 percentage points, representing a relative change of −8.6%. Climate change adaptations that benefit grain yield are not always positive for grain quality, putting additional pressure on global wheat production.
CORE arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2020Full-Text: https://hdl.handle.net/10568/106685Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAPublikationenserver der Georg-August-Universität GöttingenArticle . 2020Copenhagen University Research Information SystemArticle . 2019Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14481&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 386 citations 386 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 48visibility views 48 download downloads 74 Powered bymore_vert CORE arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2020Full-Text: https://hdl.handle.net/10568/106685Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAPublikationenserver der Georg-August-Universität GöttingenArticle . 2020Copenhagen University Research Information SystemArticle . 2019Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14481&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu