- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2024Publisher:IOP Publishing Kevin Karl; Francesco N Tubiello; Monica Crippa; Joseph Poore; Matthew N Hayek; Philippe Benoit; Minpeng Chen; Marc Corbeels; Alessandro Flammini; Sarah Garland; Adrian Leip; Shelby C McClelland; Erik Mencos Contreras; David Sandalow; Roberta Quadrelli; Tek B Sapkota; Cynthia Rosenzweig;Abstract Food systems—encompassing activities in food production, land-use change, supply chains and waste management—contribute significantly to climate change. Recent estimates indicate that food systems produce over 30% of annual anthropogenic greenhouse gas (GHG) emissions (about 20% of CO2, 50% of CH4, and 75% of N2O), with the Intergovernmental Panel on Climate Change (IPCC) estimating a notably broad range of 23%–42% of global GHG emissions. This paper synthesizes current research on the contributions of food systems to climate change, highlights challenges in quantifying their impact and proposes a harmonized accounting framework for more effective climate action. We recommend that an expert committee aligned with the IPCC develop guidance for food systems emissions accounting in four key areas, including: (1) defining system boundaries and nomenclature; (2) developing protocols to allocate broader sectoral emissions to food systems; (3) prioritizing critical areas for research into activity data and emissions factors; and (4) developing a balanced framework for evaluating the impact of mitigation interventions in light of other food systems imperatives. The committee should be integrated into two key international policy processes—the United Nations Framework Convention on Climate Change and the United Nations Food Systems Summit—to support coordinated action towards global net-zero goals. Guidance from the committee could significantly improve the ability of governments, companies, and researchers to estimate, report, monitor and ultimately reduce the climate impacts of food systems.
Environmental Resear... arrow_drop_down Environmental Research Food SystemsArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2976-601x/ad8fb3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Environmental Resear... arrow_drop_down Environmental Research Food SystemsArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2976-601x/ad8fb3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 GermanyPublisher:IOP Publishing Authors: Roberta Quadrelli; Griffiths Obli-Laryea; Hörn Halldórudóttir Heiðarsdóttir; Philippe Benoit; +17 AuthorsRoberta Quadrelli; Griffiths Obli-Laryea; Hörn Halldórudóttir Heiðarsdóttir; Philippe Benoit; Pan Xueyao; Cynthia Rosenzweig; Cynthia Rosenzweig; Kevin A. Karl; Kevin A. Karl; Nathan Wanner; Sally Yue Qiu; David Sandalow; Johannes Gütschow; Matthew N. Hayek; Giulia Conchedda; Erik Mencos-Contreras; Erik Mencos-Contreras; Leonardo Rocha Souza; Francesco N. Tubiello; Alessandro Flammini; Julio De Barros;Abstract New estimates of greenhouse gas (GHG) emissions from the food system were developed at the country level, for the period 1990–2018, integrating data from crop and livestock production, on-farm energy use, land use and land use change, domestic food transport and food waste disposal. With these new country-level components in place, and by adding global and regional estimates of energy use in food supply chains, we estimate that total GHG emissions from the food system were about 16 CO2eq yr−1 in 2018, or one-third of the global anthropogenic total. Three quarters of these emissions, 13 Gt CO2eq yr−1, were generated either within the farm gate or in pre- and post-production activities, such as manufacturing, transport, processing, and waste disposal. The remainder was generated through land use change at the conversion boundaries of natural ecosystems to agricultural land. Results further indicate that pre- and post-production emissions were proportionally more important in developed than in developing countries, and that during 1990–2018, land use change emissions decreased while pre- and post-production emissions increased. We also report results on a per capita basis, showing world total food systems per capita emissions decreasing during 1990–2018 from 2.9 to 2.2 t CO2eq cap−1, with per capita emissions in developed countries about twice those in developing countries in 2018. Our findings also highlight that conventional IPCC categories, used by countries to report emissions in the National GHG inventory, systematically underestimate the contribution of the food system to total anthropogenic emissions. We provide a comparative mapping of food system categories and activities in order to better quantify food-related emissions in national reporting and identify mitigation opportunities across the entire food system.
Publication Database... arrow_drop_down Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac018e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 212 citations 212 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Publication Database... arrow_drop_down Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac018e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Copernicus GmbH A. Flammini; A. Flammini; H. Adzmir; K. Karl; K. Karl; F. N. Tubiello;Abstract. The combustion of wood fuel for residential use is often not considered to be a source of greenhouse gas (GHG) emissions from households, as the emissions from wood fuel combustion can be offset by the CO2 absorbed by the growth of the forest (as a carbon sink) (IPCC, 2006). However, this only applies to wood that is harvested in a renewable way, i.e. at a rate not exceeding the regrowth rate of the forest from which it was harvested (Drigo et al., 2002). This paper estimates the share of GHG emissions attributable to non-renewable wood fuel harvesting for use in residential food activities, by country and with global coverage. It adds to a growing research base estimating GHG emissions from across the entire agri-food value chain, from the manufacture of farm inputs, through food supply chains, and finally to waste disposal (Tubiello et al., 2021). Country-level information is generated from United Nations Statistics Division (UNSD) and International Energy Agency (IEA) data on wood fuel use by households. We find that, in 2019, annual emissions from non-renewable wood fuel consumed for household food preparation were about 745×106 t (Mt CO2 eq. yr−1), with an uncertainty ranging from −63 % to +64 %. Overall, global trends were a result of counterbalancing effects: the emission increases were largely fuelled by countries in sub-Saharan Africa, southern Asia, and Latin America, whereas significant decreases were seen in countries in eastern Asia and South-East Asia. The Food and Agriculture Organization of the United Nations (FAO) has developed and regularly maintains a database covering GHG emissions from the various components of the agri-food sector, including pre- and post-production activities, by country and world regions. The dataset has been developed according to the International Panel on Climate Change guidelines (IPCC, 2006), which avoid overlaps between agriculture, forestry, and other land use (AFOLU) and energy components. The aforementioned dataset relies mainly on UNSD Energy Statistics data, which are used as activity data for the calculation of the GHG emissions (Tubiello et al., 2022). The information used in this work is available as open data at https://doi.org/10.5281/zenodo.7310932 (Flammini et al., 2022a).
Earth System Science... arrow_drop_down Earth System Science Data (ESSD)Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-15-2179-2023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Earth System Science... arrow_drop_down Earth System Science Data (ESSD)Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-15-2179-2023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2024Publisher:IOP Publishing Kevin Karl; Francesco N Tubiello; Monica Crippa; Joseph Poore; Matthew N Hayek; Philippe Benoit; Minpeng Chen; Marc Corbeels; Alessandro Flammini; Sarah Garland; Adrian Leip; Shelby C McClelland; Erik Mencos Contreras; David Sandalow; Roberta Quadrelli; Tek B Sapkota; Cynthia Rosenzweig;Abstract Food systems—encompassing activities in food production, land-use change, supply chains and waste management—contribute significantly to climate change. Recent estimates indicate that food systems produce over 30% of annual anthropogenic greenhouse gas (GHG) emissions (about 20% of CO2, 50% of CH4, and 75% of N2O), with the Intergovernmental Panel on Climate Change (IPCC) estimating a notably broad range of 23%–42% of global GHG emissions. This paper synthesizes current research on the contributions of food systems to climate change, highlights challenges in quantifying their impact and proposes a harmonized accounting framework for more effective climate action. We recommend that an expert committee aligned with the IPCC develop guidance for food systems emissions accounting in four key areas, including: (1) defining system boundaries and nomenclature; (2) developing protocols to allocate broader sectoral emissions to food systems; (3) prioritizing critical areas for research into activity data and emissions factors; and (4) developing a balanced framework for evaluating the impact of mitigation interventions in light of other food systems imperatives. The committee should be integrated into two key international policy processes—the United Nations Framework Convention on Climate Change and the United Nations Food Systems Summit—to support coordinated action towards global net-zero goals. Guidance from the committee could significantly improve the ability of governments, companies, and researchers to estimate, report, monitor and ultimately reduce the climate impacts of food systems.
Environmental Resear... arrow_drop_down Environmental Research Food SystemsArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2976-601x/ad8fb3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Environmental Resear... arrow_drop_down Environmental Research Food SystemsArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2976-601x/ad8fb3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 GermanyPublisher:IOP Publishing Authors: Roberta Quadrelli; Griffiths Obli-Laryea; Hörn Halldórudóttir Heiðarsdóttir; Philippe Benoit; +17 AuthorsRoberta Quadrelli; Griffiths Obli-Laryea; Hörn Halldórudóttir Heiðarsdóttir; Philippe Benoit; Pan Xueyao; Cynthia Rosenzweig; Cynthia Rosenzweig; Kevin A. Karl; Kevin A. Karl; Nathan Wanner; Sally Yue Qiu; David Sandalow; Johannes Gütschow; Matthew N. Hayek; Giulia Conchedda; Erik Mencos-Contreras; Erik Mencos-Contreras; Leonardo Rocha Souza; Francesco N. Tubiello; Alessandro Flammini; Julio De Barros;Abstract New estimates of greenhouse gas (GHG) emissions from the food system were developed at the country level, for the period 1990–2018, integrating data from crop and livestock production, on-farm energy use, land use and land use change, domestic food transport and food waste disposal. With these new country-level components in place, and by adding global and regional estimates of energy use in food supply chains, we estimate that total GHG emissions from the food system were about 16 CO2eq yr−1 in 2018, or one-third of the global anthropogenic total. Three quarters of these emissions, 13 Gt CO2eq yr−1, were generated either within the farm gate or in pre- and post-production activities, such as manufacturing, transport, processing, and waste disposal. The remainder was generated through land use change at the conversion boundaries of natural ecosystems to agricultural land. Results further indicate that pre- and post-production emissions were proportionally more important in developed than in developing countries, and that during 1990–2018, land use change emissions decreased while pre- and post-production emissions increased. We also report results on a per capita basis, showing world total food systems per capita emissions decreasing during 1990–2018 from 2.9 to 2.2 t CO2eq cap−1, with per capita emissions in developed countries about twice those in developing countries in 2018. Our findings also highlight that conventional IPCC categories, used by countries to report emissions in the National GHG inventory, systematically underestimate the contribution of the food system to total anthropogenic emissions. We provide a comparative mapping of food system categories and activities in order to better quantify food-related emissions in national reporting and identify mitigation opportunities across the entire food system.
Publication Database... arrow_drop_down Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac018e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 212 citations 212 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Publication Database... arrow_drop_down Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac018e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Copernicus GmbH A. Flammini; A. Flammini; H. Adzmir; K. Karl; K. Karl; F. N. Tubiello;Abstract. The combustion of wood fuel for residential use is often not considered to be a source of greenhouse gas (GHG) emissions from households, as the emissions from wood fuel combustion can be offset by the CO2 absorbed by the growth of the forest (as a carbon sink) (IPCC, 2006). However, this only applies to wood that is harvested in a renewable way, i.e. at a rate not exceeding the regrowth rate of the forest from which it was harvested (Drigo et al., 2002). This paper estimates the share of GHG emissions attributable to non-renewable wood fuel harvesting for use in residential food activities, by country and with global coverage. It adds to a growing research base estimating GHG emissions from across the entire agri-food value chain, from the manufacture of farm inputs, through food supply chains, and finally to waste disposal (Tubiello et al., 2021). Country-level information is generated from United Nations Statistics Division (UNSD) and International Energy Agency (IEA) data on wood fuel use by households. We find that, in 2019, annual emissions from non-renewable wood fuel consumed for household food preparation were about 745×106 t (Mt CO2 eq. yr−1), with an uncertainty ranging from −63 % to +64 %. Overall, global trends were a result of counterbalancing effects: the emission increases were largely fuelled by countries in sub-Saharan Africa, southern Asia, and Latin America, whereas significant decreases were seen in countries in eastern Asia and South-East Asia. The Food and Agriculture Organization of the United Nations (FAO) has developed and regularly maintains a database covering GHG emissions from the various components of the agri-food sector, including pre- and post-production activities, by country and world regions. The dataset has been developed according to the International Panel on Climate Change guidelines (IPCC, 2006), which avoid overlaps between agriculture, forestry, and other land use (AFOLU) and energy components. The aforementioned dataset relies mainly on UNSD Energy Statistics data, which are used as activity data for the calculation of the GHG emissions (Tubiello et al., 2022). The information used in this work is available as open data at https://doi.org/10.5281/zenodo.7310932 (Flammini et al., 2022a).
Earth System Science... arrow_drop_down Earth System Science Data (ESSD)Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-15-2179-2023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Earth System Science... arrow_drop_down Earth System Science Data (ESSD)Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-15-2179-2023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu