- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2023 SpainPublisher:Elsevier BV Authors: S?ez Bl?zquez, Cristina; Mart?n Nieto, Ignacio; Nu?o Villanueva, Natalia; Mat?-Gonz?lez, Miguel ?ngel; +2 AuthorsS?ez Bl?zquez, Cristina; Mart?n Nieto, Ignacio; Nu?o Villanueva, Natalia; Mat?-Gonz?lez, Miguel ?ngel; Farf?n Mart?n, Arturo Rafael; Gonz?lez Aguilera, Diego;handle: 10366/155568
The increasing importance of shallow geothermal resources in the decarbonization of heating and cooling systems requires the correct management of all the project stages. One of the fundamental steps in this process is determining the space energy demand, which plays a significant role in the subsequent geothermal design. In the context of Spain, different tools are available for the estimation of the mentioned parameter. For evaluating these procedures, this research applies the principal energy demand calculation tools and uses the outcomes for the later design of the shallow geothermal system. Results show how the Spanish official tools (HULC and CE3X) provide lower energy demand values adjusted to the construction conditions of the building that allow the optimization of the geothermal well field. On the contrary, simpler, and more intuitive applications (regular spreadsheets and GES-CAL) assume higher heating energy demands, which in turn implies an oversizing of the geothermal scheme. Even though all the procedures ensure to cover the energy requirements of the building, the most precise tools manage to reduce the initial investment of the system and its operating costs, in addition to reducing the global CO2 emissions because of the lower power of the associated geothermal heat pump.
Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2023.103528&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2023.103528&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:MDPI AG Authors: Luis López-Fernández; Susana Lagüela; Inmaculada Picón; Diego González-Aguilera;doi: 10.3390/rs70911226
A low-cost multi-sensor aerial platform, aerial trike, equipped with visible and thermographic sensors is used for the acquisition of all the data needed for the automatic analysis and classification of roof surfaces regarding their suitability to harbor solar panels. The geometry of a georeferenced 3D point cloud generated from visible images using photogrammetric and computer vision algorithms, and the temperatures measured on thermographic images are decisive to evaluate the areas, tilts, orientations and the existence of obstacles to locate the optimal zones inside each roof surface for the installation of solar panels. This information is complemented with the estimation of the solar irradiation received by each surface. This way, large areas may be efficiently analyzed obtaining as final result the optimal locations for the placement of solar panels as well as the information necessary (location, orientation, tilt, area and solar irradiation) to estimate the productivity of a solar panel from its technical characteristics.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs70911226&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 18 citations 18 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs70911226&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Article , Journal 2019Publisher:Springer International Publishing Authors: Arturo Farfán Martín; Ignacio Martín Nieto; Cristina Sáez Blázquez; Diego González-Aguilera; +1 AuthorsArturo Farfán Martín; Ignacio Martín Nieto; Cristina Sáez Blázquez; Diego González-Aguilera; David Borge-Diez;Abstract Very low enthalpy geothermal systems have been traditionally associated to the use of electricity as primary energy heat pumps supply. Gas engine heat pumps (GEHP) have been recently introduced in the current market. In this research, the electric heat pumps (EHP) as well as the GEHPs (considering natural gas and biogas as combustibles) have been analysed. The calculation of the ground source heat pump (GSHP) system has been made for a building placed in three different areas. Results reveal the influence of the heat pump configuration on the whole geothermal design. This research finally considers the European policies whose aim is a sustainable low-carbon economy by 2020. According to the existing Energy Efficiency Directive, energy requirements are defined for new and existing residential and non-residential buildings in the Member States. Based on these standards, the research compares the geothermal heat pump scenarios and a traditional one to determine if they would meet the regulation. Final results show that the Directive is a highly-demanding regulation that can only be respected by using EHP in one of the areas. The rest of geothermal heat pumps scenarios are much closer to meeting the energy standards than the traditional fossil heating sources.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2023 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-031-24524-4_6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2023 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-031-24524-4_6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:UK Zhende Publishing Limited Company Authors: Manuel Rodríguez Martín; Diego González Aguilera; Lucía Díaz Vilariño; Susana Lagüela López;doi: 10.6036/7596
RESUMEN: La enorme aplicabilidad de la técnica termográfica se tiende a particularizar en la llamada termografía cualitativa sin prestar atención a las amplias posibilidades que la termografía aporta cuando se utiliza en combinación con una excitación controlada del material; lo que se conoce como termografía activa. Esta técnica ha tenido un desarrollo importante durante los últimos años, sin embargo ha sido en estos tiempos cuando se ha consolidado como una innovadora, completa y versátil modalidad de ensayo no destructivo (END) que posibilita una rápida obtención de información útil para la evaluación de materiales sin llegar a requerir altas inversiones económicas. En este artículo se pretende plasmar una visión global y aplicada de la técnica siguiendo un triple acercamiento: primero, repasando la investigación teórica de los procesos de captación, extracción y procesamiento de datos; segundo, aportando como resultado del trabajo diferentes clasificaciones de la técnica en base a lo establecido en la investigación teórica; y finalmente, definiendo las distintas aplicaciones dentro de la ingeniería e industria. Palabras clave: Termografía activa, ensayo no destructivo (END), imagen térmica, fuente de excitación, procesamiento de imagen.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6036/7596&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6036/7596&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 SpainAuthors: S?ez Bl?zquez, Cristina; Mart?n Nieto, Ignacio; Nu?o Villanueva, Natalia; Mat?-Gonz?lez, Miguel ?ngel; +2 AuthorsS?ez Bl?zquez, Cristina; Mart?n Nieto, Ignacio; Nu?o Villanueva, Natalia; Mat?-Gonz?lez, Miguel ?ngel; Farf?n Mart?n, Arturo Rafael; Gonz?lez Aguilera, Diego;handle: 10366/155717
The correct design of a low enthalpy geothermal system is a priority to ensure the expansion of this renewable energy in the alarming world energy panorama. In this sense, the present research has analyzed how the estimation of the initial energy demand of a space plays a fundamental role in the corre-sponding geothermal design. Thus, the main tools used in Spain (location of the study case) in the calculation of the energy demand have been used for then de-signing the shallow geothermal system. Results show that the official tools (HULC and CE3X) provide lower energy demand values and adjusted to the construction conditions of the building that allow the optimization of the geo-thermal well field. On the contrary, simpler, and more intuitive applications (regular spreadsheets and GES-CAL software) assume a higher value of heating energy demand, which in turn implies an oversizing of the geothermal scheme. Even though all the procedures ensure to cover the energy requirements of the building, the most precise tools manage to reduce the initial investment of the system and its operating costs, in addition to reducing the global CO2 emissions because of the lower power of the associated geothermal heat pump.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10366/155717&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10366/155717&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 SpainPublisher:MDPI AG Authors: Cristina Sáez Blázquez; Ignacio Martín Nieto; Javier Carrasco García; Pedro Carrasco García; +2 AuthorsCristina Sáez Blázquez; Ignacio Martín Nieto; Javier Carrasco García; Pedro Carrasco García; Arturo Farfán Martín; Diego González-Aguilera;doi: 10.3390/en16031289
handle: 10612/22445
The current energy context demands the use of environmentally friendly solutions that contribute to the displacement of traditional fossil fuels. In this regard, heat pumps have become an important tool in the decarbonization of the heating and cooling energy system. With the aim of providing new information in the field, this research is conducted to analyze the suitability of a Ground Source Heat Pump (GSHP) and an Air Source Heat Pump (ASHP) in two different scenarios. Systems are designed to cover the heating needs of a building placed in a cold climate area, characterized by being in a thermally and geologically favorable formation (Case 1), and in a mild climate location where the geology is not so appropriate for the thermal exchange with the ground (Case 2). Results highlight the need to perform an exhaustive study of the subsoil and the external conditions of the area for a reliable selection. In Case 1, the ASHP option is discarded due to the demanding outdoor air requirements that rocket the operating costs of the system. In Case 2, both solutions are viable, with the geothermal alternative preferred if the initial investment can be assumed, providing economic advantages from the 17th year of the system operation.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/3/1289/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16031289&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/3/1289/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16031289&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Preprint 2021 SpainPublisher:Elsevier BV Authors: Sáez Blázquez, Cristina; Borge Diez, David; Martín Nieto, Ignacio; Farfán Martín, Arturo Rafael; +1 AuthorsSáez Blázquez, Cristina; Borge Diez, David; Martín Nieto, Ignacio; Farfán Martín, Arturo Rafael; González Aguilera, Diego;Abstract The use of low-impact energy sources is gradually growing with the aim of reducing greenhouse gases emission and air pollution. The alternatives offered by geothermal systems are one of the key solutions for a future renewable development, enabling the electrification of heating systems and the use of biofuels. This research addresses an overview of geothermal heating systems using ground source heat pumps in different European countries. Besides the traditional electrical heat pumps, gas engine heat pumps aided by natural gas or biogas are analysed in three areas. From a previous research, the technical parameters defining the geothermal system are used here to evaluate the most appropriate system in each scenario. The evaluation of different influential factors (operational costs, initial investment, environmental impact, and availability) allows defining the most recommendable systems for each area. Results of this multi-parametric study show that gas engine heat pumps aided by biogas could mean an excellent solution in all countries, also contributing to the management of waste and polluting substances. If biogas systems were not available, the electrical heat pump would be the first option for areas 1 and 3 (Italy and Sweden) but not for area 2 (United Kingdom), where natural gas is preferred.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.10.080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.10.080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 SpainPublisher:MDPI AG Funded by:EC | TREEADSEC| TREEADSAuthors: David Hernández-López; Jorge López-Rebollo; Miguel A. Moreno; Diego Gonzalez-Aguilera;doi: 10.3390/f14040662
handle: 10578/40409
This work focuses on the automatic identification of forest fire risk areas along high-voltage power lines through the development of a tool and its validation on a real forest area. The tool allows one to automate the whole process, which includes the classification of the point cloud, the computation of the catenary of the wires using different calculation methods, the estimation of the vegetation growth and the identification of the risk areas. To this end, a coarse-to-fine approach is proposed, so that a preliminary analysis is performed with public airborne LiDAR data, and then a more detailed inspection is provided with drone LiDAR data over those areas classified as high risk. The tool and the methodology developed were validated along a high-voltage power line of 53 km in a real forest area. The results show that although the preliminary analysis based on public airborne LiDAR data is more conservative, it is very useful for selecting those areas of higher risk for further analysis with drone LiDAR data.
Forests arrow_drop_down ForestsOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1999-4907/14/4/662/pdfData sources: Multidisciplinary Digital Publishing InstituteForestsArticleLicense: CC BYFull-Text: https://www.mdpi.com/1999-4907/14/4/662/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/f14040662&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Forests arrow_drop_down ForestsOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1999-4907/14/4/662/pdfData sources: Multidisciplinary Digital Publishing InstituteForestsArticleLicense: CC BYFull-Text: https://www.mdpi.com/1999-4907/14/4/662/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/f14040662&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017Publisher:MDPI AG Authors: Cristina Sáez Blázquez; Arturo Farfán Martín; Ignacio Martín Nieto; Pedro Carrasco García; +2 AuthorsCristina Sáez Blázquez; Arturo Farfán Martín; Ignacio Martín Nieto; Pedro Carrasco García; Luis Sánchez Pérez; Diego González-Aguilera;doi: 10.3390/en10020201
In vertical closed-loop systems, it is common to use single or double U-tube heat exchangers separated by longitudinal spacers. In addition, the helical-shaped pipe is another configuration that requires lower drilling lengths but it is less used. The aim of the present research is to study the influence of these components on the total efficiency of a borehole heat exchanger (BHE). Thus, the differences between using single/double U-tubes (with or without spacers) and helical pipes are analysed in terms of efficiency. Through different laboratory tests, a small vertical closed-loop system was simulated in order to analyse all these possible configurations. The grouting materials and the temperatures of the ground were modified at the same time in these tests. Regarding the heat exchange process between the ground and the heat carrier fluid, it must be highlighted that the best results were obtained for the helical-shaped pipe configuration. Some of the improvements offered by this heat exchanger typology with respect to the vertical configuration is that a lower drilling depth is required even it requires a larger diameter. This leads to significant economic savings in the performing drilling process. Finally, it is also worth noting the importance of using spacers in vertical U-tubes and that no improvements have been found regarding the use of single or double configuration of U-tubes. Thanks to the laboratory results derived from this study it is possible to establish the optimum behaviour pattern for the entire vertical closed-loop systems.
Energies arrow_drop_down EnergiesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/1996-1073/10/2/201/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10020201&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/1996-1073/10/2/201/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10020201&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 SpainPublisher:MDPI AG Funded by:EC | Mine.ioEC| Mine.ioCristina Sáez Blázquez; Ignacio Martín Nieto; Javier Carrasco; Pedro Carrasco; Daniel Porras; Miguel Ángel Maté-González; Arturo Farfán Martín; Diego González-Aguilera;doi: 10.3390/en17081836
handle: 10366/157557
The growth of the geothermal industry demands the constant search of techniques with the aim of reducing exploration efforts whilst minimizing subsurface uncertainty. The exploration of geothermal resources is fundamental from the exploitation point of view, especially in those regions where this energy is not as widespread as the rest of renewable sources. This research shows how geoelectrical methods can contribute to the investigation and characterization of medium–low enthalpy geothermal resources until about 800 m of depth. A 2000 m long electrical-resistivity tomography profile was performed in a region of Southern Spain with previous evidence of moderate geothermal potential. Results of this geophysical campaign (together with a preliminary geological characterization) allowed for the obtainment of a 2D profile and a pseudo-3D model with extensive information about the subsoil in terms of geological composition and formations. The interpretation of geophysical results denotes the existence of a potential formation constituted by carbonate materials with thickness greater than 300 m, crossing different fractures. Once the ideal location for the geothermal exploitation is defined, the research evaluates the contribution of the possible energy source, deducing that the energy extraction in the potential fracturing area would be double that of the one in the vicinity of the site.
Energies arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17081836&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17081836&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023 SpainPublisher:Elsevier BV Authors: S?ez Bl?zquez, Cristina; Mart?n Nieto, Ignacio; Nu?o Villanueva, Natalia; Mat?-Gonz?lez, Miguel ?ngel; +2 AuthorsS?ez Bl?zquez, Cristina; Mart?n Nieto, Ignacio; Nu?o Villanueva, Natalia; Mat?-Gonz?lez, Miguel ?ngel; Farf?n Mart?n, Arturo Rafael; Gonz?lez Aguilera, Diego;handle: 10366/155568
The increasing importance of shallow geothermal resources in the decarbonization of heating and cooling systems requires the correct management of all the project stages. One of the fundamental steps in this process is determining the space energy demand, which plays a significant role in the subsequent geothermal design. In the context of Spain, different tools are available for the estimation of the mentioned parameter. For evaluating these procedures, this research applies the principal energy demand calculation tools and uses the outcomes for the later design of the shallow geothermal system. Results show how the Spanish official tools (HULC and CE3X) provide lower energy demand values adjusted to the construction conditions of the building that allow the optimization of the geothermal well field. On the contrary, simpler, and more intuitive applications (regular spreadsheets and GES-CAL) assume higher heating energy demands, which in turn implies an oversizing of the geothermal scheme. Even though all the procedures ensure to cover the energy requirements of the building, the most precise tools manage to reduce the initial investment of the system and its operating costs, in addition to reducing the global CO2 emissions because of the lower power of the associated geothermal heat pump.
Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2023.103528&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2023.103528&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:MDPI AG Authors: Luis López-Fernández; Susana Lagüela; Inmaculada Picón; Diego González-Aguilera;doi: 10.3390/rs70911226
A low-cost multi-sensor aerial platform, aerial trike, equipped with visible and thermographic sensors is used for the acquisition of all the data needed for the automatic analysis and classification of roof surfaces regarding their suitability to harbor solar panels. The geometry of a georeferenced 3D point cloud generated from visible images using photogrammetric and computer vision algorithms, and the temperatures measured on thermographic images are decisive to evaluate the areas, tilts, orientations and the existence of obstacles to locate the optimal zones inside each roof surface for the installation of solar panels. This information is complemented with the estimation of the solar irradiation received by each surface. This way, large areas may be efficiently analyzed obtaining as final result the optimal locations for the placement of solar panels as well as the information necessary (location, orientation, tilt, area and solar irradiation) to estimate the productivity of a solar panel from its technical characteristics.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs70911226&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 18 citations 18 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs70911226&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Article , Journal 2019Publisher:Springer International Publishing Authors: Arturo Farfán Martín; Ignacio Martín Nieto; Cristina Sáez Blázquez; Diego González-Aguilera; +1 AuthorsArturo Farfán Martín; Ignacio Martín Nieto; Cristina Sáez Blázquez; Diego González-Aguilera; David Borge-Diez;Abstract Very low enthalpy geothermal systems have been traditionally associated to the use of electricity as primary energy heat pumps supply. Gas engine heat pumps (GEHP) have been recently introduced in the current market. In this research, the electric heat pumps (EHP) as well as the GEHPs (considering natural gas and biogas as combustibles) have been analysed. The calculation of the ground source heat pump (GSHP) system has been made for a building placed in three different areas. Results reveal the influence of the heat pump configuration on the whole geothermal design. This research finally considers the European policies whose aim is a sustainable low-carbon economy by 2020. According to the existing Energy Efficiency Directive, energy requirements are defined for new and existing residential and non-residential buildings in the Member States. Based on these standards, the research compares the geothermal heat pump scenarios and a traditional one to determine if they would meet the regulation. Final results show that the Directive is a highly-demanding regulation that can only be respected by using EHP in one of the areas. The rest of geothermal heat pumps scenarios are much closer to meeting the energy standards than the traditional fossil heating sources.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2023 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-031-24524-4_6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2023 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-031-24524-4_6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:UK Zhende Publishing Limited Company Authors: Manuel Rodríguez Martín; Diego González Aguilera; Lucía Díaz Vilariño; Susana Lagüela López;doi: 10.6036/7596
RESUMEN: La enorme aplicabilidad de la técnica termográfica se tiende a particularizar en la llamada termografía cualitativa sin prestar atención a las amplias posibilidades que la termografía aporta cuando se utiliza en combinación con una excitación controlada del material; lo que se conoce como termografía activa. Esta técnica ha tenido un desarrollo importante durante los últimos años, sin embargo ha sido en estos tiempos cuando se ha consolidado como una innovadora, completa y versátil modalidad de ensayo no destructivo (END) que posibilita una rápida obtención de información útil para la evaluación de materiales sin llegar a requerir altas inversiones económicas. En este artículo se pretende plasmar una visión global y aplicada de la técnica siguiendo un triple acercamiento: primero, repasando la investigación teórica de los procesos de captación, extracción y procesamiento de datos; segundo, aportando como resultado del trabajo diferentes clasificaciones de la técnica en base a lo establecido en la investigación teórica; y finalmente, definiendo las distintas aplicaciones dentro de la ingeniería e industria. Palabras clave: Termografía activa, ensayo no destructivo (END), imagen térmica, fuente de excitación, procesamiento de imagen.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6036/7596&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6036/7596&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 SpainAuthors: S?ez Bl?zquez, Cristina; Mart?n Nieto, Ignacio; Nu?o Villanueva, Natalia; Mat?-Gonz?lez, Miguel ?ngel; +2 AuthorsS?ez Bl?zquez, Cristina; Mart?n Nieto, Ignacio; Nu?o Villanueva, Natalia; Mat?-Gonz?lez, Miguel ?ngel; Farf?n Mart?n, Arturo Rafael; Gonz?lez Aguilera, Diego;handle: 10366/155717
The correct design of a low enthalpy geothermal system is a priority to ensure the expansion of this renewable energy in the alarming world energy panorama. In this sense, the present research has analyzed how the estimation of the initial energy demand of a space plays a fundamental role in the corre-sponding geothermal design. Thus, the main tools used in Spain (location of the study case) in the calculation of the energy demand have been used for then de-signing the shallow geothermal system. Results show that the official tools (HULC and CE3X) provide lower energy demand values and adjusted to the construction conditions of the building that allow the optimization of the geo-thermal well field. On the contrary, simpler, and more intuitive applications (regular spreadsheets and GES-CAL software) assume a higher value of heating energy demand, which in turn implies an oversizing of the geothermal scheme. Even though all the procedures ensure to cover the energy requirements of the building, the most precise tools manage to reduce the initial investment of the system and its operating costs, in addition to reducing the global CO2 emissions because of the lower power of the associated geothermal heat pump.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10366/155717&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10366/155717&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 SpainPublisher:MDPI AG Authors: Cristina Sáez Blázquez; Ignacio Martín Nieto; Javier Carrasco García; Pedro Carrasco García; +2 AuthorsCristina Sáez Blázquez; Ignacio Martín Nieto; Javier Carrasco García; Pedro Carrasco García; Arturo Farfán Martín; Diego González-Aguilera;doi: 10.3390/en16031289
handle: 10612/22445
The current energy context demands the use of environmentally friendly solutions that contribute to the displacement of traditional fossil fuels. In this regard, heat pumps have become an important tool in the decarbonization of the heating and cooling energy system. With the aim of providing new information in the field, this research is conducted to analyze the suitability of a Ground Source Heat Pump (GSHP) and an Air Source Heat Pump (ASHP) in two different scenarios. Systems are designed to cover the heating needs of a building placed in a cold climate area, characterized by being in a thermally and geologically favorable formation (Case 1), and in a mild climate location where the geology is not so appropriate for the thermal exchange with the ground (Case 2). Results highlight the need to perform an exhaustive study of the subsoil and the external conditions of the area for a reliable selection. In Case 1, the ASHP option is discarded due to the demanding outdoor air requirements that rocket the operating costs of the system. In Case 2, both solutions are viable, with the geothermal alternative preferred if the initial investment can be assumed, providing economic advantages from the 17th year of the system operation.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/3/1289/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16031289&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/3/1289/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16031289&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Preprint 2021 SpainPublisher:Elsevier BV Authors: Sáez Blázquez, Cristina; Borge Diez, David; Martín Nieto, Ignacio; Farfán Martín, Arturo Rafael; +1 AuthorsSáez Blázquez, Cristina; Borge Diez, David; Martín Nieto, Ignacio; Farfán Martín, Arturo Rafael; González Aguilera, Diego;Abstract The use of low-impact energy sources is gradually growing with the aim of reducing greenhouse gases emission and air pollution. The alternatives offered by geothermal systems are one of the key solutions for a future renewable development, enabling the electrification of heating systems and the use of biofuels. This research addresses an overview of geothermal heating systems using ground source heat pumps in different European countries. Besides the traditional electrical heat pumps, gas engine heat pumps aided by natural gas or biogas are analysed in three areas. From a previous research, the technical parameters defining the geothermal system are used here to evaluate the most appropriate system in each scenario. The evaluation of different influential factors (operational costs, initial investment, environmental impact, and availability) allows defining the most recommendable systems for each area. Results of this multi-parametric study show that gas engine heat pumps aided by biogas could mean an excellent solution in all countries, also contributing to the management of waste and polluting substances. If biogas systems were not available, the electrical heat pump would be the first option for areas 1 and 3 (Italy and Sweden) but not for area 2 (United Kingdom), where natural gas is preferred.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.10.080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.10.080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 SpainPublisher:MDPI AG Funded by:EC | TREEADSEC| TREEADSAuthors: David Hernández-López; Jorge López-Rebollo; Miguel A. Moreno; Diego Gonzalez-Aguilera;doi: 10.3390/f14040662
handle: 10578/40409
This work focuses on the automatic identification of forest fire risk areas along high-voltage power lines through the development of a tool and its validation on a real forest area. The tool allows one to automate the whole process, which includes the classification of the point cloud, the computation of the catenary of the wires using different calculation methods, the estimation of the vegetation growth and the identification of the risk areas. To this end, a coarse-to-fine approach is proposed, so that a preliminary analysis is performed with public airborne LiDAR data, and then a more detailed inspection is provided with drone LiDAR data over those areas classified as high risk. The tool and the methodology developed were validated along a high-voltage power line of 53 km in a real forest area. The results show that although the preliminary analysis based on public airborne LiDAR data is more conservative, it is very useful for selecting those areas of higher risk for further analysis with drone LiDAR data.
Forests arrow_drop_down ForestsOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1999-4907/14/4/662/pdfData sources: Multidisciplinary Digital Publishing InstituteForestsArticleLicense: CC BYFull-Text: https://www.mdpi.com/1999-4907/14/4/662/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/f14040662&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Forests arrow_drop_down ForestsOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1999-4907/14/4/662/pdfData sources: Multidisciplinary Digital Publishing InstituteForestsArticleLicense: CC BYFull-Text: https://www.mdpi.com/1999-4907/14/4/662/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/f14040662&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017Publisher:MDPI AG Authors: Cristina Sáez Blázquez; Arturo Farfán Martín; Ignacio Martín Nieto; Pedro Carrasco García; +2 AuthorsCristina Sáez Blázquez; Arturo Farfán Martín; Ignacio Martín Nieto; Pedro Carrasco García; Luis Sánchez Pérez; Diego González-Aguilera;doi: 10.3390/en10020201
In vertical closed-loop systems, it is common to use single or double U-tube heat exchangers separated by longitudinal spacers. In addition, the helical-shaped pipe is another configuration that requires lower drilling lengths but it is less used. The aim of the present research is to study the influence of these components on the total efficiency of a borehole heat exchanger (BHE). Thus, the differences between using single/double U-tubes (with or without spacers) and helical pipes are analysed in terms of efficiency. Through different laboratory tests, a small vertical closed-loop system was simulated in order to analyse all these possible configurations. The grouting materials and the temperatures of the ground were modified at the same time in these tests. Regarding the heat exchange process between the ground and the heat carrier fluid, it must be highlighted that the best results were obtained for the helical-shaped pipe configuration. Some of the improvements offered by this heat exchanger typology with respect to the vertical configuration is that a lower drilling depth is required even it requires a larger diameter. This leads to significant economic savings in the performing drilling process. Finally, it is also worth noting the importance of using spacers in vertical U-tubes and that no improvements have been found regarding the use of single or double configuration of U-tubes. Thanks to the laboratory results derived from this study it is possible to establish the optimum behaviour pattern for the entire vertical closed-loop systems.
Energies arrow_drop_down EnergiesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/1996-1073/10/2/201/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10020201&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/1996-1073/10/2/201/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10020201&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 SpainPublisher:MDPI AG Funded by:EC | Mine.ioEC| Mine.ioCristina Sáez Blázquez; Ignacio Martín Nieto; Javier Carrasco; Pedro Carrasco; Daniel Porras; Miguel Ángel Maté-González; Arturo Farfán Martín; Diego González-Aguilera;doi: 10.3390/en17081836
handle: 10366/157557
The growth of the geothermal industry demands the constant search of techniques with the aim of reducing exploration efforts whilst minimizing subsurface uncertainty. The exploration of geothermal resources is fundamental from the exploitation point of view, especially in those regions where this energy is not as widespread as the rest of renewable sources. This research shows how geoelectrical methods can contribute to the investigation and characterization of medium–low enthalpy geothermal resources until about 800 m of depth. A 2000 m long electrical-resistivity tomography profile was performed in a region of Southern Spain with previous evidence of moderate geothermal potential. Results of this geophysical campaign (together with a preliminary geological characterization) allowed for the obtainment of a 2D profile and a pseudo-3D model with extensive information about the subsoil in terms of geological composition and formations. The interpretation of geophysical results denotes the existence of a potential formation constituted by carbonate materials with thickness greater than 300 m, crossing different fractures. Once the ideal location for the geothermal exploitation is defined, the research evaluates the contribution of the possible energy source, deducing that the energy extraction in the potential fracturing area would be double that of the one in the vicinity of the site.
Energies arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17081836&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17081836&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu