- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2021 Finland, Finland, Sweden, Germany, China (People's Republic of), Norway, Finland, China (People's Republic of), Denmark, Finland, Netherlands, France, Netherlands, Denmark, Germany, China (People's Republic of), FinlandPublisher:Wiley Funded by:NSERC, EC | INTAROS, AKA | Atmosphere and Climate Co... +19 projectsNSERC ,EC| INTAROS ,AKA| Atmosphere and Climate Competence Center (ACCC) ,NSF| Methane loss from Arctic: towards an annual budget of CH4 emissions from tundra ecosystems across a latitudinal gradient ,NSF| IPY: Collaborative Research on Carbon, Water, and Energy Balance of the Arctic Landscape at Flagship Observatories and in a Pan-Arctic Network ,AKA| Methane uptake by permafrost-affected soils – an underestimated carbon sink in Arctic ecosystems? (MUFFIN) ,NSF| AON: Development of Sustainable Observations of Thermal State of Permafrost in North America and Russia: The U.S. Contribution to the Global Terrestrial Network for Permafrost ,AKA| Geomorphic sensitivity of the Arctic region: geohazards and infrastructure (INFRAHAZARD) / Consortium: INFRAHAZARD ,EC| FluxWIN ,NSF| Collaborative Research: Multi-Regional Scale Aircraft Observations of Methane and Carbon Dioxide Isotopic Fluxes in the Arctic ,AKA| Atmosphere and Climate Competence Center (ACCC) ,NSF| Collaborative Research: Using the ITEX-AON network to document and understand terrestrial ecosystem change in the Arctic ,AKA| When ancient meets modern effect of plant-derived carbon on anaerobic decomposition in arctic permafrost soils (PANDA) ,AKA| Novel soil management practices - key for sustainable bioeconomy and climate change mitigation -SOMPA / Consortium: SOMPA ,NSF| METHANE AT THE ZERO CURTAIN ,NSF| Collaborative Research: Permafrost Carbon Network: Synthesizing flux observations for benchmarking model projections of permafrost carbon exchange ,AKA| Towards constraining the circumarctic nitrous oxide budget (NOCA) ,EC| PAGE21 ,NSF| Collaborative Research on Carbon, Water, and Energy Balance of the Arctic Landscape at Flagship Observatories in Alaska and Siberia ,AKA| Biogeochemical and biophysical feedbacks from forest harvesting to climate change / Consortium: NNNN ,RCN| Winter-proofing land surface models - quantifying the critical role of cold season processes in vegetation-permafrost feedbacks ,NSF| Collaborative Research: Research, Synthesis, and Knowledge Transfer in a Changing Arctic: Science Support for the Study of Environmental Arctic Change (SEARCH)Authors:Edward A. G. Schuur;
Edward A. G. Schuur
Edward A. G. Schuur in OpenAIREJärvi Järveoja;
S. Potter;Järvi Järveoja
Järvi Järveoja in OpenAIREStef Bokhorst;
+52 AuthorsStef Bokhorst
Stef Bokhorst in OpenAIREEdward A. G. Schuur;
Edward A. G. Schuur
Edward A. G. Schuur in OpenAIREJärvi Järveoja;
S. Potter;Järvi Järveoja
Järvi Järveoja in OpenAIREStef Bokhorst;
Stef Bokhorst
Stef Bokhorst in OpenAIREMarguerite Mauritz;
Marguerite Mauritz
Marguerite Mauritz in OpenAIREMats Nilsson;
Steven F. Oberbauer; Elyn Humphreys;Mats Nilsson
Mats Nilsson in OpenAIREM. Goeckede;
M. Goeckede
M. Goeckede in OpenAIREPertti J. Martikainen;
Pertti J. Martikainen
Pertti J. Martikainen in OpenAIREJohn Kochendorfer;
John Kochendorfer
John Kochendorfer in OpenAIREJinshu Chi;
Jinshu Chi
Jinshu Chi in OpenAIREJuha Aalto;
Juha Aalto; Jennifer D. Watts;Juha Aalto
Juha Aalto in OpenAIRETorben R. Christensen;
Torben R. Christensen
Torben R. Christensen in OpenAIREMatthias Peichl;
Matthias Peichl
Matthias Peichl in OpenAIREOliver Sonnentag;
Oliver Sonnentag
Oliver Sonnentag in OpenAIREVincent L. St. Louis;
Vincent L. St. Louis
Vincent L. St. Louis in OpenAIRECraig A. Emmerton;
Craig A. Emmerton
Craig A. Emmerton in OpenAIREMiska Luoto;
Miska Luoto
Miska Luoto in OpenAIREDavid Holl;
David Holl
David Holl in OpenAIREEugénie S. Euskirchen;
Eugénie S. Euskirchen
Eugénie S. Euskirchen in OpenAIRETorbern Tagesson;
Torbern Tagesson;Torbern Tagesson
Torbern Tagesson in OpenAIRESang Jong Park;
Gerardo Celis;Sang Jong Park
Sang Jong Park in OpenAIREMargaret S. Torn;
Margaret S. Torn
Margaret S. Torn in OpenAIREFrans-Jan W. Parmentier;
Frans-Jan W. Parmentier;Frans-Jan W. Parmentier
Frans-Jan W. Parmentier in OpenAIREMaija E. Marushchak;
Maija E. Marushchak; Namyi Chae;Maija E. Marushchak
Maija E. Marushchak in OpenAIREWalter C. Oechel;
Walter C. Oechel;Walter C. Oechel
Walter C. Oechel in OpenAIREMasahito Ueyama;
Masahito Ueyama
Masahito Ueyama in OpenAIREPeter M. Lafleur;
Peter M. Lafleur
Peter M. Lafleur in OpenAIREChristina Biasi;
Christina Biasi
Christina Biasi in OpenAIREBo Elberling;
Bo Elberling
Bo Elberling in OpenAIREBrendan M. Rogers;
Brendan M. Rogers
Brendan M. Rogers in OpenAIREHan Dolman;
Han Dolman
Han Dolman in OpenAIREIvan Mammarella;
Ivan Mammarella
Ivan Mammarella in OpenAIREAleksi Lehtonen;
Aleksi Lehtonen
Aleksi Lehtonen in OpenAIREClaire C. Treat;
Claire C. Treat
Claire C. Treat in OpenAIREMin Jung Kwon;
Min Jung Kwon
Min Jung Kwon in OpenAIRECarolina Voigt;
Carolina Voigt;Carolina Voigt
Carolina Voigt in OpenAIREHideki Kobayashi;
Hideki Kobayashi
Hideki Kobayashi in OpenAIRERafael Poyatos;
Rafael Poyatos
Rafael Poyatos in OpenAIRESusan M. Natali;
Susan M. Natali
Susan M. Natali in OpenAIREHiroki Iwata;
Hiroki Iwata
Hiroki Iwata in OpenAIREDonatella Zona;
Donatella Zona;Donatella Zona
Donatella Zona in OpenAIREAnna-Maria Virkkala;
Anna-Maria Virkkala
Anna-Maria Virkkala in OpenAIREEfrén López-Blanco;
Efrén López-Blanco
Efrén López-Blanco in OpenAIRETorsten Sachs;
Torsten Sachs
Torsten Sachs in OpenAIREdoi: 10.1111/gcb.15659
pmid: 33913236
AbstractThe regional variability in tundra and boreal carbon dioxide (CO2) fluxes can be high, complicating efforts to quantify sink‐source patterns across the entire region. Statistical models are increasingly used to predict (i.e., upscale) CO2 fluxes across large spatial domains, but the reliability of different modeling techniques, each with different specifications and assumptions, has not been assessed in detail. Here, we compile eddy covariance and chamber measurements of annual and growing season CO2 fluxes of gross primary productivity (GPP), ecosystem respiration (ER), and net ecosystem exchange (NEE) during 1990–2015 from 148 terrestrial high‐latitude (i.e., tundra and boreal) sites to analyze the spatial patterns and drivers of CO2 fluxes and test the accuracy and uncertainty of different statistical models. CO2 fluxes were upscaled at relatively high spatial resolution (1 km2) across the high‐latitude region using five commonly used statistical models and their ensemble, that is, the median of all five models, using climatic, vegetation, and soil predictors. We found the performance of machine learning and ensemble predictions to outperform traditional regression methods. We also found the predictive performance of NEE‐focused models to be low, relative to models predicting GPP and ER. Our data compilation and ensemble predictions showed that CO2 sink strength was larger in the boreal biome (observed and predicted average annual NEE −46 and −29 g C m−2 yr−1, respectively) compared to tundra (average annual NEE +10 and −2 g C m−2 yr−1). This pattern was associated with large spatial variability, reflecting local heterogeneity in soil organic carbon stocks, climate, and vegetation productivity. The terrestrial ecosystem CO2 budget, estimated using the annual NEE ensemble prediction, suggests the high‐latitude region was on average an annual CO2 sink during 1990–2015, although uncertainty remains high.
SLU publication data... arrow_drop_down Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2021License: CC BYFull-Text: http://hdl.handle.net/10852/91720Data sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03260396Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03260396Data sources: Bielefeld Academic Search Engine (BASE)Jyväskylä University Digital ArchiveArticle . 2021 . Peer-reviewedData sources: Jyväskylä University Digital ArchiveHELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiCopenhagen University Research Information SystemArticle . 2021Data sources: Copenhagen University Research Information SystemGFZ German Research Centre for GeosciencesArticle . 2021License: CC BYData sources: GFZ German Research Centre for GeosciencesElectronic Publication Information CenterArticle . 2021Data sources: Electronic Publication Information CenterUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2021Natural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15659&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 123 citations 123 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert SLU publication data... arrow_drop_down Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2021License: CC BYFull-Text: http://hdl.handle.net/10852/91720Data sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03260396Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03260396Data sources: Bielefeld Academic Search Engine (BASE)Jyväskylä University Digital ArchiveArticle . 2021 . Peer-reviewedData sources: Jyväskylä University Digital ArchiveHELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiCopenhagen University Research Information SystemArticle . 2021Data sources: Copenhagen University Research Information SystemGFZ German Research Centre for GeosciencesArticle . 2021License: CC BYData sources: GFZ German Research Centre for GeosciencesElectronic Publication Information CenterArticle . 2021Data sources: Electronic Publication Information CenterUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2021Natural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15659&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Finland, Finland, Sweden, Germany, China (People's Republic of), Norway, Finland, China (People's Republic of), Denmark, Finland, Netherlands, France, Netherlands, Denmark, Germany, China (People's Republic of), FinlandPublisher:Wiley Funded by:NSERC, EC | INTAROS, AKA | Atmosphere and Climate Co... +19 projectsNSERC ,EC| INTAROS ,AKA| Atmosphere and Climate Competence Center (ACCC) ,NSF| Methane loss from Arctic: towards an annual budget of CH4 emissions from tundra ecosystems across a latitudinal gradient ,NSF| IPY: Collaborative Research on Carbon, Water, and Energy Balance of the Arctic Landscape at Flagship Observatories and in a Pan-Arctic Network ,AKA| Methane uptake by permafrost-affected soils – an underestimated carbon sink in Arctic ecosystems? (MUFFIN) ,NSF| AON: Development of Sustainable Observations of Thermal State of Permafrost in North America and Russia: The U.S. Contribution to the Global Terrestrial Network for Permafrost ,AKA| Geomorphic sensitivity of the Arctic region: geohazards and infrastructure (INFRAHAZARD) / Consortium: INFRAHAZARD ,EC| FluxWIN ,NSF| Collaborative Research: Multi-Regional Scale Aircraft Observations of Methane and Carbon Dioxide Isotopic Fluxes in the Arctic ,AKA| Atmosphere and Climate Competence Center (ACCC) ,NSF| Collaborative Research: Using the ITEX-AON network to document and understand terrestrial ecosystem change in the Arctic ,AKA| When ancient meets modern effect of plant-derived carbon on anaerobic decomposition in arctic permafrost soils (PANDA) ,AKA| Novel soil management practices - key for sustainable bioeconomy and climate change mitigation -SOMPA / Consortium: SOMPA ,NSF| METHANE AT THE ZERO CURTAIN ,NSF| Collaborative Research: Permafrost Carbon Network: Synthesizing flux observations for benchmarking model projections of permafrost carbon exchange ,AKA| Towards constraining the circumarctic nitrous oxide budget (NOCA) ,EC| PAGE21 ,NSF| Collaborative Research on Carbon, Water, and Energy Balance of the Arctic Landscape at Flagship Observatories in Alaska and Siberia ,AKA| Biogeochemical and biophysical feedbacks from forest harvesting to climate change / Consortium: NNNN ,RCN| Winter-proofing land surface models - quantifying the critical role of cold season processes in vegetation-permafrost feedbacks ,NSF| Collaborative Research: Research, Synthesis, and Knowledge Transfer in a Changing Arctic: Science Support for the Study of Environmental Arctic Change (SEARCH)Authors:Edward A. G. Schuur;
Edward A. G. Schuur
Edward A. G. Schuur in OpenAIREJärvi Järveoja;
S. Potter;Järvi Järveoja
Järvi Järveoja in OpenAIREStef Bokhorst;
+52 AuthorsStef Bokhorst
Stef Bokhorst in OpenAIREEdward A. G. Schuur;
Edward A. G. Schuur
Edward A. G. Schuur in OpenAIREJärvi Järveoja;
S. Potter;Järvi Järveoja
Järvi Järveoja in OpenAIREStef Bokhorst;
Stef Bokhorst
Stef Bokhorst in OpenAIREMarguerite Mauritz;
Marguerite Mauritz
Marguerite Mauritz in OpenAIREMats Nilsson;
Steven F. Oberbauer; Elyn Humphreys;Mats Nilsson
Mats Nilsson in OpenAIREM. Goeckede;
M. Goeckede
M. Goeckede in OpenAIREPertti J. Martikainen;
Pertti J. Martikainen
Pertti J. Martikainen in OpenAIREJohn Kochendorfer;
John Kochendorfer
John Kochendorfer in OpenAIREJinshu Chi;
Jinshu Chi
Jinshu Chi in OpenAIREJuha Aalto;
Juha Aalto; Jennifer D. Watts;Juha Aalto
Juha Aalto in OpenAIRETorben R. Christensen;
Torben R. Christensen
Torben R. Christensen in OpenAIREMatthias Peichl;
Matthias Peichl
Matthias Peichl in OpenAIREOliver Sonnentag;
Oliver Sonnentag
Oliver Sonnentag in OpenAIREVincent L. St. Louis;
Vincent L. St. Louis
Vincent L. St. Louis in OpenAIRECraig A. Emmerton;
Craig A. Emmerton
Craig A. Emmerton in OpenAIREMiska Luoto;
Miska Luoto
Miska Luoto in OpenAIREDavid Holl;
David Holl
David Holl in OpenAIREEugénie S. Euskirchen;
Eugénie S. Euskirchen
Eugénie S. Euskirchen in OpenAIRETorbern Tagesson;
Torbern Tagesson;Torbern Tagesson
Torbern Tagesson in OpenAIRESang Jong Park;
Gerardo Celis;Sang Jong Park
Sang Jong Park in OpenAIREMargaret S. Torn;
Margaret S. Torn
Margaret S. Torn in OpenAIREFrans-Jan W. Parmentier;
Frans-Jan W. Parmentier;Frans-Jan W. Parmentier
Frans-Jan W. Parmentier in OpenAIREMaija E. Marushchak;
Maija E. Marushchak; Namyi Chae;Maija E. Marushchak
Maija E. Marushchak in OpenAIREWalter C. Oechel;
Walter C. Oechel;Walter C. Oechel
Walter C. Oechel in OpenAIREMasahito Ueyama;
Masahito Ueyama
Masahito Ueyama in OpenAIREPeter M. Lafleur;
Peter M. Lafleur
Peter M. Lafleur in OpenAIREChristina Biasi;
Christina Biasi
Christina Biasi in OpenAIREBo Elberling;
Bo Elberling
Bo Elberling in OpenAIREBrendan M. Rogers;
Brendan M. Rogers
Brendan M. Rogers in OpenAIREHan Dolman;
Han Dolman
Han Dolman in OpenAIREIvan Mammarella;
Ivan Mammarella
Ivan Mammarella in OpenAIREAleksi Lehtonen;
Aleksi Lehtonen
Aleksi Lehtonen in OpenAIREClaire C. Treat;
Claire C. Treat
Claire C. Treat in OpenAIREMin Jung Kwon;
Min Jung Kwon
Min Jung Kwon in OpenAIRECarolina Voigt;
Carolina Voigt;Carolina Voigt
Carolina Voigt in OpenAIREHideki Kobayashi;
Hideki Kobayashi
Hideki Kobayashi in OpenAIRERafael Poyatos;
Rafael Poyatos
Rafael Poyatos in OpenAIRESusan M. Natali;
Susan M. Natali
Susan M. Natali in OpenAIREHiroki Iwata;
Hiroki Iwata
Hiroki Iwata in OpenAIREDonatella Zona;
Donatella Zona;Donatella Zona
Donatella Zona in OpenAIREAnna-Maria Virkkala;
Anna-Maria Virkkala
Anna-Maria Virkkala in OpenAIREEfrén López-Blanco;
Efrén López-Blanco
Efrén López-Blanco in OpenAIRETorsten Sachs;
Torsten Sachs
Torsten Sachs in OpenAIREdoi: 10.1111/gcb.15659
pmid: 33913236
AbstractThe regional variability in tundra and boreal carbon dioxide (CO2) fluxes can be high, complicating efforts to quantify sink‐source patterns across the entire region. Statistical models are increasingly used to predict (i.e., upscale) CO2 fluxes across large spatial domains, but the reliability of different modeling techniques, each with different specifications and assumptions, has not been assessed in detail. Here, we compile eddy covariance and chamber measurements of annual and growing season CO2 fluxes of gross primary productivity (GPP), ecosystem respiration (ER), and net ecosystem exchange (NEE) during 1990–2015 from 148 terrestrial high‐latitude (i.e., tundra and boreal) sites to analyze the spatial patterns and drivers of CO2 fluxes and test the accuracy and uncertainty of different statistical models. CO2 fluxes were upscaled at relatively high spatial resolution (1 km2) across the high‐latitude region using five commonly used statistical models and their ensemble, that is, the median of all five models, using climatic, vegetation, and soil predictors. We found the performance of machine learning and ensemble predictions to outperform traditional regression methods. We also found the predictive performance of NEE‐focused models to be low, relative to models predicting GPP and ER. Our data compilation and ensemble predictions showed that CO2 sink strength was larger in the boreal biome (observed and predicted average annual NEE −46 and −29 g C m−2 yr−1, respectively) compared to tundra (average annual NEE +10 and −2 g C m−2 yr−1). This pattern was associated with large spatial variability, reflecting local heterogeneity in soil organic carbon stocks, climate, and vegetation productivity. The terrestrial ecosystem CO2 budget, estimated using the annual NEE ensemble prediction, suggests the high‐latitude region was on average an annual CO2 sink during 1990–2015, although uncertainty remains high.
SLU publication data... arrow_drop_down Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2021License: CC BYFull-Text: http://hdl.handle.net/10852/91720Data sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03260396Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03260396Data sources: Bielefeld Academic Search Engine (BASE)Jyväskylä University Digital ArchiveArticle . 2021 . Peer-reviewedData sources: Jyväskylä University Digital ArchiveHELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiCopenhagen University Research Information SystemArticle . 2021Data sources: Copenhagen University Research Information SystemGFZ German Research Centre for GeosciencesArticle . 2021License: CC BYData sources: GFZ German Research Centre for GeosciencesElectronic Publication Information CenterArticle . 2021Data sources: Electronic Publication Information CenterUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2021Natural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15659&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 123 citations 123 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert SLU publication data... arrow_drop_down Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2021License: CC BYFull-Text: http://hdl.handle.net/10852/91720Data sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03260396Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03260396Data sources: Bielefeld Academic Search Engine (BASE)Jyväskylä University Digital ArchiveArticle . 2021 . Peer-reviewedData sources: Jyväskylä University Digital ArchiveHELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiCopenhagen University Research Information SystemArticle . 2021Data sources: Copenhagen University Research Information SystemGFZ German Research Centre for GeosciencesArticle . 2021License: CC BYData sources: GFZ German Research Centre for GeosciencesElectronic Publication Information CenterArticle . 2021Data sources: Electronic Publication Information CenterUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2021Natural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15659&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Embargo end date: 01 Jan 2022 Netherlands, United Kingdom, Denmark, Germany, Finland, Switzerland, United Kingdom, Norway, Sweden, France, Germany, United KingdomPublisher:Springer Science and Business Media LLC Funded by:RCN | Winter-proofing land surf..., EC | CHARTER, SNSF | FutureWeb +7 projectsRCN| Winter-proofing land surface models - quantifying the critical role of cold season processes in vegetation-permafrost feedbacks ,EC| CHARTER ,SNSF| FutureWeb ,NSF| Collaborative Research: Tracking Carbon, Water, and Energy Balance of the Arctic Landscape at Flagship Observatories in Alaska and Siberia ,NSF| Collaborative Research: Carbon, Water, and Energy Balance of the Arctic Landscape at Flagship Observatories in Alaska and Siberia ,NSF| Automated, High Resolution Terrain Generation for XSEDE ,RCN| Upscaling hotspots - understanding the variability of critical land-atmosphere fluxes to strengthen climate models ,NSF| The Polar Geospatial Information Center: Joint Support ,SNSF| FeedBaCks: Feedbacks between Biodiversity and Climate ,SNSF| Arctic Tundra Surface Energy Budget - assessing the status and informing predictionsAuthors:Oehri, Jacqueline;
Oehri, Jacqueline
Oehri, Jacqueline in OpenAIRESchaepman-Strub, Gabriela;
Schaepman-Strub, Gabriela
Schaepman-Strub, Gabriela in OpenAIREKim, Jin-Soo;
Grysko, Raleigh; +70 AuthorsKim, Jin-Soo
Kim, Jin-Soo in OpenAIREOehri, Jacqueline;
Oehri, Jacqueline
Oehri, Jacqueline in OpenAIRESchaepman-Strub, Gabriela;
Schaepman-Strub, Gabriela
Schaepman-Strub, Gabriela in OpenAIREKim, Jin-Soo;
Grysko, Raleigh; Kropp, Heather;Kim, Jin-Soo
Kim, Jin-Soo in OpenAIREGrünberg, Inge;
Grünberg, Inge
Grünberg, Inge in OpenAIREZemlianskii, Vitalii;
Zemlianskii, Vitalii
Zemlianskii, Vitalii in OpenAIRESonnentag, Oliver;
Sonnentag, Oliver
Sonnentag, Oliver in OpenAIREEuskirchen, Eugénie;
Euskirchen, Eugénie
Euskirchen, Eugénie in OpenAIREReji Chacko, Merin;
Reji Chacko, Merin
Reji Chacko, Merin in OpenAIREMuscari, Giovanni;
Muscari, Giovanni
Muscari, Giovanni in OpenAIREBlanken, Peter;
Blanken, Peter
Blanken, Peter in OpenAIREDean, Joshua;
Dean, Joshua
Dean, Joshua in OpenAIREDi Sarra, Alcide;
Harding, Richard; Sobota, Ireneusz;Di Sarra, Alcide
Di Sarra, Alcide in OpenAIREKutzbach, Lars;
Plekhanova, Elena;Kutzbach, Lars
Kutzbach, Lars in OpenAIRERiihelä, Aku;
Riihelä, Aku
Riihelä, Aku in OpenAIREBoike, Julia;
Boike, Julia
Boike, Julia in OpenAIREMiller, Nathaniel;
Miller, Nathaniel
Miller, Nathaniel in OpenAIREBeringer, Jason;
Beringer, Jason
Beringer, Jason in OpenAIRELópez-Blanco, Efrén;
Stoy, Paul;López-Blanco, Efrén
López-Blanco, Efrén in OpenAIRESullivan, Ryan;
Kejna, Marek;Sullivan, Ryan
Sullivan, Ryan in OpenAIREParmentier, Frans-Jan W;
Parmentier, Frans-Jan W
Parmentier, Frans-Jan W in OpenAIREGamon, John;
Gamon, John
Gamon, John in OpenAIREMastepanov, Mikhail;
Mastepanov, Mikhail
Mastepanov, Mikhail in OpenAIREWille, Christian;
Jackowicz-Korczynski, Marcin;Wille, Christian
Wille, Christian in OpenAIREKarger, Dirk;
Karger, Dirk
Karger, Dirk in OpenAIREQuinton, William;
Putkonen, Jaakko; van As, Dirk;Quinton, William
Quinton, William in OpenAIREChristensen, Torben;
Christensen, Torben
Christensen, Torben in OpenAIREHakuba, Maria;
Stone, Robert;Hakuba, Maria
Hakuba, Maria in OpenAIREMetzger, Stefan;
Metzger, Stefan
Metzger, Stefan in OpenAIREVandecrux, Baptiste;
Vandecrux, Baptiste
Vandecrux, Baptiste in OpenAIREFrost, Gerald;
Frost, Gerald
Frost, Gerald in OpenAIREWild, Martin;
Wild, Martin
Wild, Martin in OpenAIREHansen, Birger;
Hansen, Birger
Hansen, Birger in OpenAIREMeloni, Daniela;
Meloni, Daniela
Meloni, Daniela in OpenAIREDomine, Florent;
Te Beest, Mariska;Domine, Florent
Domine, Florent in OpenAIRESachs, Torsten;
Sachs, Torsten
Sachs, Torsten in OpenAIREKalhori, Aram;
Rocha, Adrian; Williamson, Scott;Kalhori, Aram
Kalhori, Aram in OpenAIREMorris, Sara;
Morris, Sara
Morris, Sara in OpenAIREAtchley, Adam;
Essery, Richard;Atchley, Adam
Atchley, Adam in OpenAIRERunkle, Benjamin;
Runkle, Benjamin
Runkle, Benjamin in OpenAIREHoll, David;
Holl, David
Holl, David in OpenAIRERiihimaki, Laura;
Riihimaki, Laura
Riihimaki, Laura in OpenAIREIwata, Hiroki;
Iwata, Hiroki
Iwata, Hiroki in OpenAIRESchuur, Edward;
Schuur, Edward
Schuur, Edward in OpenAIRECox, Christopher;
Grachev, Andrey; Mcfadden, Joseph;Cox, Christopher
Cox, Christopher in OpenAIREFausto, Robert;
Fausto, Robert
Fausto, Robert in OpenAIREGöckede, Mathias;
Göckede, Mathias
Göckede, Mathias in OpenAIREUeyama, Masahito;
Ueyama, Masahito
Ueyama, Masahito in OpenAIREPirk, Norbert;
Pirk, Norbert
Pirk, Norbert in OpenAIREde Boer, Gijs;
de Boer, Gijs
de Boer, Gijs in OpenAIREBret-Harte, M. Syndonia;
Leppäranta, Matti; Steffen, Konrad;Bret-Harte, M. Syndonia
Bret-Harte, M. Syndonia in OpenAIREFriborg, Thomas;
Ohmura, Atsumu;Friborg, Thomas
Friborg, Thomas in OpenAIREEdgar, Colin;
Edgar, Colin
Edgar, Colin in OpenAIREOlofsson, Johan;
Chambers, Scott;Olofsson, Johan
Olofsson, Johan in OpenAIREpmid: 36316310
pmc: PMC9622844
AbstractDespite the importance of high-latitude surface energy budgets (SEBs) for land-climate interactions in the rapidly changing Arctic, uncertainties in their prediction persist. Here, we harmonize SEB observations across a network of vegetated and glaciated sites at circumpolar scale (1994–2021). Our variance-partitioning analysis identifies vegetation type as an important predictor for SEB-components during Arctic summer (June-August), compared to other SEB-drivers including climate, latitude and permafrost characteristics. Differences among vegetation types can be of similar magnitude as between vegetation and glacier surfaces and are especially high for summer sensible and latent heat fluxes. The timing of SEB-flux summer-regimes (when daily mean values exceed 0 Wm−2) relative to snow-free and -onset dates varies substantially depending on vegetation type, implying vegetation controls on snow-cover and SEB-flux seasonality. Our results indicate complex shifts in surface energy fluxes with land-cover transitions and a lengthening summer season, and highlight the potential for improving future Earth system models via a refined representation of Arctic vegetation types.
NERC Open Research A... arrow_drop_down Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2022License: CC BYFull-Text: http://hdl.handle.net/10852/99980Data sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03870789Data sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2023 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiCopenhagen University Research Information SystemArticle . 2022Data sources: Copenhagen University Research Information SystemGFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for GeosciencesPublikationer från Umeå universitetArticle . 2022 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022 . Peer-reviewedElectronic Publication Information CenterArticle . 2022Data sources: Electronic Publication Information CenterUniversity of Bristol: Bristol ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-022-34049-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 26 citations 26 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2022License: CC BYFull-Text: http://hdl.handle.net/10852/99980Data sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03870789Data sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2023 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiCopenhagen University Research Information SystemArticle . 2022Data sources: Copenhagen University Research Information SystemGFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for GeosciencesPublikationer från Umeå universitetArticle . 2022 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022 . Peer-reviewedElectronic Publication Information CenterArticle . 2022Data sources: Electronic Publication Information CenterUniversity of Bristol: Bristol ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-022-34049-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Embargo end date: 01 Jan 2022 Netherlands, United Kingdom, Denmark, Germany, Finland, Switzerland, United Kingdom, Norway, Sweden, France, Germany, United KingdomPublisher:Springer Science and Business Media LLC Funded by:RCN | Winter-proofing land surf..., EC | CHARTER, SNSF | FutureWeb +7 projectsRCN| Winter-proofing land surface models - quantifying the critical role of cold season processes in vegetation-permafrost feedbacks ,EC| CHARTER ,SNSF| FutureWeb ,NSF| Collaborative Research: Tracking Carbon, Water, and Energy Balance of the Arctic Landscape at Flagship Observatories in Alaska and Siberia ,NSF| Collaborative Research: Carbon, Water, and Energy Balance of the Arctic Landscape at Flagship Observatories in Alaska and Siberia ,NSF| Automated, High Resolution Terrain Generation for XSEDE ,RCN| Upscaling hotspots - understanding the variability of critical land-atmosphere fluxes to strengthen climate models ,NSF| The Polar Geospatial Information Center: Joint Support ,SNSF| FeedBaCks: Feedbacks between Biodiversity and Climate ,SNSF| Arctic Tundra Surface Energy Budget - assessing the status and informing predictionsAuthors:Oehri, Jacqueline;
Oehri, Jacqueline
Oehri, Jacqueline in OpenAIRESchaepman-Strub, Gabriela;
Schaepman-Strub, Gabriela
Schaepman-Strub, Gabriela in OpenAIREKim, Jin-Soo;
Grysko, Raleigh; +70 AuthorsKim, Jin-Soo
Kim, Jin-Soo in OpenAIREOehri, Jacqueline;
Oehri, Jacqueline
Oehri, Jacqueline in OpenAIRESchaepman-Strub, Gabriela;
Schaepman-Strub, Gabriela
Schaepman-Strub, Gabriela in OpenAIREKim, Jin-Soo;
Grysko, Raleigh; Kropp, Heather;Kim, Jin-Soo
Kim, Jin-Soo in OpenAIREGrünberg, Inge;
Grünberg, Inge
Grünberg, Inge in OpenAIREZemlianskii, Vitalii;
Zemlianskii, Vitalii
Zemlianskii, Vitalii in OpenAIRESonnentag, Oliver;
Sonnentag, Oliver
Sonnentag, Oliver in OpenAIREEuskirchen, Eugénie;
Euskirchen, Eugénie
Euskirchen, Eugénie in OpenAIREReji Chacko, Merin;
Reji Chacko, Merin
Reji Chacko, Merin in OpenAIREMuscari, Giovanni;
Muscari, Giovanni
Muscari, Giovanni in OpenAIREBlanken, Peter;
Blanken, Peter
Blanken, Peter in OpenAIREDean, Joshua;
Dean, Joshua
Dean, Joshua in OpenAIREDi Sarra, Alcide;
Harding, Richard; Sobota, Ireneusz;Di Sarra, Alcide
Di Sarra, Alcide in OpenAIREKutzbach, Lars;
Plekhanova, Elena;Kutzbach, Lars
Kutzbach, Lars in OpenAIRERiihelä, Aku;
Riihelä, Aku
Riihelä, Aku in OpenAIREBoike, Julia;
Boike, Julia
Boike, Julia in OpenAIREMiller, Nathaniel;
Miller, Nathaniel
Miller, Nathaniel in OpenAIREBeringer, Jason;
Beringer, Jason
Beringer, Jason in OpenAIRELópez-Blanco, Efrén;
Stoy, Paul;López-Blanco, Efrén
López-Blanco, Efrén in OpenAIRESullivan, Ryan;
Kejna, Marek;Sullivan, Ryan
Sullivan, Ryan in OpenAIREParmentier, Frans-Jan W;
Parmentier, Frans-Jan W
Parmentier, Frans-Jan W in OpenAIREGamon, John;
Gamon, John
Gamon, John in OpenAIREMastepanov, Mikhail;
Mastepanov, Mikhail
Mastepanov, Mikhail in OpenAIREWille, Christian;
Jackowicz-Korczynski, Marcin;Wille, Christian
Wille, Christian in OpenAIREKarger, Dirk;
Karger, Dirk
Karger, Dirk in OpenAIREQuinton, William;
Putkonen, Jaakko; van As, Dirk;Quinton, William
Quinton, William in OpenAIREChristensen, Torben;
Christensen, Torben
Christensen, Torben in OpenAIREHakuba, Maria;
Stone, Robert;Hakuba, Maria
Hakuba, Maria in OpenAIREMetzger, Stefan;
Metzger, Stefan
Metzger, Stefan in OpenAIREVandecrux, Baptiste;
Vandecrux, Baptiste
Vandecrux, Baptiste in OpenAIREFrost, Gerald;
Frost, Gerald
Frost, Gerald in OpenAIREWild, Martin;
Wild, Martin
Wild, Martin in OpenAIREHansen, Birger;
Hansen, Birger
Hansen, Birger in OpenAIREMeloni, Daniela;
Meloni, Daniela
Meloni, Daniela in OpenAIREDomine, Florent;
Te Beest, Mariska;Domine, Florent
Domine, Florent in OpenAIRESachs, Torsten;
Sachs, Torsten
Sachs, Torsten in OpenAIREKalhori, Aram;
Rocha, Adrian; Williamson, Scott;Kalhori, Aram
Kalhori, Aram in OpenAIREMorris, Sara;
Morris, Sara
Morris, Sara in OpenAIREAtchley, Adam;
Essery, Richard;Atchley, Adam
Atchley, Adam in OpenAIRERunkle, Benjamin;
Runkle, Benjamin
Runkle, Benjamin in OpenAIREHoll, David;
Holl, David
Holl, David in OpenAIRERiihimaki, Laura;
Riihimaki, Laura
Riihimaki, Laura in OpenAIREIwata, Hiroki;
Iwata, Hiroki
Iwata, Hiroki in OpenAIRESchuur, Edward;
Schuur, Edward
Schuur, Edward in OpenAIRECox, Christopher;
Grachev, Andrey; Mcfadden, Joseph;Cox, Christopher
Cox, Christopher in OpenAIREFausto, Robert;
Fausto, Robert
Fausto, Robert in OpenAIREGöckede, Mathias;
Göckede, Mathias
Göckede, Mathias in OpenAIREUeyama, Masahito;
Ueyama, Masahito
Ueyama, Masahito in OpenAIREPirk, Norbert;
Pirk, Norbert
Pirk, Norbert in OpenAIREde Boer, Gijs;
de Boer, Gijs
de Boer, Gijs in OpenAIREBret-Harte, M. Syndonia;
Leppäranta, Matti; Steffen, Konrad;Bret-Harte, M. Syndonia
Bret-Harte, M. Syndonia in OpenAIREFriborg, Thomas;
Ohmura, Atsumu;Friborg, Thomas
Friborg, Thomas in OpenAIREEdgar, Colin;
Edgar, Colin
Edgar, Colin in OpenAIREOlofsson, Johan;
Chambers, Scott;Olofsson, Johan
Olofsson, Johan in OpenAIREpmid: 36316310
pmc: PMC9622844
AbstractDespite the importance of high-latitude surface energy budgets (SEBs) for land-climate interactions in the rapidly changing Arctic, uncertainties in their prediction persist. Here, we harmonize SEB observations across a network of vegetated and glaciated sites at circumpolar scale (1994–2021). Our variance-partitioning analysis identifies vegetation type as an important predictor for SEB-components during Arctic summer (June-August), compared to other SEB-drivers including climate, latitude and permafrost characteristics. Differences among vegetation types can be of similar magnitude as between vegetation and glacier surfaces and are especially high for summer sensible and latent heat fluxes. The timing of SEB-flux summer-regimes (when daily mean values exceed 0 Wm−2) relative to snow-free and -onset dates varies substantially depending on vegetation type, implying vegetation controls on snow-cover and SEB-flux seasonality. Our results indicate complex shifts in surface energy fluxes with land-cover transitions and a lengthening summer season, and highlight the potential for improving future Earth system models via a refined representation of Arctic vegetation types.
NERC Open Research A... arrow_drop_down Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2022License: CC BYFull-Text: http://hdl.handle.net/10852/99980Data sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03870789Data sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2023 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiCopenhagen University Research Information SystemArticle . 2022Data sources: Copenhagen University Research Information SystemGFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for GeosciencesPublikationer från Umeå universitetArticle . 2022 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022 . Peer-reviewedElectronic Publication Information CenterArticle . 2022Data sources: Electronic Publication Information CenterUniversity of Bristol: Bristol ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-022-34049-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 26 citations 26 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2022License: CC BYFull-Text: http://hdl.handle.net/10852/99980Data sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03870789Data sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2023 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiCopenhagen University Research Information SystemArticle . 2022Data sources: Copenhagen University Research Information SystemGFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for GeosciencesPublikationer från Umeå universitetArticle . 2022 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022 . Peer-reviewedElectronic Publication Information CenterArticle . 2022Data sources: Electronic Publication Information CenterUniversity of Bristol: Bristol ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-022-34049-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 China (People's Republic of), China (People's Republic of), China (People's Republic of), Finland, DenmarkPublisher:IOP Publishing Funded by:NSERC, AKA | Role of upland forest soi..., AKA | Centre of Excellence in A... +3 projectsNSERC ,AKA| Role of upland forest soils in regional methane balance: from catchment to global scales / Consortium: UPFORMET ,AKA| Centre of Excellence in Atmospheric Science From Molecular and Biolocigal processes to The Global Climate ,NSF| LTER: Comparative Study of a Suite of Lakes in Wisconsin ,AKA| Carbon dynamics across Arctic landscape gradients: past, present and future (CAPTURE) / Consortium: CAPTURE ,EC| RINGOAuthors:Pavel Alekseychik;
Pavel Alekseychik
Pavel Alekseychik in OpenAIREDaniel F. Nadeau;
Daniel F. Nadeau
Daniel F. Nadeau in OpenAIREBrian D. Amiro;
Vyacheslav Zyrianov; +55 AuthorsBrian D. Amiro
Brian D. Amiro in OpenAIREPavel Alekseychik;
Pavel Alekseychik
Pavel Alekseychik in OpenAIREDaniel F. Nadeau;
Daniel F. Nadeau
Daniel F. Nadeau in OpenAIREBrian D. Amiro;
Vyacheslav Zyrianov;Brian D. Amiro
Brian D. Amiro in OpenAIREAllison L. Dunn;
Allison L. Dunn
Allison L. Dunn in OpenAIREManuel Helbig;
Manuel Helbig; Mats Nilsson;Manuel Helbig
Manuel Helbig in OpenAIREElena D. Lapshina;
Elena D. Lapshina
Elena D. Lapshina in OpenAIREAnnalea Lohila;
Annalea Lohila
Annalea Lohila in OpenAIREMika Korkiakoski;
Mikaell Ottosson Löfvenius;Mika Korkiakoski
Mika Korkiakoski in OpenAIRESilvie Harder;
Silvie Harder
Silvie Harder in OpenAIREHiroki Ikawa;
Hiroki Ikawa
Hiroki Ikawa in OpenAIREChristopher Schulze;
Christopher Schulze
Christopher Schulze in OpenAIRETimo Vesala;
Timo Vesala
Timo Vesala in OpenAIREElyn Humphreys;
Elyn Humphreys
Elyn Humphreys in OpenAIREMatthias Peichl;
Matthias Peichl
Matthias Peichl in OpenAIREWilliam L. Quinton;
William L. Quinton
William L. Quinton in OpenAIRENigel T. Roulet;
Nigel T. Roulet
Nigel T. Roulet in OpenAIREErin M. Nicholls;
Erin M. Nicholls
Erin M. Nicholls in OpenAIREAnders Lindroth;
Anders Lindroth
Anders Lindroth in OpenAIREAndrej Varlagin;
Andrej Varlagin
Andrej Varlagin in OpenAIRESean K. Carey;
Sean K. Carey
Sean K. Carey in OpenAIREIan B. Strachan;
Richard M. Petrone;Ian B. Strachan
Ian B. Strachan in OpenAIREEugénie S. Euskirchen;
Eugénie S. Euskirchen
Eugénie S. Euskirchen in OpenAIRELars Kutzbach;
Lars Kutzbach
Lars Kutzbach in OpenAIREOliver Sonnentag;
Oliver Sonnentag
Oliver Sonnentag in OpenAIREMasahito Ueyama;
Masahito Ueyama
Masahito Ueyama in OpenAIREJuha-Pekka Tuovinen;
Juha-Pekka Tuovinen
Juha-Pekka Tuovinen in OpenAIREMichelle Garneau;
Michelle Garneau
Michelle Garneau in OpenAIREHiroki Iwata;
Takeshi Ohta; Trofim C. Maximov;Hiroki Iwata
Hiroki Iwata in OpenAIREAnkur R. Desai;
Ankur R. Desai
Ankur R. Desai in OpenAIREAlan G. Barr;
Alan G. Barr
Alan G. Barr in OpenAIREAnatoly S. Prokushkin;
Anatoly S. Prokushkin
Anatoly S. Prokushkin in OpenAIREPhilip Marsh;
Philip Marsh
Philip Marsh in OpenAIRELawrence B. Flanagan;
Lawrence B. Flanagan
Lawrence B. Flanagan in OpenAIREPierre-Erik Isabelle;
Pierre-Erik Isabelle
Pierre-Erik Isabelle in OpenAIREPaul A. Moore;
Paul A. Moore
Paul A. Moore in OpenAIREJuliya Kurbatova;
T. Andrew Black; Eeva-Stiina Tuittila;Juliya Kurbatova
Juliya Kurbatova in OpenAIREMika Aurela;
Mika Aurela
Mika Aurela in OpenAIREJinshu Chi;
Jinshu Chi
Jinshu Chi in OpenAIREThomas Friborg;
Thomas Friborg
Thomas Friborg in OpenAIREMartin Wilmking;
Martin Wilmking
Martin Wilmking in OpenAIREPierre Taillardat;
Pierre Taillardat
Pierre Taillardat in OpenAIREJiquan Chen;
Jiquan Chen
Jiquan Chen in OpenAIREBenjamin R. K. Runkle;
Benjamin R. K. Runkle;Benjamin R. K. Runkle
Benjamin R. K. Runkle in OpenAIRERachhpal S. Jassal;
Rachhpal S. Jassal
Rachhpal S. Jassal in OpenAIREIvan Mammarella;
Ivan Mammarella
Ivan Mammarella in OpenAIREJessica Turner;
Jessica Turner
Jessica Turner in OpenAIREJames M. Waddington;
James M. Waddington
James M. Waddington in OpenAIREMichal Heliasz;
Michal Heliasz
Michal Heliasz in OpenAIREAchim Grelle;
Achim Grelle
Achim Grelle in OpenAIREhandle: 10138/321067
Peatlands and forests cover large areas of the boreal biome and are critical for global climate regulation. They also regulate regional climate through heat and water vapour exchange with the atmosphere. Understanding how land-atmosphere interactions in peatlands differ from forests may therefore be crucial for modelling boreal climate system dynamics and for assessing climate benefits of peatland conservation and restoration. To assess the biophysical impacts of peatlands and forests on peak growing season air temperature and humidity, we analysed surface energy fluxes and albedo from 35 peatlands and 37 evergreen needleleaf forests—the dominant boreal forest type—and simulated air temperature and vapour pressure deficit (VPD) over hypothetical homogeneous peatland and forest landscapes. We ran an evapotranspiration model using land surface parameters derived from energy flux observations and coupled an analytical solution for the surface energy balance to an atmospheric boundary layer (ABL) model. We found that peatlands, compared to forests, are characterized by higher growing season albedo, lower aerodynamic conductance, and higher surface conductance for an equivalent VPD. This combination of peatland surface properties results in a ∼20% decrease in afternoon ABL height, a cooling (from 1.7 to 2.5 °C) in afternoon air temperatures, and a decrease in afternoon VPD (from 0.4 to 0.7 kPa) for peatland landscapes compared to forest landscapes. These biophysical climate impacts of peatlands are most pronounced at lower latitudes (∼45°N) and decrease toward the northern limit of the boreal biome (∼70°N). Thus, boreal peatlands have the potential to mitigate the effect of regional climate warming during the growing season. The biophysical climate mitigation potential of peatlands needs to be accounted for when projecting the future climate of the boreal biome, when assessing the climate benefits of conserving pristine boreal peatlands, and when restoring peatlands that have experienced peatland drainage and mining.
Environmental Resear... arrow_drop_down HELDA - Digital Repository of the University of HelsinkiArticle . 2020 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiCopenhagen University Research Information SystemArticle . 2020Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abab34&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 33 citations 33 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Environmental Resear... arrow_drop_down HELDA - Digital Repository of the University of HelsinkiArticle . 2020 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiCopenhagen University Research Information SystemArticle . 2020Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abab34&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 China (People's Republic of), China (People's Republic of), China (People's Republic of), Finland, DenmarkPublisher:IOP Publishing Funded by:NSERC, AKA | Role of upland forest soi..., AKA | Centre of Excellence in A... +3 projectsNSERC ,AKA| Role of upland forest soils in regional methane balance: from catchment to global scales / Consortium: UPFORMET ,AKA| Centre of Excellence in Atmospheric Science From Molecular and Biolocigal processes to The Global Climate ,NSF| LTER: Comparative Study of a Suite of Lakes in Wisconsin ,AKA| Carbon dynamics across Arctic landscape gradients: past, present and future (CAPTURE) / Consortium: CAPTURE ,EC| RINGOAuthors:Pavel Alekseychik;
Pavel Alekseychik
Pavel Alekseychik in OpenAIREDaniel F. Nadeau;
Daniel F. Nadeau
Daniel F. Nadeau in OpenAIREBrian D. Amiro;
Vyacheslav Zyrianov; +55 AuthorsBrian D. Amiro
Brian D. Amiro in OpenAIREPavel Alekseychik;
Pavel Alekseychik
Pavel Alekseychik in OpenAIREDaniel F. Nadeau;
Daniel F. Nadeau
Daniel F. Nadeau in OpenAIREBrian D. Amiro;
Vyacheslav Zyrianov;Brian D. Amiro
Brian D. Amiro in OpenAIREAllison L. Dunn;
Allison L. Dunn
Allison L. Dunn in OpenAIREManuel Helbig;
Manuel Helbig; Mats Nilsson;Manuel Helbig
Manuel Helbig in OpenAIREElena D. Lapshina;
Elena D. Lapshina
Elena D. Lapshina in OpenAIREAnnalea Lohila;
Annalea Lohila
Annalea Lohila in OpenAIREMika Korkiakoski;
Mikaell Ottosson Löfvenius;Mika Korkiakoski
Mika Korkiakoski in OpenAIRESilvie Harder;
Silvie Harder
Silvie Harder in OpenAIREHiroki Ikawa;
Hiroki Ikawa
Hiroki Ikawa in OpenAIREChristopher Schulze;
Christopher Schulze
Christopher Schulze in OpenAIRETimo Vesala;
Timo Vesala
Timo Vesala in OpenAIREElyn Humphreys;
Elyn Humphreys
Elyn Humphreys in OpenAIREMatthias Peichl;
Matthias Peichl
Matthias Peichl in OpenAIREWilliam L. Quinton;
William L. Quinton
William L. Quinton in OpenAIRENigel T. Roulet;
Nigel T. Roulet
Nigel T. Roulet in OpenAIREErin M. Nicholls;
Erin M. Nicholls
Erin M. Nicholls in OpenAIREAnders Lindroth;
Anders Lindroth
Anders Lindroth in OpenAIREAndrej Varlagin;
Andrej Varlagin
Andrej Varlagin in OpenAIRESean K. Carey;
Sean K. Carey
Sean K. Carey in OpenAIREIan B. Strachan;
Richard M. Petrone;Ian B. Strachan
Ian B. Strachan in OpenAIREEugénie S. Euskirchen;
Eugénie S. Euskirchen
Eugénie S. Euskirchen in OpenAIRELars Kutzbach;
Lars Kutzbach
Lars Kutzbach in OpenAIREOliver Sonnentag;
Oliver Sonnentag
Oliver Sonnentag in OpenAIREMasahito Ueyama;
Masahito Ueyama
Masahito Ueyama in OpenAIREJuha-Pekka Tuovinen;
Juha-Pekka Tuovinen
Juha-Pekka Tuovinen in OpenAIREMichelle Garneau;
Michelle Garneau
Michelle Garneau in OpenAIREHiroki Iwata;
Takeshi Ohta; Trofim C. Maximov;Hiroki Iwata
Hiroki Iwata in OpenAIREAnkur R. Desai;
Ankur R. Desai
Ankur R. Desai in OpenAIREAlan G. Barr;
Alan G. Barr
Alan G. Barr in OpenAIREAnatoly S. Prokushkin;
Anatoly S. Prokushkin
Anatoly S. Prokushkin in OpenAIREPhilip Marsh;
Philip Marsh
Philip Marsh in OpenAIRELawrence B. Flanagan;
Lawrence B. Flanagan
Lawrence B. Flanagan in OpenAIREPierre-Erik Isabelle;
Pierre-Erik Isabelle
Pierre-Erik Isabelle in OpenAIREPaul A. Moore;
Paul A. Moore
Paul A. Moore in OpenAIREJuliya Kurbatova;
T. Andrew Black; Eeva-Stiina Tuittila;Juliya Kurbatova
Juliya Kurbatova in OpenAIREMika Aurela;
Mika Aurela
Mika Aurela in OpenAIREJinshu Chi;
Jinshu Chi
Jinshu Chi in OpenAIREThomas Friborg;
Thomas Friborg
Thomas Friborg in OpenAIREMartin Wilmking;
Martin Wilmking
Martin Wilmking in OpenAIREPierre Taillardat;
Pierre Taillardat
Pierre Taillardat in OpenAIREJiquan Chen;
Jiquan Chen
Jiquan Chen in OpenAIREBenjamin R. K. Runkle;
Benjamin R. K. Runkle;Benjamin R. K. Runkle
Benjamin R. K. Runkle in OpenAIRERachhpal S. Jassal;
Rachhpal S. Jassal
Rachhpal S. Jassal in OpenAIREIvan Mammarella;
Ivan Mammarella
Ivan Mammarella in OpenAIREJessica Turner;
Jessica Turner
Jessica Turner in OpenAIREJames M. Waddington;
James M. Waddington
James M. Waddington in OpenAIREMichal Heliasz;
Michal Heliasz
Michal Heliasz in OpenAIREAchim Grelle;
Achim Grelle
Achim Grelle in OpenAIREhandle: 10138/321067
Peatlands and forests cover large areas of the boreal biome and are critical for global climate regulation. They also regulate regional climate through heat and water vapour exchange with the atmosphere. Understanding how land-atmosphere interactions in peatlands differ from forests may therefore be crucial for modelling boreal climate system dynamics and for assessing climate benefits of peatland conservation and restoration. To assess the biophysical impacts of peatlands and forests on peak growing season air temperature and humidity, we analysed surface energy fluxes and albedo from 35 peatlands and 37 evergreen needleleaf forests—the dominant boreal forest type—and simulated air temperature and vapour pressure deficit (VPD) over hypothetical homogeneous peatland and forest landscapes. We ran an evapotranspiration model using land surface parameters derived from energy flux observations and coupled an analytical solution for the surface energy balance to an atmospheric boundary layer (ABL) model. We found that peatlands, compared to forests, are characterized by higher growing season albedo, lower aerodynamic conductance, and higher surface conductance for an equivalent VPD. This combination of peatland surface properties results in a ∼20% decrease in afternoon ABL height, a cooling (from 1.7 to 2.5 °C) in afternoon air temperatures, and a decrease in afternoon VPD (from 0.4 to 0.7 kPa) for peatland landscapes compared to forest landscapes. These biophysical climate impacts of peatlands are most pronounced at lower latitudes (∼45°N) and decrease toward the northern limit of the boreal biome (∼70°N). Thus, boreal peatlands have the potential to mitigate the effect of regional climate warming during the growing season. The biophysical climate mitigation potential of peatlands needs to be accounted for when projecting the future climate of the boreal biome, when assessing the climate benefits of conserving pristine boreal peatlands, and when restoring peatlands that have experienced peatland drainage and mining.
Environmental Resear... arrow_drop_down HELDA - Digital Repository of the University of HelsinkiArticle . 2020 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiCopenhagen University Research Information SystemArticle . 2020Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abab34&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 33 citations 33 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Environmental Resear... arrow_drop_down HELDA - Digital Repository of the University of HelsinkiArticle . 2020 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiCopenhagen University Research Information SystemArticle . 2020Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abab34&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 ItalyPublisher:Elsevier BV Funded by:NSF | CAREER: Developing climat..., EC | OEMCNSF| CAREER: Developing climate-smart irrigation strategies for rice agriculture in Arkansas ,EC| OEMCAuthors:Zutao Ouyang;
Zutao Ouyang
Zutao Ouyang in OpenAIRERobert B. Jackson;
Robert B. Jackson
Robert B. Jackson in OpenAIREGavin McNicol;
Gavin McNicol
Gavin McNicol in OpenAIREEtienne Fluet‐Chouinard;
+33 AuthorsEtienne Fluet‐Chouinard
Etienne Fluet‐Chouinard in OpenAIREZutao Ouyang;
Zutao Ouyang
Zutao Ouyang in OpenAIRERobert B. Jackson;
Robert B. Jackson
Robert B. Jackson in OpenAIREGavin McNicol;
Gavin McNicol
Gavin McNicol in OpenAIREEtienne Fluet‐Chouinard;
Etienne Fluet‐Chouinard
Etienne Fluet‐Chouinard in OpenAIREBenjamin R. K. Runkle;
Benjamin R. K. Runkle
Benjamin R. K. Runkle in OpenAIREDario Papale;
Dario Papale
Dario Papale in OpenAIRESara Knox;
Sara Knox
Sara Knox in OpenAIRES. W. Cooley;
S. W. Cooley
S. W. Cooley in OpenAIREKyle Delwiche;
Kyle Delwiche
Kyle Delwiche in OpenAIRESarah Féron;
Sarah Féron
Sarah Féron in OpenAIREJeremy Irvin;
Jeremy Irvin
Jeremy Irvin in OpenAIREAvni Malhotra;
Avni Malhotra
Avni Malhotra in OpenAIREMuhammad Muddasir;
Muhammad Muddasir
Muhammad Muddasir in OpenAIRESimone Sabbatini;
Ma. Carmelita Alberto;Simone Sabbatini
Simone Sabbatini in OpenAIREAlessandro Cescatti;
Alessandro Cescatti
Alessandro Cescatti in OpenAIREChi–Ling Chen;
Chi–Ling Chen
Chi–Ling Chen in OpenAIREDong Jiang;
B. Fong;Dong Jiang
Dong Jiang in OpenAIREHaiqiang Guo;
Haiqiang Guo
Haiqiang Guo in OpenAIREHao Lu;
Hao Lu
Hao Lu in OpenAIREHiroyasu Iwata;
Hiroyasu Iwata
Hiroyasu Iwata in OpenAIREQingyu Jia;
Weimin Ju;Qingyu Jia
Qingyu Jia in OpenAIREMinseok Kang;
Minseok Kang
Minseok Kang in OpenAIREHong Li;
Hong Li
Hong Li in OpenAIREJoon Kim;
Joon Kim
Joon Kim in OpenAIREMichele L. Reba;
Michele L. Reba
Michele L. Reba in OpenAIREAmaresh Kumar Nayak;
Amaresh Kumar Nayak
Amaresh Kumar Nayak in OpenAIREDébora Regina Roberti;
Débora Regina Roberti
Débora Regina Roberti in OpenAIREYoungryel Ryu;
Youngryel Ryu
Youngryel Ryu in OpenAIREChinmaya Kumar Swain;
Chinmaya Kumar Swain
Chinmaya Kumar Swain in OpenAIREBenjei Tsuang;
Benjei Tsuang
Benjei Tsuang in OpenAIREXiangming Xiao;
Xiangming Xiao
Xiangming Xiao in OpenAIREWenping Yuan;
Geli Zhang;Wenping Yuan
Wenping Yuan in OpenAIREYongguang Zhang;
Yongguang Zhang
Yongguang Zhang in OpenAIREAunque el cultivo de arroz es una de las fuentes agrícolas más importantes de metano (CH4) y contribuye con ~8% del total de las emisiones antropogénicas globales, persisten grandes discrepancias entre las estimaciones de las emisiones globales de CH4 del cultivo de arroz (que van de 18 a 115 Tg CH4 año−1) debido a la falta de limitaciones observables. La distribución espacial de las emisiones de arrozales se ha evaluado a escalas regionales a globales mediante inventarios ascendentes y modelos de superficie terrestre sobre resolución espacial gruesa (por ejemplo, > 0,5°) o unidades espaciales (por ejemplo, zonas agroecológicas). Sin embargo, las estimaciones de flujo de CH4 de alta resolución capaces de capturar los efectos del clima local y las prácticas de gestión sobre las emisiones, así como la replicación de datos in situ, siguen siendo difíciles de producir debido a la escasez de mapas de arroz de alta resolución y a la insuficiente comprensión de los predictores de CH4. Aquí, combinamos datos de flujo de metano de arroz con arroz de 23 sitios de covarianza de remolinos globales y datos de teledetección MODIS con aprendizaje automático para 1) evaluar el rendimiento del modelo basado en datos y la importancia variable para predecir los flujos de CH4 de arroz; y 2) producir estimaciones cuadriculadas de aumento de escala de las emisiones de CH4 de arroz a una resolución de 5000 m en toda Asia monzónica, donde se cultiva ~87% del área mundial de arroz y se produce ~ 90% de la producción mundial de arroz. Nuestro modelo de bosque aleatorio logró valores de eficiencia de Nash-Sutcliffe de 0,59 y 0,69 para flujos de CH4 de 8 días y flujos de CH4 medios del sitio, respectivamente, con índices relacionados con la temperatura de la superficie terrestre, la biomasa y la disponibilidad de agua como los predictores más importantes. Estimamos que las emisiones anuales promedio de arroz con cáscara CH4 (excluida la temporada de barbecho invernal) en toda Asia monzónica son de 20.6 ± 1.1 Tg año−1 para 2001–2015, que se encuentra en el rango más bajo de las estimaciones anteriores basadas en el inventario (20–32 CH4 Tg año−1). Nuestras estimaciones también sugieren que las emisiones de CH4 del arroz con cáscara en esta región han estado disminuyendo desde 2007 hasta 2015 después de las disminuciones tanto en el área de cultivo de arroz con cáscara como en las tasas de emisión por unidad de área, lo que sugiere que las emisiones de CH4 del arroz con cáscara en el monzón de Asia probablemente no hayan contribuido al renovado crecimiento del CH4 atmosférico en los últimos años. Bien que la riziculture soit l'une des plus importantes sources agricoles de méthane (CH4) et contribue à environ8% des émissions anthropiques mondiales totales, de grands écarts subsistent entre les estimations des émissions mondiales de CH4 provenant de la riziculture (allant de 18 à 115 Tg de CH4 par an) en raison d'un manque de contraintes d'observation. La distribution spatiale des émissions de riz paddy a été évaluée à l'échelle régionale et mondiale par des inventaires ascendants et des modèles de surface terrestre sur une résolution spatiale grossière (par exemple, > 0,5°) ou des unités spatiales (par exemple, des zones agro-écologiques). Cependant, les estimations de flux de CH4 à haute résolution capables de capturer les effets du climat local et des pratiques de gestion sur les émissions, ainsi que de reproduire les données in situ, restent difficiles à produire en raison de la rareté des cartes à haute résolution du riz paddy et d'une compréhension insuffisante des prédicteurs de CH4. Ici, nous combinons les données de flux de méthane de riz paddy provenant de 23 sites mondiaux de covariance des tourbillons et les données de télédétection MODIS avec l'apprentissage automatique pour 1) évaluer les performances du modèle basé sur les données et l'importance variable pour prédire les flux de CH4 du riz ; et 2) produire des estimations maillées des émissions de CH4 du riz à une résolution de 5000 m dans toute l'Asie de la mousson, où ∼87 % de la superficie mondiale du riz est cultivée et ∼ 90 % de la production mondiale de riz se produit. Notre modèle de forêt aléatoire a atteint des valeurs d'efficacité de Nash-Sutcliffe de 0,59 et 0,69 pour les flux de CH4 sur 8 jours et les flux de CH4 moyens du site, respectivement, la température de surface du sol, la biomasse et les indices liés à la disponibilité de l'eau étant les prédicteurs les plus importants. Nous estimons que les émissions annuelles moyennes de CH4 de riz paddy (hors saison de jachère hivernale) dans toute l'Asie de la mousson sont de 20,6 ± 1,1 Tgan-1 pour 2001–2015, ce qui se situe dans la fourchette inférieure des estimations antérieures basées sur les inventaires (20–32 Tgan-1 de CH4). Nos estimations suggèrent également que les émissions de CH4 du riz paddy dans cette région ont diminué de 2007 à 2015 à la suite de baisses à la fois de la superficie cultivée en riz paddy et des taux d'émission par unité de surface, ce qui suggère que les émissions de CH4 du riz paddy dans Monsoon Asia n'ont probablement pas contribué à la croissance renouvelée du CH4 atmosphérique ces dernières années. Although rice cultivation is one of the most important agricultural sources of methane (CH4) and contributes ∼8% of total global anthropogenic emissions, large discrepancies remain among estimates of global CH4 emissions from rice cultivation (ranging from 18 to 115 Tg CH4 yr−1) due to a lack of observational constraints. The spatial distribution of paddy-rice emissions has been assessed at regional-to-global scales by bottom-up inventories and land surface models over coarse spatial resolution (e.g., > 0.5°) or spatial units (e.g., agro-ecological zones). However, high-resolution CH4 flux estimates capable of capturing the effects of local climate and management practices on emissions, as well as replicating in situ data, remain challenging to produce because of the scarcity of high-resolution maps of paddy-rice and insufficient understanding of CH4 predictors. Here, we combine paddy-rice methane-flux data from 23 global eddy covariance sites and MODIS remote sensing data with machine learning to 1) evaluate data-driven model performance and variable importance for predicting rice CH4 fluxes; and 2) produce gridded up-scaling estimates of rice CH4 emissions at 5000-m resolution across Monsoon Asia, where ∼87% of global rice area is cultivated and ∼ 90% of global rice production occurs. Our random-forest model achieved Nash-Sutcliffe Efficiency values of 0.59 and 0.69 for 8-day CH4 fluxes and site mean CH4 fluxes respectively, with land surface temperature, biomass and water-availability-related indices as the most important predictors. We estimate the average annual (winter fallow season excluded) paddy rice CH4 emissions throughout Monsoon Asia to be 20.6 ± 1.1 Tg yr−1 for 2001–2015, which is at the lower range of previous inventory-based estimates (20–32 CH4 Tg yr−1). Our estimates also suggest that CH4 emissions from paddy rice in this region have been declining from 2007 through 2015 following declines in both paddy-rice growing area and emission rates per unit area, suggesting that CH4 emissions from paddy rice in Monsoon Asia have likely not contributed to the renewed growth of atmospheric CH4 in recent years. على الرغم من أن زراعة الأرز هي واحدة من أهم المصادر الزراعية للميثان (CH4) وتساهم بنسبة 8 ٪ من إجمالي الانبعاثات العالمية البشرية المنشأ، إلا أنه لا تزال هناك اختلافات كبيرة بين تقديرات انبعاثات الميثان العالمية من زراعة الأرز (التي تتراوح من 18 إلى 115 تيراغرام من الميثان في السنة−1) بسبب نقص قيود المراقبة. تم تقييم التوزيع المكاني لانبعاثات الأرز والأرز على المستويات الإقليمية إلى العالمية من خلال قوائم الجرد التصاعدية ونماذج سطح الأرض على الدقة المكانية الخشنة (على سبيل المثال، > 0.5درجة) أو الوحدات المكانية (على سبيل المثال، المناطق الزراعية الإيكولوجية). ومع ذلك، لا تزال تقديرات تدفق الميثان عالية الدقة القادرة على التقاط آثار المناخ المحلي وممارسات الإدارة على الانبعاثات، وكذلك تكرار البيانات في الموقع، صعبة الإنتاج بسبب ندرة الخرائط عالية الدقة لأرز الأرز وعدم كفاية فهم تنبؤات الميثان. هنا، نجمع بين بيانات تدفق الميثان من الأرز والأرز من 23 موقعًا عالميًا للتباين الدوامي وبيانات الاستشعار عن بعد MODIS مع التعلم الآلي من أجل 1) تقييم أداء النموذج القائم على البيانات والأهمية المتغيرة للتنبؤ بتدفقات CH4 للأرز ؛ و 2) إنتاج تقديرات شبكية لانبعاثات CH4 للأرز بدقة 5000 متر في جميع أنحاء آسيا الموسمية، حيث تتم زراعة 87 ٪ من مساحة الأرز العالمية و 90 ٪ من إنتاج الأرز العالمي. حقق نموذجنا للغابات العشوائية قيم كفاءة ناش- سوتكليف البالغة 0.59 و 0.69 لتدفقات الميثان لمدة 8 أيام ومتوسط تدفقات الميثان في الموقع على التوالي، مع مؤشرات درجة حرارة سطح الأرض والكتلة الحيوية وتوافر المياه كأهم المؤشرات. نقدر المتوسط السنوي (باستثناء موسم الإراحة الشتوية) لانبعاثات الميثان من الأرز في جميع أنحاء آسيا الموسمية بـ 20.6 ± 1.1 تيراغرام في السنة-1 للفترة 2001–2015، وهو في النطاق الأدنى للتقديرات السابقة القائمة على المخزون (20–32 تيراغرام في السنة-1). تشير تقديراتنا أيضًا إلى أن انبعاثات الميثان من أرز الأرز في هذه المنطقة قد انخفضت من عام 2007 حتى عام 2015 بعد الانخفاضات في كل من مساحة زراعة أرز الأرز ومعدلات الانبعاثات لكل وحدة مساحة، مما يشير إلى أن انبعاثات الميثان من أرز الأرز في الرياح الموسمية في آسيا من المحتمل ألا تساهم في النمو المتجدد للميثان في الغلاف الجوي في السنوات الأخيرة.
Remote Sensing of En... arrow_drop_down Remote Sensing of EnvironmentArticle . 2023License: CC BYData sources: University of Groningen Research PortalRemote Sensing of EnvironmentArticle . 2023 . Peer-reviewedData sources: European Union Open Data PortalUniversità degli studi della Tuscia: Unitus DSpaceArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rse.2022.113335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Remote Sensing of En... arrow_drop_down Remote Sensing of EnvironmentArticle . 2023License: CC BYData sources: University of Groningen Research PortalRemote Sensing of EnvironmentArticle . 2023 . Peer-reviewedData sources: European Union Open Data PortalUniversità degli studi della Tuscia: Unitus DSpaceArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rse.2022.113335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 ItalyPublisher:Elsevier BV Funded by:NSF | CAREER: Developing climat..., EC | OEMCNSF| CAREER: Developing climate-smart irrigation strategies for rice agriculture in Arkansas ,EC| OEMCAuthors:Zutao Ouyang;
Zutao Ouyang
Zutao Ouyang in OpenAIRERobert B. Jackson;
Robert B. Jackson
Robert B. Jackson in OpenAIREGavin McNicol;
Gavin McNicol
Gavin McNicol in OpenAIREEtienne Fluet‐Chouinard;
+33 AuthorsEtienne Fluet‐Chouinard
Etienne Fluet‐Chouinard in OpenAIREZutao Ouyang;
Zutao Ouyang
Zutao Ouyang in OpenAIRERobert B. Jackson;
Robert B. Jackson
Robert B. Jackson in OpenAIREGavin McNicol;
Gavin McNicol
Gavin McNicol in OpenAIREEtienne Fluet‐Chouinard;
Etienne Fluet‐Chouinard
Etienne Fluet‐Chouinard in OpenAIREBenjamin R. K. Runkle;
Benjamin R. K. Runkle
Benjamin R. K. Runkle in OpenAIREDario Papale;
Dario Papale
Dario Papale in OpenAIRESara Knox;
Sara Knox
Sara Knox in OpenAIRES. W. Cooley;
S. W. Cooley
S. W. Cooley in OpenAIREKyle Delwiche;
Kyle Delwiche
Kyle Delwiche in OpenAIRESarah Féron;
Sarah Féron
Sarah Féron in OpenAIREJeremy Irvin;
Jeremy Irvin
Jeremy Irvin in OpenAIREAvni Malhotra;
Avni Malhotra
Avni Malhotra in OpenAIREMuhammad Muddasir;
Muhammad Muddasir
Muhammad Muddasir in OpenAIRESimone Sabbatini;
Ma. Carmelita Alberto;Simone Sabbatini
Simone Sabbatini in OpenAIREAlessandro Cescatti;
Alessandro Cescatti
Alessandro Cescatti in OpenAIREChi–Ling Chen;
Chi–Ling Chen
Chi–Ling Chen in OpenAIREDong Jiang;
B. Fong;Dong Jiang
Dong Jiang in OpenAIREHaiqiang Guo;
Haiqiang Guo
Haiqiang Guo in OpenAIREHao Lu;
Hao Lu
Hao Lu in OpenAIREHiroyasu Iwata;
Hiroyasu Iwata
Hiroyasu Iwata in OpenAIREQingyu Jia;
Weimin Ju;Qingyu Jia
Qingyu Jia in OpenAIREMinseok Kang;
Minseok Kang
Minseok Kang in OpenAIREHong Li;
Hong Li
Hong Li in OpenAIREJoon Kim;
Joon Kim
Joon Kim in OpenAIREMichele L. Reba;
Michele L. Reba
Michele L. Reba in OpenAIREAmaresh Kumar Nayak;
Amaresh Kumar Nayak
Amaresh Kumar Nayak in OpenAIREDébora Regina Roberti;
Débora Regina Roberti
Débora Regina Roberti in OpenAIREYoungryel Ryu;
Youngryel Ryu
Youngryel Ryu in OpenAIREChinmaya Kumar Swain;
Chinmaya Kumar Swain
Chinmaya Kumar Swain in OpenAIREBenjei Tsuang;
Benjei Tsuang
Benjei Tsuang in OpenAIREXiangming Xiao;
Xiangming Xiao
Xiangming Xiao in OpenAIREWenping Yuan;
Geli Zhang;Wenping Yuan
Wenping Yuan in OpenAIREYongguang Zhang;
Yongguang Zhang
Yongguang Zhang in OpenAIREAunque el cultivo de arroz es una de las fuentes agrícolas más importantes de metano (CH4) y contribuye con ~8% del total de las emisiones antropogénicas globales, persisten grandes discrepancias entre las estimaciones de las emisiones globales de CH4 del cultivo de arroz (que van de 18 a 115 Tg CH4 año−1) debido a la falta de limitaciones observables. La distribución espacial de las emisiones de arrozales se ha evaluado a escalas regionales a globales mediante inventarios ascendentes y modelos de superficie terrestre sobre resolución espacial gruesa (por ejemplo, > 0,5°) o unidades espaciales (por ejemplo, zonas agroecológicas). Sin embargo, las estimaciones de flujo de CH4 de alta resolución capaces de capturar los efectos del clima local y las prácticas de gestión sobre las emisiones, así como la replicación de datos in situ, siguen siendo difíciles de producir debido a la escasez de mapas de arroz de alta resolución y a la insuficiente comprensión de los predictores de CH4. Aquí, combinamos datos de flujo de metano de arroz con arroz de 23 sitios de covarianza de remolinos globales y datos de teledetección MODIS con aprendizaje automático para 1) evaluar el rendimiento del modelo basado en datos y la importancia variable para predecir los flujos de CH4 de arroz; y 2) producir estimaciones cuadriculadas de aumento de escala de las emisiones de CH4 de arroz a una resolución de 5000 m en toda Asia monzónica, donde se cultiva ~87% del área mundial de arroz y se produce ~ 90% de la producción mundial de arroz. Nuestro modelo de bosque aleatorio logró valores de eficiencia de Nash-Sutcliffe de 0,59 y 0,69 para flujos de CH4 de 8 días y flujos de CH4 medios del sitio, respectivamente, con índices relacionados con la temperatura de la superficie terrestre, la biomasa y la disponibilidad de agua como los predictores más importantes. Estimamos que las emisiones anuales promedio de arroz con cáscara CH4 (excluida la temporada de barbecho invernal) en toda Asia monzónica son de 20.6 ± 1.1 Tg año−1 para 2001–2015, que se encuentra en el rango más bajo de las estimaciones anteriores basadas en el inventario (20–32 CH4 Tg año−1). Nuestras estimaciones también sugieren que las emisiones de CH4 del arroz con cáscara en esta región han estado disminuyendo desde 2007 hasta 2015 después de las disminuciones tanto en el área de cultivo de arroz con cáscara como en las tasas de emisión por unidad de área, lo que sugiere que las emisiones de CH4 del arroz con cáscara en el monzón de Asia probablemente no hayan contribuido al renovado crecimiento del CH4 atmosférico en los últimos años. Bien que la riziculture soit l'une des plus importantes sources agricoles de méthane (CH4) et contribue à environ8% des émissions anthropiques mondiales totales, de grands écarts subsistent entre les estimations des émissions mondiales de CH4 provenant de la riziculture (allant de 18 à 115 Tg de CH4 par an) en raison d'un manque de contraintes d'observation. La distribution spatiale des émissions de riz paddy a été évaluée à l'échelle régionale et mondiale par des inventaires ascendants et des modèles de surface terrestre sur une résolution spatiale grossière (par exemple, > 0,5°) ou des unités spatiales (par exemple, des zones agro-écologiques). Cependant, les estimations de flux de CH4 à haute résolution capables de capturer les effets du climat local et des pratiques de gestion sur les émissions, ainsi que de reproduire les données in situ, restent difficiles à produire en raison de la rareté des cartes à haute résolution du riz paddy et d'une compréhension insuffisante des prédicteurs de CH4. Ici, nous combinons les données de flux de méthane de riz paddy provenant de 23 sites mondiaux de covariance des tourbillons et les données de télédétection MODIS avec l'apprentissage automatique pour 1) évaluer les performances du modèle basé sur les données et l'importance variable pour prédire les flux de CH4 du riz ; et 2) produire des estimations maillées des émissions de CH4 du riz à une résolution de 5000 m dans toute l'Asie de la mousson, où ∼87 % de la superficie mondiale du riz est cultivée et ∼ 90 % de la production mondiale de riz se produit. Notre modèle de forêt aléatoire a atteint des valeurs d'efficacité de Nash-Sutcliffe de 0,59 et 0,69 pour les flux de CH4 sur 8 jours et les flux de CH4 moyens du site, respectivement, la température de surface du sol, la biomasse et les indices liés à la disponibilité de l'eau étant les prédicteurs les plus importants. Nous estimons que les émissions annuelles moyennes de CH4 de riz paddy (hors saison de jachère hivernale) dans toute l'Asie de la mousson sont de 20,6 ± 1,1 Tgan-1 pour 2001–2015, ce qui se situe dans la fourchette inférieure des estimations antérieures basées sur les inventaires (20–32 Tgan-1 de CH4). Nos estimations suggèrent également que les émissions de CH4 du riz paddy dans cette région ont diminué de 2007 à 2015 à la suite de baisses à la fois de la superficie cultivée en riz paddy et des taux d'émission par unité de surface, ce qui suggère que les émissions de CH4 du riz paddy dans Monsoon Asia n'ont probablement pas contribué à la croissance renouvelée du CH4 atmosphérique ces dernières années. Although rice cultivation is one of the most important agricultural sources of methane (CH4) and contributes ∼8% of total global anthropogenic emissions, large discrepancies remain among estimates of global CH4 emissions from rice cultivation (ranging from 18 to 115 Tg CH4 yr−1) due to a lack of observational constraints. The spatial distribution of paddy-rice emissions has been assessed at regional-to-global scales by bottom-up inventories and land surface models over coarse spatial resolution (e.g., > 0.5°) or spatial units (e.g., agro-ecological zones). However, high-resolution CH4 flux estimates capable of capturing the effects of local climate and management practices on emissions, as well as replicating in situ data, remain challenging to produce because of the scarcity of high-resolution maps of paddy-rice and insufficient understanding of CH4 predictors. Here, we combine paddy-rice methane-flux data from 23 global eddy covariance sites and MODIS remote sensing data with machine learning to 1) evaluate data-driven model performance and variable importance for predicting rice CH4 fluxes; and 2) produce gridded up-scaling estimates of rice CH4 emissions at 5000-m resolution across Monsoon Asia, where ∼87% of global rice area is cultivated and ∼ 90% of global rice production occurs. Our random-forest model achieved Nash-Sutcliffe Efficiency values of 0.59 and 0.69 for 8-day CH4 fluxes and site mean CH4 fluxes respectively, with land surface temperature, biomass and water-availability-related indices as the most important predictors. We estimate the average annual (winter fallow season excluded) paddy rice CH4 emissions throughout Monsoon Asia to be 20.6 ± 1.1 Tg yr−1 for 2001–2015, which is at the lower range of previous inventory-based estimates (20–32 CH4 Tg yr−1). Our estimates also suggest that CH4 emissions from paddy rice in this region have been declining from 2007 through 2015 following declines in both paddy-rice growing area and emission rates per unit area, suggesting that CH4 emissions from paddy rice in Monsoon Asia have likely not contributed to the renewed growth of atmospheric CH4 in recent years. على الرغم من أن زراعة الأرز هي واحدة من أهم المصادر الزراعية للميثان (CH4) وتساهم بنسبة 8 ٪ من إجمالي الانبعاثات العالمية البشرية المنشأ، إلا أنه لا تزال هناك اختلافات كبيرة بين تقديرات انبعاثات الميثان العالمية من زراعة الأرز (التي تتراوح من 18 إلى 115 تيراغرام من الميثان في السنة−1) بسبب نقص قيود المراقبة. تم تقييم التوزيع المكاني لانبعاثات الأرز والأرز على المستويات الإقليمية إلى العالمية من خلال قوائم الجرد التصاعدية ونماذج سطح الأرض على الدقة المكانية الخشنة (على سبيل المثال، > 0.5درجة) أو الوحدات المكانية (على سبيل المثال، المناطق الزراعية الإيكولوجية). ومع ذلك، لا تزال تقديرات تدفق الميثان عالية الدقة القادرة على التقاط آثار المناخ المحلي وممارسات الإدارة على الانبعاثات، وكذلك تكرار البيانات في الموقع، صعبة الإنتاج بسبب ندرة الخرائط عالية الدقة لأرز الأرز وعدم كفاية فهم تنبؤات الميثان. هنا، نجمع بين بيانات تدفق الميثان من الأرز والأرز من 23 موقعًا عالميًا للتباين الدوامي وبيانات الاستشعار عن بعد MODIS مع التعلم الآلي من أجل 1) تقييم أداء النموذج القائم على البيانات والأهمية المتغيرة للتنبؤ بتدفقات CH4 للأرز ؛ و 2) إنتاج تقديرات شبكية لانبعاثات CH4 للأرز بدقة 5000 متر في جميع أنحاء آسيا الموسمية، حيث تتم زراعة 87 ٪ من مساحة الأرز العالمية و 90 ٪ من إنتاج الأرز العالمي. حقق نموذجنا للغابات العشوائية قيم كفاءة ناش- سوتكليف البالغة 0.59 و 0.69 لتدفقات الميثان لمدة 8 أيام ومتوسط تدفقات الميثان في الموقع على التوالي، مع مؤشرات درجة حرارة سطح الأرض والكتلة الحيوية وتوافر المياه كأهم المؤشرات. نقدر المتوسط السنوي (باستثناء موسم الإراحة الشتوية) لانبعاثات الميثان من الأرز في جميع أنحاء آسيا الموسمية بـ 20.6 ± 1.1 تيراغرام في السنة-1 للفترة 2001–2015، وهو في النطاق الأدنى للتقديرات السابقة القائمة على المخزون (20–32 تيراغرام في السنة-1). تشير تقديراتنا أيضًا إلى أن انبعاثات الميثان من أرز الأرز في هذه المنطقة قد انخفضت من عام 2007 حتى عام 2015 بعد الانخفاضات في كل من مساحة زراعة أرز الأرز ومعدلات الانبعاثات لكل وحدة مساحة، مما يشير إلى أن انبعاثات الميثان من أرز الأرز في الرياح الموسمية في آسيا من المحتمل ألا تساهم في النمو المتجدد للميثان في الغلاف الجوي في السنوات الأخيرة.
Remote Sensing of En... arrow_drop_down Remote Sensing of EnvironmentArticle . 2023License: CC BYData sources: University of Groningen Research PortalRemote Sensing of EnvironmentArticle . 2023 . Peer-reviewedData sources: European Union Open Data PortalUniversità degli studi della Tuscia: Unitus DSpaceArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rse.2022.113335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Remote Sensing of En... arrow_drop_down Remote Sensing of EnvironmentArticle . 2023License: CC BYData sources: University of Groningen Research PortalRemote Sensing of EnvironmentArticle . 2023 . Peer-reviewedData sources: European Union Open Data PortalUniversità degli studi della Tuscia: Unitus DSpaceArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rse.2022.113335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu