- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2017 ItalyPublisher:Elsevier BV Funded by:EC | SUAVEC| SUAVGiacoppo Giosuè; Barbera Orazio; Briguglio Nicola; Cipitì Francesco; Ferraro Marco; Brunaccini Giovanni; Erdle Eric; Antonucci Vincenzo;handle: 20.500.14243/331174 , 20.500.14243/347147
In this paper, the integration of a small SOFC commercial system into the fuselage of a mini Unmanned Aerial Vehicle (UAV) is presented. As a design constrain, the SOFC system has to be installed inside the UAV fuselage with the lowest possible offset, to reduce the volume and mass of the UAV. Due to the high operating temperature of the SOFC (800-1000 °C), the external temperature of the system is always about few hundred Celsius degrees. Due to this, malfunctioning of the SOFC system and hot spots on the fuselage shell can occur. For this reason, it is important to ensure a proper ventilation of the air volume inside the UAV fuselage. To deal with these issues, experimental and Computational Fluid dynamic studies were carried out to investigate for a correct SOFC system integration and operation in a confined environment. As a result, the optimal airflow for a safe operation of the SOFC system was determined and the behaviour of the temperature and air stream inside the fuselage was highlighted. In addition, NACA air intakes were designed on the basis on the experimental and numerical evidences, to provide a proper cooling of the SOFC system installed into the fuselage.
CNR ExploRA arrow_drop_down International Journal of Hydrogen EnergyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2017.09.063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu25 citations 25 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CNR ExploRA arrow_drop_down International Journal of Hydrogen EnergyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2017.09.063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 ItalyPublisher:Elsevier BV Funded by:MIURMIURDi Blasi A; Andaloro L; Siracusano S; Briguglio N; Brunaccini G; Stassi A; Arico AS; Antonucci V;handle: 20.500.14243/260896
[object Object]
International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2012.10.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2012.10.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Project deliverable 2025Embargo end date: 31 Mar 2025Publisher:Zenodo Funded by:EC | HYScaleEC| HYScaleBRIGUGLIO, NICOLA; Arico', Antonino Salvatore; moulaee, Kaveh; Keeley, Gareth; Fage, Julien; Hosseiny, Schwan; Morawietz, Tobias; Chmielarz, Jagoda Justyna;The ultimate aim of the HYScale project is the development of a large-area (400 cm²) stack with a power of 100 kW. This requires the upscaling and optimization of membranes, ionomers and electrodes (WP2). In the first eighteen months of the project, WPs 2 and 3 have been working closely together to take this first important step towards achieving the 100 kW stack, i.e. the assembly of a large-area single cell using MEAs based entirely on components produced within the project, and the investigation of their electrochemical performance and stability. This deliverable reports initial results obtained at CNR and DLR using a small single cell, primarily investigating the issue of which material to use as the PTL at the cathode. It goes on to describe findings obtained using the large cell (ca. 400cm2), with which the AionFLX membrane developed at CENmat is compared to the PiperION benchmark (CNR).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.15167444&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.15167444&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 ItalyPublisher:Elsevier BV Funded by:EC | NEPTUNEEC| NEPTUNEAuthors: Panto Fabiola; Siracusano S.; Briguglio N.; Arico A. S.;handle: 20.500.14243/385079
Hydrogen production through polymer electrolyte membrane water electrolysis was investigated at high current density (4 A cm). A PtCo recombination catalyst-based membrane-electrode assembly (MEA) was assessed in terms of performance, efficiency and durability. The electrolysis cell consisted of a thin (50 µm) perfluorosulfonic acid membrane and low platinum group metals (PGM) catalyst loadings (0.6 mg PGM cm). An unsupported PtCo catalyst was successfully integrated in the anode. A composite catalytic layer made of IrRuOx and PtCo assisted both oxygen evolution and oxidation of hydrogen permeated through the membrane. The cell voltage for the recombination catalyst-based MEA was about 30 mV lower than the bare MEA during a 3500 h durability test. The modified MEA showed low performance losses during 3500 h operation at high current density (4 A cm) with low catalyst loadings. A decay rate of 9 µV/h was observed in the last 1000 h. These results are promising for decreasing the capital costs of polymer electrolyte membrane electrolysers. Moreover, the stable voltage efficiency of about 80% vs. the high heating value (HHV) of hydrogen at 4 A cm, here achieved, appears very promising to decrease operating expenditures.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115809&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115809&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 ItalyPublisher:Elsevier BV Cipitì F; Barbera O; Briguglio N; Giacoppo G; Italiano C; Vita A;handle: 20.500.14243/324246
This paper covers the research activities performed at the CNR Institute for Advanced Energy Technologies "Nicola Giordano", aimed at developing and testing a biogas steam reforming reactor. A mathematical model has been developed in order to describe, the performance of the above-cited steam reforming reactor (packed bed). To study the effects on reaction performance, a parametric analysis was performed varying operating conditions such as inlet temperature and reagent molar ratio. The model was validated by comparing the calculated data with the experimental data obtained with a proprietary Ni/ CeO2 based catalyst in packet bed micro-scale reactor at different T ¼ 700e900 C, S/C ¼ 1e5 and GHSV ¼ 30,000 h1, showing a good agreement between the experimental and theoretical results.
CNR ExploRA arrow_drop_down International Journal of Hydrogen EnergyArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2015.12.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CNR ExploRA arrow_drop_down International Journal of Hydrogen EnergyArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2015.12.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 ItalyPublisher:Elsevier BV S Siracusano; V Baglio; A Di Blasi; N Briguglio; A Stassi; R Ornelas; E Trifoni; V Antonucci; A S Aricò;handle: 20.500.14243/437016 , 20.500.14243/13632
A nanosized IrO2 anode electrocatalyst was prepared by a sulfite-complex route for application in a proton exchange membrane (PEM) water electrolyzer. The physicochemical properties of the IrO2 catalyst were studied by termogravimetryedifferential scanning calorimetry (TGeDSC), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The electrochemical activity of this catalyst for oxygen evolution was investigated in a single cell PEM electrolyzer consisting of a Pt/C cathode and a Nafion membrane. A current density of 1.26 A cm-2 was obtained at 1.8 V and a stable behavior during steady-state operation at 80 °C was recorded. The Tafel plots for the overall electrochemical process indicated a slope of about 80 mVdec-1 in a temperature range from 25 °C to 80 °C. The kinetic and ohmic activation energies for the electrochemical process were 70.46 kJ mol-1 and 13.45 kJ mol-1, respectively. A short stack (3 cells of 100 cm2 geometrical area) PEM electrolyzer was investigated by linear voltammetry, impedance spectroscopy and chrono-amperometric measurements. The amount of H2 produced was 80 l h-1 at 60 A under 330W of applied electrical power. The stack electrical efficiency at 60 A and 75 °C was 70% and 81% with respect to the low and high heating value of hydrogen, respectively.
International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2010.03.102&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu144 citations 144 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2010.03.102&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 Spain, ItalyPublisher:Elsevier BV A Di Blasi; O Di Blasi; N Briguglio; AS Aricò; D Sebastián; MJ Lázaro; G Monforte; V Antonucci;handle: 20.500.14243/16310 , 10261/93856
9 páginas.- 1 tabla.- 18 figuras. Several graphite-based electrodes are investigated for vanadium flow battery applications. These materials are characterized both as-received and after chemical or electrochemical treatments in order to vary the content of oxygen functional groups on the electrode surface. The surface properties of the samples are investigated by X-ray photoelectron spectroscopy. Electrochemical performance is evaluated by cyclic voltammetry and electrochemical impedance spectroscopy measurements in a three electrode half-cell. The chemical treatment with HNO3 causes a cleaning of the electrode surface from adsorbed oxygen species or labile bonded functional groups in highly graphitic samples. Whereas, carbonaceous materials characterized by smaller graphitic domains or a higher degree of amorphous carbon show an increase of oxygen functional groups upon chemical and electrochemical pre-treatments. In both cases, an increase of oxygen species content on the surface above 5% causes a decrease of electrochemical performance for the redox battery determined by an increase of ohmic and charge transfer resistance Authors from CNR-ITAE acknowledge the financial support from “Ministero dello Sviluppo Economico – Accordo di Programma MSE-CNR per la Ricerca del Sistema elettrico Nazionale”. Peer reviewed
Journal of Power Sou... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2012.10.098&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 137 citations 137 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
visibility 36visibility views 36 download downloads 164 Powered bymore_vert Journal of Power Sou... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2012.10.098&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Other ORP type 2015 ItalyDanilo Rabino; Francesco Cipitì; Nicola Briguglio; Orazio Barbera; Giosuè Giacoppo; Marco Stefancich; Elena Tovaglieri; Gunther Kolb; Franci Steinman; Romano Stanchina; Kay Roemer; Ilaria Rosso; AnneLise Macle; Claudio Bassetti; Mojca Markic; Wolfgang Urban; Paolo Caligaris;handle: 20.500.14243/298353
The main common challenge is to address climate change effects and make more sustainable, safe and attractive the men presence in the mountains. The project aims to increase the visitors in the Alps by improving the refuges with new smart and sustainable solutions and with an awareness activity aimed at tourists. In this way Alpine refuges will survive, also economically, offering more safety tools to hikers. The innovation will be the integrated system of renewable energy (sun-hydrogen) and the use of ICT tools in high altitude, using existing technologies not yet used there. Main outputs: best practices from pilot actions and strategies addressing mountain issues; a data base from scientific and social surveys; some green and smart Alpine refuges; training and awareness activities; tools for policy planning. Main target groups: mountain users, huts owners, residents of the Alpine valleys, policy makers. The project aims to build a network of huts for enable their green growth, making them as hubs for boost of Alpine heritage. Tasks: water, energy, waste, ICT, safety, scientific surveys and awareness. For each item: state of the art, innovative solutions and pilot actions; guidelines and policy actions. The added value of transnational approach consists in activities in all over the Alps and in the need of specific skills and a direct knowledge of places. The project will require an overall budget of 2,4 million Euros.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::24749a76b12275d7799f0c2375e6add9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::24749a76b12275d7799f0c2375e6add9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Other ORP type 2022 ItalyO Barbera; G Giacoppo; N Briguglio; G Dispenza; G Brunaccini; N Randazzo; V Antonucci; A Di Blasi; L Andaloro;handle: 20.500.14243/431562
Report tecnico inerente la realizzazione e i risultati elettrochimici dello stack PEM 2-5 kW alimentato ad ossigeno puro nell'ambito del progetto Tecbia coordinato da Fincantieri
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_____10978::7a5ba20e87ce8b8457750b5077c4c4b1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_____10978::7a5ba20e87ce8b8457750b5077c4c4b1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV Di Blasi A; Busacca C; Di Blasi O; Briguglio N; Squadrito G; Antonucci V;handle: 20.500.14243/331655
Flexible carbon nanofiber (CNF)-based electrodes and CNF with a 20% of manganese oxide incorporated (Mn3O4/CNF) are prepared by using the electrospinning method for vanadium redox flow battery (VRFB) application. A blend consisting of manganese acetate (Mn(OAc)2) and polyacrilonitrile (PAN) is electrospun and successively subjected to different thermal treatments in which the growth of Mn3O4 particles and CNFs occurred together guaranteeing an appropriate electron conductivity for electrodes thus synthesized. Cyclic voltammetry (CV) measurements show an interesting electrocatalytic activity toward the [VO]2+/[VO2] + as well as the V2+/V3+ redox reactions for the Mn3O4/CNF electrospun sample. Charge-discharge tests, carried out at 80 mA cm2 , show a state of charge (SOC) and a depth of discharge (DoD) of 81% and 73%, respectively, for the cells assembled with Mn3O4/CNF electrodes. These data are indicative of a high vanadium active species utilization thanks to the better electrocatalytic activity at high current densities. Furthermore, the cell with Mn3O4/CNF shows EE values of about 81% (88% of VE and 92% of CE) vs. 70% (75% of VE and 93% of CE) with respect to a commercial carbon felt (CF) electrode used for comparison. These results are attributable to the higher oxygen species content as well as the improved electron conductivity due to the synergetic effect of the more graphitic carbon and to the structural defects within the Mn3O4 spinel structure.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.12.129&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu104 citations 104 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.12.129&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2017 ItalyPublisher:Elsevier BV Funded by:EC | SUAVEC| SUAVGiacoppo Giosuè; Barbera Orazio; Briguglio Nicola; Cipitì Francesco; Ferraro Marco; Brunaccini Giovanni; Erdle Eric; Antonucci Vincenzo;handle: 20.500.14243/331174 , 20.500.14243/347147
In this paper, the integration of a small SOFC commercial system into the fuselage of a mini Unmanned Aerial Vehicle (UAV) is presented. As a design constrain, the SOFC system has to be installed inside the UAV fuselage with the lowest possible offset, to reduce the volume and mass of the UAV. Due to the high operating temperature of the SOFC (800-1000 °C), the external temperature of the system is always about few hundred Celsius degrees. Due to this, malfunctioning of the SOFC system and hot spots on the fuselage shell can occur. For this reason, it is important to ensure a proper ventilation of the air volume inside the UAV fuselage. To deal with these issues, experimental and Computational Fluid dynamic studies were carried out to investigate for a correct SOFC system integration and operation in a confined environment. As a result, the optimal airflow for a safe operation of the SOFC system was determined and the behaviour of the temperature and air stream inside the fuselage was highlighted. In addition, NACA air intakes were designed on the basis on the experimental and numerical evidences, to provide a proper cooling of the SOFC system installed into the fuselage.
CNR ExploRA arrow_drop_down International Journal of Hydrogen EnergyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2017.09.063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu25 citations 25 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CNR ExploRA arrow_drop_down International Journal of Hydrogen EnergyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2017.09.063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 ItalyPublisher:Elsevier BV Funded by:MIURMIURDi Blasi A; Andaloro L; Siracusano S; Briguglio N; Brunaccini G; Stassi A; Arico AS; Antonucci V;handle: 20.500.14243/260896
[object Object]
International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2012.10.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2012.10.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Project deliverable 2025Embargo end date: 31 Mar 2025Publisher:Zenodo Funded by:EC | HYScaleEC| HYScaleBRIGUGLIO, NICOLA; Arico', Antonino Salvatore; moulaee, Kaveh; Keeley, Gareth; Fage, Julien; Hosseiny, Schwan; Morawietz, Tobias; Chmielarz, Jagoda Justyna;The ultimate aim of the HYScale project is the development of a large-area (400 cm²) stack with a power of 100 kW. This requires the upscaling and optimization of membranes, ionomers and electrodes (WP2). In the first eighteen months of the project, WPs 2 and 3 have been working closely together to take this first important step towards achieving the 100 kW stack, i.e. the assembly of a large-area single cell using MEAs based entirely on components produced within the project, and the investigation of their electrochemical performance and stability. This deliverable reports initial results obtained at CNR and DLR using a small single cell, primarily investigating the issue of which material to use as the PTL at the cathode. It goes on to describe findings obtained using the large cell (ca. 400cm2), with which the AionFLX membrane developed at CENmat is compared to the PiperION benchmark (CNR).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.15167444&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.15167444&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 ItalyPublisher:Elsevier BV Funded by:EC | NEPTUNEEC| NEPTUNEAuthors: Panto Fabiola; Siracusano S.; Briguglio N.; Arico A. S.;handle: 20.500.14243/385079
Hydrogen production through polymer electrolyte membrane water electrolysis was investigated at high current density (4 A cm). A PtCo recombination catalyst-based membrane-electrode assembly (MEA) was assessed in terms of performance, efficiency and durability. The electrolysis cell consisted of a thin (50 µm) perfluorosulfonic acid membrane and low platinum group metals (PGM) catalyst loadings (0.6 mg PGM cm). An unsupported PtCo catalyst was successfully integrated in the anode. A composite catalytic layer made of IrRuOx and PtCo assisted both oxygen evolution and oxidation of hydrogen permeated through the membrane. The cell voltage for the recombination catalyst-based MEA was about 30 mV lower than the bare MEA during a 3500 h durability test. The modified MEA showed low performance losses during 3500 h operation at high current density (4 A cm) with low catalyst loadings. A decay rate of 9 µV/h was observed in the last 1000 h. These results are promising for decreasing the capital costs of polymer electrolyte membrane electrolysers. Moreover, the stable voltage efficiency of about 80% vs. the high heating value (HHV) of hydrogen at 4 A cm, here achieved, appears very promising to decrease operating expenditures.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115809&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115809&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 ItalyPublisher:Elsevier BV Cipitì F; Barbera O; Briguglio N; Giacoppo G; Italiano C; Vita A;handle: 20.500.14243/324246
This paper covers the research activities performed at the CNR Institute for Advanced Energy Technologies "Nicola Giordano", aimed at developing and testing a biogas steam reforming reactor. A mathematical model has been developed in order to describe, the performance of the above-cited steam reforming reactor (packed bed). To study the effects on reaction performance, a parametric analysis was performed varying operating conditions such as inlet temperature and reagent molar ratio. The model was validated by comparing the calculated data with the experimental data obtained with a proprietary Ni/ CeO2 based catalyst in packet bed micro-scale reactor at different T ¼ 700e900 C, S/C ¼ 1e5 and GHSV ¼ 30,000 h1, showing a good agreement between the experimental and theoretical results.
CNR ExploRA arrow_drop_down International Journal of Hydrogen EnergyArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2015.12.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CNR ExploRA arrow_drop_down International Journal of Hydrogen EnergyArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2015.12.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 ItalyPublisher:Elsevier BV S Siracusano; V Baglio; A Di Blasi; N Briguglio; A Stassi; R Ornelas; E Trifoni; V Antonucci; A S Aricò;handle: 20.500.14243/437016 , 20.500.14243/13632
A nanosized IrO2 anode electrocatalyst was prepared by a sulfite-complex route for application in a proton exchange membrane (PEM) water electrolyzer. The physicochemical properties of the IrO2 catalyst were studied by termogravimetryedifferential scanning calorimetry (TGeDSC), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The electrochemical activity of this catalyst for oxygen evolution was investigated in a single cell PEM electrolyzer consisting of a Pt/C cathode and a Nafion membrane. A current density of 1.26 A cm-2 was obtained at 1.8 V and a stable behavior during steady-state operation at 80 °C was recorded. The Tafel plots for the overall electrochemical process indicated a slope of about 80 mVdec-1 in a temperature range from 25 °C to 80 °C. The kinetic and ohmic activation energies for the electrochemical process were 70.46 kJ mol-1 and 13.45 kJ mol-1, respectively. A short stack (3 cells of 100 cm2 geometrical area) PEM electrolyzer was investigated by linear voltammetry, impedance spectroscopy and chrono-amperometric measurements. The amount of H2 produced was 80 l h-1 at 60 A under 330W of applied electrical power. The stack electrical efficiency at 60 A and 75 °C was 70% and 81% with respect to the low and high heating value of hydrogen, respectively.
International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2010.03.102&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu144 citations 144 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2010.03.102&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 Spain, ItalyPublisher:Elsevier BV A Di Blasi; O Di Blasi; N Briguglio; AS Aricò; D Sebastián; MJ Lázaro; G Monforte; V Antonucci;handle: 20.500.14243/16310 , 10261/93856
9 páginas.- 1 tabla.- 18 figuras. Several graphite-based electrodes are investigated for vanadium flow battery applications. These materials are characterized both as-received and after chemical or electrochemical treatments in order to vary the content of oxygen functional groups on the electrode surface. The surface properties of the samples are investigated by X-ray photoelectron spectroscopy. Electrochemical performance is evaluated by cyclic voltammetry and electrochemical impedance spectroscopy measurements in a three electrode half-cell. The chemical treatment with HNO3 causes a cleaning of the electrode surface from adsorbed oxygen species or labile bonded functional groups in highly graphitic samples. Whereas, carbonaceous materials characterized by smaller graphitic domains or a higher degree of amorphous carbon show an increase of oxygen functional groups upon chemical and electrochemical pre-treatments. In both cases, an increase of oxygen species content on the surface above 5% causes a decrease of electrochemical performance for the redox battery determined by an increase of ohmic and charge transfer resistance Authors from CNR-ITAE acknowledge the financial support from “Ministero dello Sviluppo Economico – Accordo di Programma MSE-CNR per la Ricerca del Sistema elettrico Nazionale”. Peer reviewed
Journal of Power Sou... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2012.10.098&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 137 citations 137 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
visibility 36visibility views 36 download downloads 164 Powered bymore_vert Journal of Power Sou... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2012.10.098&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Other ORP type 2015 ItalyDanilo Rabino; Francesco Cipitì; Nicola Briguglio; Orazio Barbera; Giosuè Giacoppo; Marco Stefancich; Elena Tovaglieri; Gunther Kolb; Franci Steinman; Romano Stanchina; Kay Roemer; Ilaria Rosso; AnneLise Macle; Claudio Bassetti; Mojca Markic; Wolfgang Urban; Paolo Caligaris;handle: 20.500.14243/298353
The main common challenge is to address climate change effects and make more sustainable, safe and attractive the men presence in the mountains. The project aims to increase the visitors in the Alps by improving the refuges with new smart and sustainable solutions and with an awareness activity aimed at tourists. In this way Alpine refuges will survive, also economically, offering more safety tools to hikers. The innovation will be the integrated system of renewable energy (sun-hydrogen) and the use of ICT tools in high altitude, using existing technologies not yet used there. Main outputs: best practices from pilot actions and strategies addressing mountain issues; a data base from scientific and social surveys; some green and smart Alpine refuges; training and awareness activities; tools for policy planning. Main target groups: mountain users, huts owners, residents of the Alpine valleys, policy makers. The project aims to build a network of huts for enable their green growth, making them as hubs for boost of Alpine heritage. Tasks: water, energy, waste, ICT, safety, scientific surveys and awareness. For each item: state of the art, innovative solutions and pilot actions; guidelines and policy actions. The added value of transnational approach consists in activities in all over the Alps and in the need of specific skills and a direct knowledge of places. The project will require an overall budget of 2,4 million Euros.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::24749a76b12275d7799f0c2375e6add9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::24749a76b12275d7799f0c2375e6add9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Other ORP type 2022 ItalyO Barbera; G Giacoppo; N Briguglio; G Dispenza; G Brunaccini; N Randazzo; V Antonucci; A Di Blasi; L Andaloro;handle: 20.500.14243/431562
Report tecnico inerente la realizzazione e i risultati elettrochimici dello stack PEM 2-5 kW alimentato ad ossigeno puro nell'ambito del progetto Tecbia coordinato da Fincantieri
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_____10978::7a5ba20e87ce8b8457750b5077c4c4b1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_____10978::7a5ba20e87ce8b8457750b5077c4c4b1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV Di Blasi A; Busacca C; Di Blasi O; Briguglio N; Squadrito G; Antonucci V;handle: 20.500.14243/331655
Flexible carbon nanofiber (CNF)-based electrodes and CNF with a 20% of manganese oxide incorporated (Mn3O4/CNF) are prepared by using the electrospinning method for vanadium redox flow battery (VRFB) application. A blend consisting of manganese acetate (Mn(OAc)2) and polyacrilonitrile (PAN) is electrospun and successively subjected to different thermal treatments in which the growth of Mn3O4 particles and CNFs occurred together guaranteeing an appropriate electron conductivity for electrodes thus synthesized. Cyclic voltammetry (CV) measurements show an interesting electrocatalytic activity toward the [VO]2+/[VO2] + as well as the V2+/V3+ redox reactions for the Mn3O4/CNF electrospun sample. Charge-discharge tests, carried out at 80 mA cm2 , show a state of charge (SOC) and a depth of discharge (DoD) of 81% and 73%, respectively, for the cells assembled with Mn3O4/CNF electrodes. These data are indicative of a high vanadium active species utilization thanks to the better electrocatalytic activity at high current densities. Furthermore, the cell with Mn3O4/CNF shows EE values of about 81% (88% of VE and 92% of CE) vs. 70% (75% of VE and 93% of CE) with respect to a commercial carbon felt (CF) electrode used for comparison. These results are attributable to the higher oxygen species content as well as the improved electron conductivity due to the synergetic effect of the more graphitic carbon and to the structural defects within the Mn3O4 spinel structure.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.12.129&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu104 citations 104 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.12.129&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu