- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV Authors:Calise, Francesco;
Calise, Francesco
Calise, Francesco in OpenAIREMacaluso, Adriano;
Macaluso, Adriano
Macaluso, Adriano in OpenAIREPiacentino, Antonio;
Piacentino, Antonio
Piacentino, Antonio in OpenAIREVanoli, Laura;
Vanoli, Laura
Vanoli, Laura in OpenAIREhandle: 11588/740896 , 11367/82277 , 11580/66993
Abstract In this paper a thermoeconomic analysis of a novel hybrid Renewable Polygeneration System connected to a district heating and cooling network is presented. The plant is powered simultaneously by solar and geothermal sources, producing electricity, desalinated water, heat and cooling energy. System layout includes Parabolic Through Collector (PTC) field, geothermal wells, Organic Rankine Cycle (ORC) unit and a Multi-Effect Desalination (MED) system. Cooling and thermal demands are calculated by suitable building dynamic simulation models, calibrated for Pantelleria Island. Electrical demand is obtained by measured data. A detailed control strategy has been implemented in order to prevent any heat dissipation, to match the appropriate operating temperature levels in each component, to avoid a too low temperature of geothermal fluid reinjected in the wells and to manage the priority of space heating and cooling process. A 1-year dynamic simulation has been performed and results analyzed on daily, monthly and yearly basis. The system achieved an SPB equal to 8.50 and it resulted capable to cover the energy demands of a small community. Moreover, the plant is capable to cover the fresh water demand of the Pantelleria Island.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.03.165&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu98 citations 98 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.03.165&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 ItalyPublisher:MDPI AG Authors:M. Costa;
M. Costa
M. Costa in OpenAIREA. Buono;
C. Caputo;A. Buono
A. Buono in OpenAIREA. Carotenuto;
+19 AuthorsA. Carotenuto
A. Carotenuto in OpenAIREM. Costa;
M. Costa
M. Costa in OpenAIREA. Buono;
C. Caputo;A. Buono
A. Buono in OpenAIREA. Carotenuto;
D. Cirillo;A. Carotenuto
A. Carotenuto in OpenAIREM. A. Costagliola;
M. A. Costagliola
M. A. Costagliola in OpenAIREG. Di Blasio;
G. Di Blasio
G. Di Blasio in OpenAIREM. La Villetta;
M. La Villetta
M. La Villetta in OpenAIREA. Macaluso;
A. Macaluso
A. Macaluso in OpenAIREG. Martoriello;
G. Martoriello
G. Martoriello in OpenAIREN. Massarotti;
N. Massarotti
N. Massarotti in OpenAIREA. Mauro;
A. Mauro
A. Mauro in OpenAIREM. Migliaccio;
M. Migliaccio
M. Migliaccio in OpenAIREV. Mulone;
V. Mulone
V. Mulone in OpenAIREF. Murena;
F. Murena
F. Murena in OpenAIRED. Piazzullo;
D. Piazzullo
D. Piazzullo in OpenAIREM. V. Prati;
M. V. Prati
M. V. Prati in OpenAIREV. Rocco;
A. Stasi;V. Rocco
V. Rocco in OpenAIREL. Vanoli;
A. Cinocca;L. Vanoli
L. Vanoli in OpenAIRED. Di Battista;
D. Di Battista
D. Di Battista in OpenAIREA. De Vita;
A. De Vita
A. De Vita in OpenAIREdoi: 10.3390/en13154020
handle: 11588/832062 , 20.500.14243/409766 , 2108/261805 , 11367/86215 , 11591/517752 , 11697/149883
doi: 10.3390/en13154020
handle: 11588/832062 , 20.500.14243/409766 , 2108/261805 , 11367/86215 , 11591/517752 , 11697/149883
The valorization of residual biomass plays today a decisive role in the concept of “circular economy”, according to which each waste material must be reused to its maximum extent. The collection and energy valorization at the local level of biomass from forest management practices and wildfire prevention cutting can be settled in protected areas to contribute to local decarbonization, by removing power generation from fossil fuels. Despite the evident advantages of bioenergy systems, several problems still hinder their diffusion, such as the need to assure their reliability by extending the operating range with materials of different origin. The Italian project “INNOVARE—Innovative plants for distributed poly-generation by residual biomass”, funded by the Italian Ministry of Economic Development (MISE), has the main scope of improving micro-cogeneration technologies fueled by biomass. A micro-combined heat and power (mCHP) unit was chosen as a case study to discuss pros and cons of biomass-powered cogeneration within a national park, especially due to its flexibility of use. The availability of local biomasses (woodchips, olive milling residuals) was established by studying the agro-industrial production and by identifying forest areas to be properly managed through an approach using a satellite location system based on the microwave technology. A detailed synergic numerical and experimental characterization of the selected cogeneration system was performed in order to identify its main inefficiencies. Improvements of its operation were optimized by acting on the engine control strategy and by also adding a post-treatment system on the engine exhaust gas line. Overall, the electrical output was increased by up to 6% using the correct spark timing, and pollutant emissions were reduced well below the limits allowed by legislation by working with a lean mixture and by adopting an oxidizing catalyst. Finally, the global efficiency of the system increased from 45.8% to 63.2%. The right blending of different biomasses led to an important improvement of the reliability of the entire plant despite using an agrifood residual, such as olive pomace. It was demonstrated that the use of this biomass is feasible if its maximum mass percentage in a wood matrix mixture does not exceed 25%. The project was concluded with a real operation demonstration within a national park in Southern Italy by replacing a diesel genset with the analyzed and improved biomass-powered plant and by proving a decisive improvement of air quality in the real environment during exercise.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/15/4020/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio Istituzionale della Ricerca - Università degli Studi dell AquilaArticle . 2020License: CC BY NC NDArchivio della Ricerca - Università di Roma Tor vergataArticle . 2020Data sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della Ricerca - Università di Roma Tor vergataArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13154020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/15/4020/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio Istituzionale della Ricerca - Università degli Studi dell AquilaArticle . 2020License: CC BY NC NDArchivio della Ricerca - Università di Roma Tor vergataArticle . 2020Data sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della Ricerca - Università di Roma Tor vergataArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13154020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 ItalyPublisher:MDPI AG Authors: Francesca Ceglia;Adriano Macaluso;
Adriano Macaluso
Adriano Macaluso in OpenAIREElisa Marrasso;
Elisa Marrasso
Elisa Marrasso in OpenAIRECarlo Roselli;
+1 AuthorsCarlo Roselli
Carlo Roselli in OpenAIREFrancesca Ceglia;Adriano Macaluso;
Adriano Macaluso
Adriano Macaluso in OpenAIREElisa Marrasso;
Elisa Marrasso
Elisa Marrasso in OpenAIRECarlo Roselli;
Laura Vanoli;Carlo Roselli
Carlo Roselli in OpenAIREdoi: 10.3390/en13184603
handle: 11367/93931
This paper presents a thermodynamic, economic, and environmental analysis of a renewable polygeneration system connected to a district heating and cooling network. The system, fed by geothermal energy, provides thermal energy for heating and cooling, and domestic hot water for a residential district located in the metropolitan city of Naples (South of Italy). The produced electricity is partly used for auxiliaries of the thermal district and partly sold to the power grid. A calibration control strategy was implemented by considering manufacturer data matching the appropriate operating temperature levels in each component. The cooling and thermal demands of the connected users were calculated using suitable building dynamic simulation models. An energy network dedicated to heating and cooling loads was designed and simulated by considering the variable ground temperature throughout the year, as well as the accurate heat transfer coefficients and pressure losses of the network pipes. The results were based on a 1-year dynamic simulation and were analyzed on a daily, monthly, and yearly basis. The performance was evaluated by means of the main economic and environmental aspects. Two parametric analyses were performed by varying geothermal well depth, to consider the uncertainty in the geofluid temperature as a function of the depth, and by varying the time of operation of the district heating and cooling network. Additionally, the economic analysis was performed by considering two different scenarios with and without feed-in tariffs. Based on the assumptions made, the system is economically feasible only if feed-in tariffs are considered: the minimum Simple Pay Back period is 7.00 years, corresponding to a Discounted Pay Back period of 8.84 years, and the maximum Net Present Value is 6.11 M€, corresponding to a Profit Index of 77.9% and a maximum Internal Rate of Return of 13.0%. The system allows avoiding exploitation of 27.2 GWh of primary energy yearly, corresponding to 5.49∙103 tons of CO2 avoided emissions. The increase of the time of the operation increases the economic profitability.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/18/4603/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13184603&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/18/4603/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13184603&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 ItalyPublisher:Elsevier BV Authors: C.T. Chang;M. Costa;
M. Costa
M. Costa in OpenAIREM. La Villetta;
M. La Villetta
M. La Villetta in OpenAIREA. Macaluso;
+2 AuthorsA. Macaluso
A. Macaluso in OpenAIREC.T. Chang;M. Costa;
M. Costa
M. Costa in OpenAIREM. La Villetta;
M. La Villetta
M. La Villetta in OpenAIREA. Macaluso;
A. Macaluso
A. Macaluso in OpenAIRED. Piazzullo;
D. Piazzullo
D. Piazzullo in OpenAIREL. Vanoli;
L. Vanoli
L. Vanoli in OpenAIREhandle: 20.500.14243/364446 , 11367/82198
A Combined Heat and Power (CHP) system fuelled with rice husk is analysed from the thermodynamic, exergetic and economic point of view. The system is based on a gasification process coupled with a rice drying system. The produced syngas is employed to power a Spark Ignition (SI) Internal Combustion Engine (ICE) working as an electric generator, while the jacket cooling water powers a bottoming Organic Rankine Cycle (ORC) to produce electricity for plant self-consumption. A parametric analysis is carried out to investigate thermodynamic performances by varying the gasifier Equivalent Ratio (ER): as the ER increases, the ICE produced power and combustion efficiency decrease, while the thermal efficiency increases. However, the system is always capable to produce power for self-consumption and the desiccant flow for drying. The characterization of the engine is then better assessed by means of a dedicated GT-Power engine model, optimized for syngas fuelling, revealing a power derating of the 30% with respect to the natural-gas feeding operation. Other main findings suggest that the global exergetic efficiency ranges between 10.6% and 8.5%, while the economic profitability, represented by the Simple Pay Back, Net Present Value and Profit Ratio, cannot be considered satisfactory due to the consistent investment cost.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2018.11.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2018.11.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 ItalyPublisher:MDPI AG Authors: Francesca Ceglia;Adriano Macaluso;
Adriano Macaluso
Adriano Macaluso in OpenAIREElisa Marrasso;
Elisa Marrasso
Elisa Marrasso in OpenAIREMaurizio Sasso;
+1 AuthorsMaurizio Sasso
Maurizio Sasso in OpenAIREFrancesca Ceglia;Adriano Macaluso;
Adriano Macaluso
Adriano Macaluso in OpenAIREElisa Marrasso;
Elisa Marrasso
Elisa Marrasso in OpenAIREMaurizio Sasso;
Laura Vanoli;Maurizio Sasso
Maurizio Sasso in OpenAIREdoi: 10.3390/en13112737
handle: 11367/93933
Improvements in using geothermal sources can be attained through the installation of power plants taking advantage of low and medium enthalpy available in poorly exploited geothermal sites. Geothermal fluids at medium and low temperature could be considered to feed binary cycle power plants using organic fluids for electricity “production” or in cogeneration configuration. The improvement in the use of geothermal aquifers at low-medium enthalpy in small deep sites favours the reduction of drilling well costs, and in addition, it allows the exploitation of local resources in the energy districts. The heat exchanger evaporator enables the thermal heat exchange between the working fluid (which is commonly an organic fluid for an Organic Rankine Cycle) and the geothermal fluid (supplied by the aquifer). Thus, it has to be realised taking into account the thermodynamic proprieties and chemical composition of the geothermal field. The geothermal fluid is typically very aggressive, and it leads to the corrosion of steel traditionally used in the heat exchangers. This paper analyses the possibility of using plastic material in the constructions of the evaporator installed in an Organic Rankine Cycle plant in order to overcome the problems of corrosion and the increase of heat exchanger thermal resistance due to the fouling effect. A comparison among heat exchangers made of commonly used materials, such as carbon, steel, and titanium, with alternative polymeric materials has been carried out. This analysis has been built in a mathematical approach using the correlation referred to in the literature about heat transfer in single-phase and two-phase fluids in a tube and/or in the shell side. The outcomes provide the heat transfer area for the shell and tube heat exchanger with a fixed thermal power size. The results have demonstrated that the plastic evaporator shows an increase of 47.0% of the heat transfer area but an economic installation cost saving of 48.0% over the titanium evaporator.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/11/2737/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13112737&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/11/2737/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13112737&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu