- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2024Embargo end date: 08 Apr 2024 GermanyPublisher:Wiley Funded by:EC | AQUACROSS, DFG | German Centre for Integra..., EC | BIOFRESH +3 projectsEC| AQUACROSS ,DFG| German Centre for Integrative Biodiversity Research - iDiv ,EC| BIOFRESH ,DFG ,EC| DANUBE4all ,EC| SABER CULTURALMartin Friedrichs‐Manthey; Simone D. Langhans; Florian Borgwardt; Thomas Hein; Harald Kling; Philipp Stanzel; Sonja C. Jähnig; Sami Domisch;AbstractAimRivers belong to the most threatened ecosystems on Earth. Historical anthropogenic alterations have, and future climate change will further affect rivers and the species therein. While many studies have projected climate change effects on species, little is known about the severity of these changes compared to historical alterations. Here, we used a unique 300‐year time series of hydrological and climate data to explore the vulnerability of 48 native fish species in the upper Danube River Basin to past and potential future environmental changes.LocationUpper Danube River Basins (Germany and Austria).MethodsWe applied a climate niche factor analysis and calculated species‐specific vulnerability estimates based on modelled and observed hydrological and climate data from 1800 to 2100. We compared the estimated species vulnerabilities between two historical time intervals (1800–1830 and 1900–1930) and a future time interval (2070–2100, including the two representative concentration pathways 4.5 and 8.5) to an observed reference time interval (1970–2000). In addition, we identified the main environmental drivers of species vulnerability and their change over the past 200 years and for the predicted 100 years in the future.ResultsOur results showed that (i) in the past, species vulnerability was mainly driven by changes in discharge, while (ii) future potential vulnerabilities would be due to temperature. Moreover, we found that (iii) future environmental conditions for riverine fish species driven by temperature would change at a similar magnitude as past hydrological changes, driven by anthropogenic river alterations. Future changes, projected for the RCP 4.5, would result in moderate species vulnerability, whereas for the RCP 8.5, the vulnerability for all species would substantially increase compared to the historical conditions.Main ConclusionAccounting for an extended timeline uncovers the extent of historical pressures and provides unprecedented opportunities to proactively plan conservation strategies that are necessary to address future challenges.
Diversity and Distri... arrow_drop_down Refubium - Repositorium der Freien Universität BerlinArticle . 2024License: CC BYData sources: Refubium - Repositorium der Freien Universität BerlinPublikationsserver der Humboldt-Universität zu BerlinArticle . 2024 . Peer-reviewedData sources: Publikationsserver der Humboldt-Universität zu Berlinadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ddi.13808&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Diversity and Distri... arrow_drop_down Refubium - Repositorium der Freien Universität BerlinArticle . 2024License: CC BYData sources: Refubium - Repositorium der Freien Universität BerlinPublikationsserver der Humboldt-Universität zu BerlinArticle . 2024 . Peer-reviewedData sources: Publikationsserver der Humboldt-Universität zu Berlinadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ddi.13808&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Embargo end date: 08 Apr 2024 GermanyPublisher:Wiley Funded by:EC | AQUACROSS, DFG | German Centre for Integra..., EC | BIOFRESH +3 projectsEC| AQUACROSS ,DFG| German Centre for Integrative Biodiversity Research - iDiv ,EC| BIOFRESH ,DFG ,EC| DANUBE4all ,EC| SABER CULTURALMartin Friedrichs‐Manthey; Simone D. Langhans; Florian Borgwardt; Thomas Hein; Harald Kling; Philipp Stanzel; Sonja C. Jähnig; Sami Domisch;AbstractAimRivers belong to the most threatened ecosystems on Earth. Historical anthropogenic alterations have, and future climate change will further affect rivers and the species therein. While many studies have projected climate change effects on species, little is known about the severity of these changes compared to historical alterations. Here, we used a unique 300‐year time series of hydrological and climate data to explore the vulnerability of 48 native fish species in the upper Danube River Basin to past and potential future environmental changes.LocationUpper Danube River Basins (Germany and Austria).MethodsWe applied a climate niche factor analysis and calculated species‐specific vulnerability estimates based on modelled and observed hydrological and climate data from 1800 to 2100. We compared the estimated species vulnerabilities between two historical time intervals (1800–1830 and 1900–1930) and a future time interval (2070–2100, including the two representative concentration pathways 4.5 and 8.5) to an observed reference time interval (1970–2000). In addition, we identified the main environmental drivers of species vulnerability and their change over the past 200 years and for the predicted 100 years in the future.ResultsOur results showed that (i) in the past, species vulnerability was mainly driven by changes in discharge, while (ii) future potential vulnerabilities would be due to temperature. Moreover, we found that (iii) future environmental conditions for riverine fish species driven by temperature would change at a similar magnitude as past hydrological changes, driven by anthropogenic river alterations. Future changes, projected for the RCP 4.5, would result in moderate species vulnerability, whereas for the RCP 8.5, the vulnerability for all species would substantially increase compared to the historical conditions.Main ConclusionAccounting for an extended timeline uncovers the extent of historical pressures and provides unprecedented opportunities to proactively plan conservation strategies that are necessary to address future challenges.
Diversity and Distri... arrow_drop_down Refubium - Repositorium der Freien Universität BerlinArticle . 2024License: CC BYData sources: Refubium - Repositorium der Freien Universität BerlinPublikationsserver der Humboldt-Universität zu BerlinArticle . 2024 . Peer-reviewedData sources: Publikationsserver der Humboldt-Universität zu Berlinadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ddi.13808&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Diversity and Distri... arrow_drop_down Refubium - Repositorium der Freien Universität BerlinArticle . 2024License: CC BYData sources: Refubium - Repositorium der Freien Universität BerlinPublikationsserver der Humboldt-Universität zu BerlinArticle . 2024 . Peer-reviewedData sources: Publikationsserver der Humboldt-Universität zu Berlinadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ddi.13808&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2019 Portugal, Ireland, NetherlandsPublisher:Elsevier BV Publicly fundedFunded by:EC | AQUACROSSEC| AQUACROSSFiona Culhane; Heliana Teixeira; Antonio J.A. Nogueira; Florian Borgwardt; Daniel Trauner; Ana Lillebø; GerJan Piet; Mathias Kuemmerlen; Hugh McDonald; Tim O'Higgins; Ana Luisa Barbosa; Jan Tjalling van der Wal; Alejandro Iglesias-Campos; Juan Arevalo-Torres; Julian Barbière; Leonie A. Robinson;The capacity of ecosystems to supply ecosystem services is decreasing. Sustaining this supply requires an understanding of the links between the impacts of pressures introduced by human activities and how this can lead to changes in the supply of services. Here, we apply a novel approach, assessing 'risk to ecosystem service supply' (RESS), across a range of aquatic ecosystems in seven case studies. We link aggregate impact risk from human activities on ecosystem components, with a relative score of their potential to supply services. The greatest RESS is found where an ecosystem component with a high potential to supply services is subject to high impact risk. In this context, we explore variability in RESS across 99 types of aquatic ecosystem component from 11 realms, ranging from oceanic to wetlands. We explore some causes of variability in the RESS observed, including assessment area, Gross Domestic Product (GDP) and population density. We found that Lakes, Rivers, Inlets and Coastal realms had some of the highest RESS, though this was highly dependent on location. We found a positive relationship between impact risk and service supply potential, indicating the ecosystem components we rely on most for services, are also those most at risk. However, variability in this relationship indicates that protecting the supply of ecosystem services alone will not protect all parts of the ecosystem at high risk. Broad socio-economic factors explained some of the variability found in RESS. For example, RESS was positively associated with GDP and artificial and agricultural land use in most realms, highlighting the need to achieve balance between increasing GDP and sustaining ecosystem health and human wellbeing more broadly. This approach can be used for sustainable management of ecosystem service use, to highlight the ecosystem components most critical to supplying services, and those most at risk.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefThe Science of The Total EnvironmentArticle . 2019Data sources: DANS (Data Archiving and Networked Services)Repositório Institucional da Universidade de AveiroArticle . 2023License: CC BYData sources: Repositório Institucional da Universidade de AveiroWageningen Staff PublicationsArticle . 2019License: CC BYData sources: Wageningen Staff PublicationsCork Open Research Archive (CORA)Article . 2019License: CC BYData sources: Cork Open Research Archive (CORA)The Science of The Total EnvironmentArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2018.12.346&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 70 citations 70 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefThe Science of The Total EnvironmentArticle . 2019Data sources: DANS (Data Archiving and Networked Services)Repositório Institucional da Universidade de AveiroArticle . 2023License: CC BYData sources: Repositório Institucional da Universidade de AveiroWageningen Staff PublicationsArticle . 2019License: CC BYData sources: Wageningen Staff PublicationsCork Open Research Archive (CORA)Article . 2019License: CC BYData sources: Cork Open Research Archive (CORA)The Science of The Total EnvironmentArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2018.12.346&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2019 Portugal, Ireland, NetherlandsPublisher:Elsevier BV Publicly fundedFunded by:EC | AQUACROSSEC| AQUACROSSFiona Culhane; Heliana Teixeira; Antonio J.A. Nogueira; Florian Borgwardt; Daniel Trauner; Ana Lillebø; GerJan Piet; Mathias Kuemmerlen; Hugh McDonald; Tim O'Higgins; Ana Luisa Barbosa; Jan Tjalling van der Wal; Alejandro Iglesias-Campos; Juan Arevalo-Torres; Julian Barbière; Leonie A. Robinson;The capacity of ecosystems to supply ecosystem services is decreasing. Sustaining this supply requires an understanding of the links between the impacts of pressures introduced by human activities and how this can lead to changes in the supply of services. Here, we apply a novel approach, assessing 'risk to ecosystem service supply' (RESS), across a range of aquatic ecosystems in seven case studies. We link aggregate impact risk from human activities on ecosystem components, with a relative score of their potential to supply services. The greatest RESS is found where an ecosystem component with a high potential to supply services is subject to high impact risk. In this context, we explore variability in RESS across 99 types of aquatic ecosystem component from 11 realms, ranging from oceanic to wetlands. We explore some causes of variability in the RESS observed, including assessment area, Gross Domestic Product (GDP) and population density. We found that Lakes, Rivers, Inlets and Coastal realms had some of the highest RESS, though this was highly dependent on location. We found a positive relationship between impact risk and service supply potential, indicating the ecosystem components we rely on most for services, are also those most at risk. However, variability in this relationship indicates that protecting the supply of ecosystem services alone will not protect all parts of the ecosystem at high risk. Broad socio-economic factors explained some of the variability found in RESS. For example, RESS was positively associated with GDP and artificial and agricultural land use in most realms, highlighting the need to achieve balance between increasing GDP and sustaining ecosystem health and human wellbeing more broadly. This approach can be used for sustainable management of ecosystem service use, to highlight the ecosystem components most critical to supplying services, and those most at risk.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefThe Science of The Total EnvironmentArticle . 2019Data sources: DANS (Data Archiving and Networked Services)Repositório Institucional da Universidade de AveiroArticle . 2023License: CC BYData sources: Repositório Institucional da Universidade de AveiroWageningen Staff PublicationsArticle . 2019License: CC BYData sources: Wageningen Staff PublicationsCork Open Research Archive (CORA)Article . 2019License: CC BYData sources: Cork Open Research Archive (CORA)The Science of The Total EnvironmentArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2018.12.346&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 70 citations 70 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefThe Science of The Total EnvironmentArticle . 2019Data sources: DANS (Data Archiving and Networked Services)Repositório Institucional da Universidade de AveiroArticle . 2023License: CC BYData sources: Repositório Institucional da Universidade de AveiroWageningen Staff PublicationsArticle . 2019License: CC BYData sources: Wageningen Staff PublicationsCork Open Research Archive (CORA)Article . 2019License: CC BYData sources: Cork Open Research Archive (CORA)The Science of The Total EnvironmentArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2018.12.346&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:PANGAEA Authors: Friedrichs-Manthey, Martin; Langhans, Simone D; Borgwardt, Florian; Hein, Thomas; +4 AuthorsFriedrichs-Manthey, Martin; Langhans, Simone D; Borgwardt, Florian; Hein, Thomas; Kling, Harald; Stanzel, Philipp; Jähnig, Sonja C; Domisch, Sami;The data contains vulnerability estimates (climate niche factor analysis) for 49 native fish species in the upper Danube River basin. The upper Danube River basin is mainly located in Germany and Austria. The time frame covered is 300 years from 1800 to 2100 including two Representative Concentration Pathways, RCP 4.5 and RCP 8.5. Vulnerability estimates are calculated for three time frames (1800-1830; 1900-1930and 2070-2100 (including two RCPs)) with the time frame 1970-2000 as the baseline. In all files the zone column gives the basin ID for the master basins layer. The mean column gives the mean vulnerability estimate for a sub-basin for a certain species. For the future scenarios the different predictions based on the different GCM-RCM combinations have to be combined using the median and the zone as unique identifier.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.935756&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.935756&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:PANGAEA Authors: Friedrichs-Manthey, Martin; Langhans, Simone D; Borgwardt, Florian; Hein, Thomas; +4 AuthorsFriedrichs-Manthey, Martin; Langhans, Simone D; Borgwardt, Florian; Hein, Thomas; Kling, Harald; Stanzel, Philipp; Jähnig, Sonja C; Domisch, Sami;The data contains vulnerability estimates (climate niche factor analysis) for 49 native fish species in the upper Danube River basin. The upper Danube River basin is mainly located in Germany and Austria. The time frame covered is 300 years from 1800 to 2100 including two Representative Concentration Pathways, RCP 4.5 and RCP 8.5. Vulnerability estimates are calculated for three time frames (1800-1830; 1900-1930and 2070-2100 (including two RCPs)) with the time frame 1970-2000 as the baseline. In all files the zone column gives the basin ID for the master basins layer. The mean column gives the mean vulnerability estimate for a sub-basin for a certain species. For the future scenarios the different predictions based on the different GCM-RCM combinations have to be combined using the median and the zone as unique identifier.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.935756&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.935756&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2024Embargo end date: 08 Apr 2024 GermanyPublisher:Wiley Funded by:EC | AQUACROSS, DFG | German Centre for Integra..., EC | BIOFRESH +3 projectsEC| AQUACROSS ,DFG| German Centre for Integrative Biodiversity Research - iDiv ,EC| BIOFRESH ,DFG ,EC| DANUBE4all ,EC| SABER CULTURALMartin Friedrichs‐Manthey; Simone D. Langhans; Florian Borgwardt; Thomas Hein; Harald Kling; Philipp Stanzel; Sonja C. Jähnig; Sami Domisch;AbstractAimRivers belong to the most threatened ecosystems on Earth. Historical anthropogenic alterations have, and future climate change will further affect rivers and the species therein. While many studies have projected climate change effects on species, little is known about the severity of these changes compared to historical alterations. Here, we used a unique 300‐year time series of hydrological and climate data to explore the vulnerability of 48 native fish species in the upper Danube River Basin to past and potential future environmental changes.LocationUpper Danube River Basins (Germany and Austria).MethodsWe applied a climate niche factor analysis and calculated species‐specific vulnerability estimates based on modelled and observed hydrological and climate data from 1800 to 2100. We compared the estimated species vulnerabilities between two historical time intervals (1800–1830 and 1900–1930) and a future time interval (2070–2100, including the two representative concentration pathways 4.5 and 8.5) to an observed reference time interval (1970–2000). In addition, we identified the main environmental drivers of species vulnerability and their change over the past 200 years and for the predicted 100 years in the future.ResultsOur results showed that (i) in the past, species vulnerability was mainly driven by changes in discharge, while (ii) future potential vulnerabilities would be due to temperature. Moreover, we found that (iii) future environmental conditions for riverine fish species driven by temperature would change at a similar magnitude as past hydrological changes, driven by anthropogenic river alterations. Future changes, projected for the RCP 4.5, would result in moderate species vulnerability, whereas for the RCP 8.5, the vulnerability for all species would substantially increase compared to the historical conditions.Main ConclusionAccounting for an extended timeline uncovers the extent of historical pressures and provides unprecedented opportunities to proactively plan conservation strategies that are necessary to address future challenges.
Diversity and Distri... arrow_drop_down Refubium - Repositorium der Freien Universität BerlinArticle . 2024License: CC BYData sources: Refubium - Repositorium der Freien Universität BerlinPublikationsserver der Humboldt-Universität zu BerlinArticle . 2024 . Peer-reviewedData sources: Publikationsserver der Humboldt-Universität zu Berlinadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ddi.13808&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Diversity and Distri... arrow_drop_down Refubium - Repositorium der Freien Universität BerlinArticle . 2024License: CC BYData sources: Refubium - Repositorium der Freien Universität BerlinPublikationsserver der Humboldt-Universität zu BerlinArticle . 2024 . Peer-reviewedData sources: Publikationsserver der Humboldt-Universität zu Berlinadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ddi.13808&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Embargo end date: 08 Apr 2024 GermanyPublisher:Wiley Funded by:EC | AQUACROSS, DFG | German Centre for Integra..., EC | BIOFRESH +3 projectsEC| AQUACROSS ,DFG| German Centre for Integrative Biodiversity Research - iDiv ,EC| BIOFRESH ,DFG ,EC| DANUBE4all ,EC| SABER CULTURALMartin Friedrichs‐Manthey; Simone D. Langhans; Florian Borgwardt; Thomas Hein; Harald Kling; Philipp Stanzel; Sonja C. Jähnig; Sami Domisch;AbstractAimRivers belong to the most threatened ecosystems on Earth. Historical anthropogenic alterations have, and future climate change will further affect rivers and the species therein. While many studies have projected climate change effects on species, little is known about the severity of these changes compared to historical alterations. Here, we used a unique 300‐year time series of hydrological and climate data to explore the vulnerability of 48 native fish species in the upper Danube River Basin to past and potential future environmental changes.LocationUpper Danube River Basins (Germany and Austria).MethodsWe applied a climate niche factor analysis and calculated species‐specific vulnerability estimates based on modelled and observed hydrological and climate data from 1800 to 2100. We compared the estimated species vulnerabilities between two historical time intervals (1800–1830 and 1900–1930) and a future time interval (2070–2100, including the two representative concentration pathways 4.5 and 8.5) to an observed reference time interval (1970–2000). In addition, we identified the main environmental drivers of species vulnerability and their change over the past 200 years and for the predicted 100 years in the future.ResultsOur results showed that (i) in the past, species vulnerability was mainly driven by changes in discharge, while (ii) future potential vulnerabilities would be due to temperature. Moreover, we found that (iii) future environmental conditions for riverine fish species driven by temperature would change at a similar magnitude as past hydrological changes, driven by anthropogenic river alterations. Future changes, projected for the RCP 4.5, would result in moderate species vulnerability, whereas for the RCP 8.5, the vulnerability for all species would substantially increase compared to the historical conditions.Main ConclusionAccounting for an extended timeline uncovers the extent of historical pressures and provides unprecedented opportunities to proactively plan conservation strategies that are necessary to address future challenges.
Diversity and Distri... arrow_drop_down Refubium - Repositorium der Freien Universität BerlinArticle . 2024License: CC BYData sources: Refubium - Repositorium der Freien Universität BerlinPublikationsserver der Humboldt-Universität zu BerlinArticle . 2024 . Peer-reviewedData sources: Publikationsserver der Humboldt-Universität zu Berlinadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ddi.13808&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Diversity and Distri... arrow_drop_down Refubium - Repositorium der Freien Universität BerlinArticle . 2024License: CC BYData sources: Refubium - Repositorium der Freien Universität BerlinPublikationsserver der Humboldt-Universität zu BerlinArticle . 2024 . Peer-reviewedData sources: Publikationsserver der Humboldt-Universität zu Berlinadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ddi.13808&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2019 Portugal, Ireland, NetherlandsPublisher:Elsevier BV Publicly fundedFunded by:EC | AQUACROSSEC| AQUACROSSFiona Culhane; Heliana Teixeira; Antonio J.A. Nogueira; Florian Borgwardt; Daniel Trauner; Ana Lillebø; GerJan Piet; Mathias Kuemmerlen; Hugh McDonald; Tim O'Higgins; Ana Luisa Barbosa; Jan Tjalling van der Wal; Alejandro Iglesias-Campos; Juan Arevalo-Torres; Julian Barbière; Leonie A. Robinson;The capacity of ecosystems to supply ecosystem services is decreasing. Sustaining this supply requires an understanding of the links between the impacts of pressures introduced by human activities and how this can lead to changes in the supply of services. Here, we apply a novel approach, assessing 'risk to ecosystem service supply' (RESS), across a range of aquatic ecosystems in seven case studies. We link aggregate impact risk from human activities on ecosystem components, with a relative score of their potential to supply services. The greatest RESS is found where an ecosystem component with a high potential to supply services is subject to high impact risk. In this context, we explore variability in RESS across 99 types of aquatic ecosystem component from 11 realms, ranging from oceanic to wetlands. We explore some causes of variability in the RESS observed, including assessment area, Gross Domestic Product (GDP) and population density. We found that Lakes, Rivers, Inlets and Coastal realms had some of the highest RESS, though this was highly dependent on location. We found a positive relationship between impact risk and service supply potential, indicating the ecosystem components we rely on most for services, are also those most at risk. However, variability in this relationship indicates that protecting the supply of ecosystem services alone will not protect all parts of the ecosystem at high risk. Broad socio-economic factors explained some of the variability found in RESS. For example, RESS was positively associated with GDP and artificial and agricultural land use in most realms, highlighting the need to achieve balance between increasing GDP and sustaining ecosystem health and human wellbeing more broadly. This approach can be used for sustainable management of ecosystem service use, to highlight the ecosystem components most critical to supplying services, and those most at risk.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefThe Science of The Total EnvironmentArticle . 2019Data sources: DANS (Data Archiving and Networked Services)Repositório Institucional da Universidade de AveiroArticle . 2023License: CC BYData sources: Repositório Institucional da Universidade de AveiroWageningen Staff PublicationsArticle . 2019License: CC BYData sources: Wageningen Staff PublicationsCork Open Research Archive (CORA)Article . 2019License: CC BYData sources: Cork Open Research Archive (CORA)The Science of The Total EnvironmentArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2018.12.346&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 70 citations 70 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefThe Science of The Total EnvironmentArticle . 2019Data sources: DANS (Data Archiving and Networked Services)Repositório Institucional da Universidade de AveiroArticle . 2023License: CC BYData sources: Repositório Institucional da Universidade de AveiroWageningen Staff PublicationsArticle . 2019License: CC BYData sources: Wageningen Staff PublicationsCork Open Research Archive (CORA)Article . 2019License: CC BYData sources: Cork Open Research Archive (CORA)The Science of The Total EnvironmentArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2018.12.346&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2019 Portugal, Ireland, NetherlandsPublisher:Elsevier BV Publicly fundedFunded by:EC | AQUACROSSEC| AQUACROSSFiona Culhane; Heliana Teixeira; Antonio J.A. Nogueira; Florian Borgwardt; Daniel Trauner; Ana Lillebø; GerJan Piet; Mathias Kuemmerlen; Hugh McDonald; Tim O'Higgins; Ana Luisa Barbosa; Jan Tjalling van der Wal; Alejandro Iglesias-Campos; Juan Arevalo-Torres; Julian Barbière; Leonie A. Robinson;The capacity of ecosystems to supply ecosystem services is decreasing. Sustaining this supply requires an understanding of the links between the impacts of pressures introduced by human activities and how this can lead to changes in the supply of services. Here, we apply a novel approach, assessing 'risk to ecosystem service supply' (RESS), across a range of aquatic ecosystems in seven case studies. We link aggregate impact risk from human activities on ecosystem components, with a relative score of their potential to supply services. The greatest RESS is found where an ecosystem component with a high potential to supply services is subject to high impact risk. In this context, we explore variability in RESS across 99 types of aquatic ecosystem component from 11 realms, ranging from oceanic to wetlands. We explore some causes of variability in the RESS observed, including assessment area, Gross Domestic Product (GDP) and population density. We found that Lakes, Rivers, Inlets and Coastal realms had some of the highest RESS, though this was highly dependent on location. We found a positive relationship between impact risk and service supply potential, indicating the ecosystem components we rely on most for services, are also those most at risk. However, variability in this relationship indicates that protecting the supply of ecosystem services alone will not protect all parts of the ecosystem at high risk. Broad socio-economic factors explained some of the variability found in RESS. For example, RESS was positively associated with GDP and artificial and agricultural land use in most realms, highlighting the need to achieve balance between increasing GDP and sustaining ecosystem health and human wellbeing more broadly. This approach can be used for sustainable management of ecosystem service use, to highlight the ecosystem components most critical to supplying services, and those most at risk.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefThe Science of The Total EnvironmentArticle . 2019Data sources: DANS (Data Archiving and Networked Services)Repositório Institucional da Universidade de AveiroArticle . 2023License: CC BYData sources: Repositório Institucional da Universidade de AveiroWageningen Staff PublicationsArticle . 2019License: CC BYData sources: Wageningen Staff PublicationsCork Open Research Archive (CORA)Article . 2019License: CC BYData sources: Cork Open Research Archive (CORA)The Science of The Total EnvironmentArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2018.12.346&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 70 citations 70 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefThe Science of The Total EnvironmentArticle . 2019Data sources: DANS (Data Archiving and Networked Services)Repositório Institucional da Universidade de AveiroArticle . 2023License: CC BYData sources: Repositório Institucional da Universidade de AveiroWageningen Staff PublicationsArticle . 2019License: CC BYData sources: Wageningen Staff PublicationsCork Open Research Archive (CORA)Article . 2019License: CC BYData sources: Cork Open Research Archive (CORA)The Science of The Total EnvironmentArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2018.12.346&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:PANGAEA Authors: Friedrichs-Manthey, Martin; Langhans, Simone D; Borgwardt, Florian; Hein, Thomas; +4 AuthorsFriedrichs-Manthey, Martin; Langhans, Simone D; Borgwardt, Florian; Hein, Thomas; Kling, Harald; Stanzel, Philipp; Jähnig, Sonja C; Domisch, Sami;The data contains vulnerability estimates (climate niche factor analysis) for 49 native fish species in the upper Danube River basin. The upper Danube River basin is mainly located in Germany and Austria. The time frame covered is 300 years from 1800 to 2100 including two Representative Concentration Pathways, RCP 4.5 and RCP 8.5. Vulnerability estimates are calculated for three time frames (1800-1830; 1900-1930and 2070-2100 (including two RCPs)) with the time frame 1970-2000 as the baseline. In all files the zone column gives the basin ID for the master basins layer. The mean column gives the mean vulnerability estimate for a sub-basin for a certain species. For the future scenarios the different predictions based on the different GCM-RCM combinations have to be combined using the median and the zone as unique identifier.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.935756&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.935756&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:PANGAEA Authors: Friedrichs-Manthey, Martin; Langhans, Simone D; Borgwardt, Florian; Hein, Thomas; +4 AuthorsFriedrichs-Manthey, Martin; Langhans, Simone D; Borgwardt, Florian; Hein, Thomas; Kling, Harald; Stanzel, Philipp; Jähnig, Sonja C; Domisch, Sami;The data contains vulnerability estimates (climate niche factor analysis) for 49 native fish species in the upper Danube River basin. The upper Danube River basin is mainly located in Germany and Austria. The time frame covered is 300 years from 1800 to 2100 including two Representative Concentration Pathways, RCP 4.5 and RCP 8.5. Vulnerability estimates are calculated for three time frames (1800-1830; 1900-1930and 2070-2100 (including two RCPs)) with the time frame 1970-2000 as the baseline. In all files the zone column gives the basin ID for the master basins layer. The mean column gives the mean vulnerability estimate for a sub-basin for a certain species. For the future scenarios the different predictions based on the different GCM-RCM combinations have to be combined using the median and the zone as unique identifier.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.935756&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.935756&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu