- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2018 BelgiumPublisher:Springer Science and Business Media LLC Jan Czech; Mathias Lenaers; Wim Deferme; Jaco Vangronsveld; Robert Carleer; Talha Yildiz; Francois Rineau; Indranil Basak; Frederik De Laender; Tony Remans; Wouter Reyns; Wouter Reyns; Sherilyn Saro; Patrycja Krupinska;Comprehending the decomposition process is crucial for our understanding of the mechanisms of carbon (C) sequestration in soils. The decomposition of plant biomass has been extensively studied. It revealed that extrinsic biomass properties that restrict its access to decomposers influence decomposition more than intrinsic ones that are only related to its chemical structure. Fungal biomass has been much less investigated, even though it contributes to a large extent to soil organic matter, and is characterized by specific biochemical properties. In this study, we investigated the extent to which decomposition of heathland fungal biomass was affected by its hydrophobicity (extrinsic property) and melanin content (intrinsic property). We hypothesized that, as for plant biomass, hydrophobicity would have a greater impact on decomposition than melanin content. Mineralization was determined as the mineralization of soil organic carbon (SOC) into CO2 by headspace GC/MS after inoculation by a heathland soil microbial community. Results show that decomposition was not affected by hydrophobicity, but was negatively correlated with melanin content. We argue that it may indicate that either melanin content is both an intrinsic and extrinsic property, or that some soil decomposers evolved the ability to use surfactants to access to hydrophobic biomass. In the latter case, biomass hydrophobicity should not be considered as a crucial extrinsic factor. We also explored the ecology of decomposition, melanin content, and hydrophobicity, among heathland soil fungal guilds. Ascomycete black yeasts had the highest melanin content, and hyaline Basidiomycete yeasts the lowest. Hydrophobicity was an all-or-nothing trait, with most isolates being hydrophobic.
Microbial Ecology arrow_drop_down Repository of the University of NamurArticle . 2018Data sources: Repository of the University of Namuradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00248-018-1167-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Microbial Ecology arrow_drop_down Repository of the University of NamurArticle . 2018Data sources: Repository of the University of Namuradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00248-018-1167-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV B.S. Balume; L. Bijnens; S. Abrams; B.B. Banza; W. Deferme;Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2025.115745&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2025.115745&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Joao Silvano; Gizem Birant; Tim Oris; Jan D’Haen; Wim Deferme; Bart Vermang;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2024.112738&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2024.112738&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 BelgiumPublisher:EDP Sciences Funded by:EC | PERCISTANDEC| PERCISTANDSILVANO, Joao; SALA, Jacopo; MERCKX, Tamara; KUANG, Yinghuan; VERDING, Pieter; D'HAEN, Jan; AERNOUTS, Tom; VERMANG, Bart; DEFERME, Wim; Kenny, Robert; Serra, João M.;handle: 1942/37553
Perovskite materials have gathered increased interest over the last decade. Their rapidly rising efficiency, coupled with the compatibility with solution processing and thin film technology has put perovskite solar cells (PSC) on the spotlight of photovoltaic research. On top of that, band gap tunability via composition changes makes them a perfect candidate for tandem applications, allowing for further harvest of the solar irradiation spectrum and improved power conversion efficiency (PCE). In order to convert all these advantages into large scale production and have increased dissemination in the energy generation market, perovskite fabrication must be adapted and optimized with the use of high throughput, continuous processes, such as ultrasonic spray coating (USSC). In this paper we investigate the ultrasonically spray coated perovskite layers for photovoltaic applications, with particular focus on the quenching-assisted crystallization step. Different quenching techniques are introduced to the process and compared in terms of final layer morphology and cell performance. Finally, gas quenching is used with the large-scale-compatible deposition and allows the production of perovskite solar cells with PCE >15%.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/epjpv/2022008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/epjpv/2022008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2022 BelgiumPublisher:American Chemical Society (ACS) Funded by:EC | PERCISTANDEC| PERCISTANDJoao Silvano; Sarallah Hamtaei; Pieter Verding; Bart Vermang; Wim Deferme;handle: 1942/40655
The incrementally rising efficiency of perovskite-basedphotovoltaicdevices has established technology as a hot topic in past years. Transitioningthis class of materials from laboratorial to commercial applicationis key to the future of clean energy generation. In the interest ofthis transition, scalable fabrication and reproducibility are challengesto be overcome. Additionally, being a highly dynamic field with fast-pacedinnovation, perovskite research lacks in structured comprehensivestudies focusing on the processing parameters, especially when comparedto commercial technologies, such as silicon-based devices. This studyproposes a design of experiments (DoE) approach to analyze and optimizethe fabrication of perovskite thin films by ultrasonic spray coating,a scalable technique. The investigation of deposition parameters onefactor at a time (OFAT) and the more in-depth full factorial analysisof three key input variables allowed the assessment of the impactlevel of each factor on the quality and performance of the obtainedfilms of the fabricated photovoltaic devices. Furthermore, the fullfactorial analysis reveals the presence of interactions between factors.The study revealed that a shorter distance between the air gun andthe sample (2 cm) coupled with high gas pressure (7.6 bar) duringthe quenching step were the most influential parameters for the productionof high-quality films, leading to an average efficiency of 14.8%. This study was supported by the Special Research Fund (BOF) of Hasselt University, BOF number: BOF19OWB17. This project has also received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No. 850937. S.H. and P.V. acknowledge financial support by the Flanders Research Foundation (FWO), strategic basic research doctoral grants 1S31922N and 1S99121N, respectively
ACS Applied Energy M... arrow_drop_down ACS Applied Energy MaterialsArticle . 2023 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsaem.3c00491&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert ACS Applied Energy M... arrow_drop_down ACS Applied Energy MaterialsArticle . 2023 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsaem.3c00491&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2018Embargo end date: 01 Jan 2017 Italy, BelgiumPublisher:Elsevier BV Jean Manca; Valentina Spampinato; Wim Deferme; Wim Deferme; Ilaria Cardinaletti; Ilaria Cardinaletti; Jan D'Haen; Jan D'Haen; Jurgen Kesters; Jurgen Kesters; Alexis Franquet; Jaroslav Hruby; Jaroslav Hruby; Wouter Maes; Wouter Maes; Jelle Vodnik; Thierry Conard; Steven Nagels; Steven Nagels; Rob Cornelissen; Dieter Schreurs; Dieter Schreurs; Tim Vangerven; Tim Vangerven; Dries Devisscher; Dries Devisscher;handle: 20.500.11769/559851 , 1942/25879
For almost sixty years, solar energy for space applications has relied on inorganic photovoltaics, evolving from solar cells made of single crystalline silicon to triple junctions based on germanium and III-V alloys. The class of organic-based photovoltaics, which ranges from all-organic to hybrid perovskites, has the potential of becoming a disruptive technology in space applications, thanks to the unique combination of appealing intrinsic properties (e.g. record high specific power, tunable absorption window) and processing possibilities. Here, we report on the launch of the stratospheric mission OSCAR, which demonstrated for the first time organic-based solar cell operation in extra-terrestrial conditions. This successful maiden flight for organic-based photovoltaics opens a new paradigm for solar electricity in space, from satellites to orbital and planetary space stations.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2017License: arXiv Non-Exclusive DistributionData sources: DataciteIRIS - Università degli Studi di CataniaArticle . 2018Data sources: IRIS - Università degli Studi di Cataniaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2018.03.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 175 citations 175 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2017License: arXiv Non-Exclusive DistributionData sources: DataciteIRIS - Università degli Studi di CataniaArticle . 2018Data sources: IRIS - Università degli Studi di Cataniaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2018.03.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2018 BelgiumPublisher:Springer Science and Business Media LLC Jan Czech; Mathias Lenaers; Wim Deferme; Jaco Vangronsveld; Robert Carleer; Talha Yildiz; Francois Rineau; Indranil Basak; Frederik De Laender; Tony Remans; Wouter Reyns; Wouter Reyns; Sherilyn Saro; Patrycja Krupinska;Comprehending the decomposition process is crucial for our understanding of the mechanisms of carbon (C) sequestration in soils. The decomposition of plant biomass has been extensively studied. It revealed that extrinsic biomass properties that restrict its access to decomposers influence decomposition more than intrinsic ones that are only related to its chemical structure. Fungal biomass has been much less investigated, even though it contributes to a large extent to soil organic matter, and is characterized by specific biochemical properties. In this study, we investigated the extent to which decomposition of heathland fungal biomass was affected by its hydrophobicity (extrinsic property) and melanin content (intrinsic property). We hypothesized that, as for plant biomass, hydrophobicity would have a greater impact on decomposition than melanin content. Mineralization was determined as the mineralization of soil organic carbon (SOC) into CO2 by headspace GC/MS after inoculation by a heathland soil microbial community. Results show that decomposition was not affected by hydrophobicity, but was negatively correlated with melanin content. We argue that it may indicate that either melanin content is both an intrinsic and extrinsic property, or that some soil decomposers evolved the ability to use surfactants to access to hydrophobic biomass. In the latter case, biomass hydrophobicity should not be considered as a crucial extrinsic factor. We also explored the ecology of decomposition, melanin content, and hydrophobicity, among heathland soil fungal guilds. Ascomycete black yeasts had the highest melanin content, and hyaline Basidiomycete yeasts the lowest. Hydrophobicity was an all-or-nothing trait, with most isolates being hydrophobic.
Microbial Ecology arrow_drop_down Repository of the University of NamurArticle . 2018Data sources: Repository of the University of Namuradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00248-018-1167-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Microbial Ecology arrow_drop_down Repository of the University of NamurArticle . 2018Data sources: Repository of the University of Namuradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00248-018-1167-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV B.S. Balume; L. Bijnens; S. Abrams; B.B. Banza; W. Deferme;Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2025.115745&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2025.115745&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Joao Silvano; Gizem Birant; Tim Oris; Jan D’Haen; Wim Deferme; Bart Vermang;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2024.112738&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2024.112738&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 BelgiumPublisher:EDP Sciences Funded by:EC | PERCISTANDEC| PERCISTANDSILVANO, Joao; SALA, Jacopo; MERCKX, Tamara; KUANG, Yinghuan; VERDING, Pieter; D'HAEN, Jan; AERNOUTS, Tom; VERMANG, Bart; DEFERME, Wim; Kenny, Robert; Serra, João M.;handle: 1942/37553
Perovskite materials have gathered increased interest over the last decade. Their rapidly rising efficiency, coupled with the compatibility with solution processing and thin film technology has put perovskite solar cells (PSC) on the spotlight of photovoltaic research. On top of that, band gap tunability via composition changes makes them a perfect candidate for tandem applications, allowing for further harvest of the solar irradiation spectrum and improved power conversion efficiency (PCE). In order to convert all these advantages into large scale production and have increased dissemination in the energy generation market, perovskite fabrication must be adapted and optimized with the use of high throughput, continuous processes, such as ultrasonic spray coating (USSC). In this paper we investigate the ultrasonically spray coated perovskite layers for photovoltaic applications, with particular focus on the quenching-assisted crystallization step. Different quenching techniques are introduced to the process and compared in terms of final layer morphology and cell performance. Finally, gas quenching is used with the large-scale-compatible deposition and allows the production of perovskite solar cells with PCE >15%.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/epjpv/2022008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/epjpv/2022008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2022 BelgiumPublisher:American Chemical Society (ACS) Funded by:EC | PERCISTANDEC| PERCISTANDJoao Silvano; Sarallah Hamtaei; Pieter Verding; Bart Vermang; Wim Deferme;handle: 1942/40655
The incrementally rising efficiency of perovskite-basedphotovoltaicdevices has established technology as a hot topic in past years. Transitioningthis class of materials from laboratorial to commercial applicationis key to the future of clean energy generation. In the interest ofthis transition, scalable fabrication and reproducibility are challengesto be overcome. Additionally, being a highly dynamic field with fast-pacedinnovation, perovskite research lacks in structured comprehensivestudies focusing on the processing parameters, especially when comparedto commercial technologies, such as silicon-based devices. This studyproposes a design of experiments (DoE) approach to analyze and optimizethe fabrication of perovskite thin films by ultrasonic spray coating,a scalable technique. The investigation of deposition parameters onefactor at a time (OFAT) and the more in-depth full factorial analysisof three key input variables allowed the assessment of the impactlevel of each factor on the quality and performance of the obtainedfilms of the fabricated photovoltaic devices. Furthermore, the fullfactorial analysis reveals the presence of interactions between factors.The study revealed that a shorter distance between the air gun andthe sample (2 cm) coupled with high gas pressure (7.6 bar) duringthe quenching step were the most influential parameters for the productionof high-quality films, leading to an average efficiency of 14.8%. This study was supported by the Special Research Fund (BOF) of Hasselt University, BOF number: BOF19OWB17. This project has also received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No. 850937. S.H. and P.V. acknowledge financial support by the Flanders Research Foundation (FWO), strategic basic research doctoral grants 1S31922N and 1S99121N, respectively
ACS Applied Energy M... arrow_drop_down ACS Applied Energy MaterialsArticle . 2023 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsaem.3c00491&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert ACS Applied Energy M... arrow_drop_down ACS Applied Energy MaterialsArticle . 2023 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsaem.3c00491&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2018Embargo end date: 01 Jan 2017 Italy, BelgiumPublisher:Elsevier BV Jean Manca; Valentina Spampinato; Wim Deferme; Wim Deferme; Ilaria Cardinaletti; Ilaria Cardinaletti; Jan D'Haen; Jan D'Haen; Jurgen Kesters; Jurgen Kesters; Alexis Franquet; Jaroslav Hruby; Jaroslav Hruby; Wouter Maes; Wouter Maes; Jelle Vodnik; Thierry Conard; Steven Nagels; Steven Nagels; Rob Cornelissen; Dieter Schreurs; Dieter Schreurs; Tim Vangerven; Tim Vangerven; Dries Devisscher; Dries Devisscher;handle: 20.500.11769/559851 , 1942/25879
For almost sixty years, solar energy for space applications has relied on inorganic photovoltaics, evolving from solar cells made of single crystalline silicon to triple junctions based on germanium and III-V alloys. The class of organic-based photovoltaics, which ranges from all-organic to hybrid perovskites, has the potential of becoming a disruptive technology in space applications, thanks to the unique combination of appealing intrinsic properties (e.g. record high specific power, tunable absorption window) and processing possibilities. Here, we report on the launch of the stratospheric mission OSCAR, which demonstrated for the first time organic-based solar cell operation in extra-terrestrial conditions. This successful maiden flight for organic-based photovoltaics opens a new paradigm for solar electricity in space, from satellites to orbital and planetary space stations.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2017License: arXiv Non-Exclusive DistributionData sources: DataciteIRIS - Università degli Studi di CataniaArticle . 2018Data sources: IRIS - Università degli Studi di Cataniaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2018.03.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 175 citations 175 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2017License: arXiv Non-Exclusive DistributionData sources: DataciteIRIS - Università degli Studi di CataniaArticle . 2018Data sources: IRIS - Università degli Studi di Cataniaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2018.03.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu