Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down

Filters

  • Access
  • Type
  • Year range
  • Field of Science
  • SDG [Beta]
  • Country
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
2 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Like Zhong; Xiaoti Cui; Erren Yao; Guang Xi; +2 Authors

    Power-to-methane (PtM) is a prospective solution to the mismatching between the supply and consumption of renewable energy resources (RES) by converting renewable power into methane. However, the continuous fluctuation of RES causes the PtM system to deviate from the design condition in the vast majority of cases, and thus it is significantly vital to study the operating characteristics of the PtM system under off-design conditions. This paper proposes a comprehensive investigation framework from design to off-design steps for the performance improvement of a PtM system combining solid oxide electrolysis cell with methanation reactor, and solar energy is selected as renewable energy input. Firstly, the system with the total exergy efficiency (ηEX,tot) of 11.83% and levelized cost of exergy (LCOE) of 150.76 $/MWh is selected as the optimal design condition based on the homogeneous assessment from both thermodynamic and economic aspects, by means of Non-dominated sorting genetic algorithm-II. Then, based on the optimal design point, the off-design performances are quantitatively investigated under varying solar radiation and key operating parameters, in terms of synthetic natural gas (SNG) yield and ηEX,tot. The results indicate that with the increment in solar radiation, the SNG yield rises, while the ηEX,tot increases first and then decreases. Finally, the multi-objective optimization based on the Artificial Neural Network models is implemented for the system under off-design conditions to acquire the best trade-off between hourly SNG yield and ηEX,tot. The off-design optimization solutions reveal that the hourly optimal SNG yield is located in the range of 275.06–946.53 kW, achieving a total annual SNG yield of 1697 MWh/y, and the hourly optimal ηEX,tot mainly varies in the range of 10.40–11.40%.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Aalborg University R...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    VBN
    Article . 2024
    Data sources: VBN
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Fuel
    Article . 2024 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    4
    citations4
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Aalborg University R...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      VBN
      Article . 2024
      Data sources: VBN
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Fuel
      Article . 2024 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Erren Yao; Like Zhong; Ruixiong Li; Guang Xi; +2 Authors

    The advantages of compressed air energy storage (CAES) have been demonstrated by the trigeneration system with the characteristic of high penetration of renewable energy. However, since the irreversible loss of compression heat occurs during the overall operation processes of CAES, the development of CAES with high energy efficiency has been hindered by the conventional conversion pathway of compression heat. Therefore, a trigeneration system integrated with compressed air and chemical energy storage is proposed in this study to improve energy utilization efficiency. The compression heat is converted into H2 and CO via the endothermic methanol decomposition reaction to improve its energy level during the charging process, and then the syngas production can be used for air preheating during the discharging process. The parametric analysis is first performed to investigate the technical and economic feasibility of the system. Subsequently, the multi-objective optimization is conducted to identify the tradeoffs in the thermo-economic performance of the system and acquire the optimal values of operating parameters. Notably, the proposed system with a computed exergy efficiency of 43.31% and levelized cost of energy (LCOE) of 97.53 $/MWh is selected as the most compromise solution by the decision maker of Technique for Order Preference by Similarity to an Ideal Solution among the Pareto optimum fronts, which are 8.47% higher than the exergy efficiency and 7.39 $/MWh lower than the LCOE under the design conditions.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    2
    citations2
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
2 Research products
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Like Zhong; Xiaoti Cui; Erren Yao; Guang Xi; +2 Authors

    Power-to-methane (PtM) is a prospective solution to the mismatching between the supply and consumption of renewable energy resources (RES) by converting renewable power into methane. However, the continuous fluctuation of RES causes the PtM system to deviate from the design condition in the vast majority of cases, and thus it is significantly vital to study the operating characteristics of the PtM system under off-design conditions. This paper proposes a comprehensive investigation framework from design to off-design steps for the performance improvement of a PtM system combining solid oxide electrolysis cell with methanation reactor, and solar energy is selected as renewable energy input. Firstly, the system with the total exergy efficiency (ηEX,tot) of 11.83% and levelized cost of exergy (LCOE) of 150.76 $/MWh is selected as the optimal design condition based on the homogeneous assessment from both thermodynamic and economic aspects, by means of Non-dominated sorting genetic algorithm-II. Then, based on the optimal design point, the off-design performances are quantitatively investigated under varying solar radiation and key operating parameters, in terms of synthetic natural gas (SNG) yield and ηEX,tot. The results indicate that with the increment in solar radiation, the SNG yield rises, while the ηEX,tot increases first and then decreases. Finally, the multi-objective optimization based on the Artificial Neural Network models is implemented for the system under off-design conditions to acquire the best trade-off between hourly SNG yield and ηEX,tot. The off-design optimization solutions reveal that the hourly optimal SNG yield is located in the range of 275.06–946.53 kW, achieving a total annual SNG yield of 1697 MWh/y, and the hourly optimal ηEX,tot mainly varies in the range of 10.40–11.40%.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Aalborg University R...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    VBN
    Article . 2024
    Data sources: VBN
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Fuel
    Article . 2024 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    4
    citations4
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Aalborg University R...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      VBN
      Article . 2024
      Data sources: VBN
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Fuel
      Article . 2024 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Erren Yao; Like Zhong; Ruixiong Li; Guang Xi; +2 Authors

    The advantages of compressed air energy storage (CAES) have been demonstrated by the trigeneration system with the characteristic of high penetration of renewable energy. However, since the irreversible loss of compression heat occurs during the overall operation processes of CAES, the development of CAES with high energy efficiency has been hindered by the conventional conversion pathway of compression heat. Therefore, a trigeneration system integrated with compressed air and chemical energy storage is proposed in this study to improve energy utilization efficiency. The compression heat is converted into H2 and CO via the endothermic methanol decomposition reaction to improve its energy level during the charging process, and then the syngas production can be used for air preheating during the discharging process. The parametric analysis is first performed to investigate the technical and economic feasibility of the system. Subsequently, the multi-objective optimization is conducted to identify the tradeoffs in the thermo-economic performance of the system and acquire the optimal values of operating parameters. Notably, the proposed system with a computed exergy efficiency of 43.31% and levelized cost of energy (LCOE) of 97.53 $/MWh is selected as the most compromise solution by the decision maker of Technique for Order Preference by Similarity to an Ideal Solution among the Pareto optimum fronts, which are 8.47% higher than the exergy efficiency and 7.39 $/MWh lower than the LCOE under the design conditions.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    2
    citations2
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph