- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Muhammad Farooq Qayyum; Muhammad Rizwan; Jörg Rinklebe; Jörg Rinklebe; Afzal Hussain; Shafaqat Ali; Muhammad Zia ur Rehman; Hailong Wang; Hailong Wang;pmid: 30771659
The present study demonstrated the possible impacts of iron oxide nanoparticles (Fe NPs) on the alleviation of toxic effects of cadmium (Cd) in wheat and enhance its growth, yield, and Fe biofortification. A pot experiment was conducted in historically Cd-contaminated soil using five levels of Fe NPs (0, 5, 10, 15, and 20 ppm) by soil and foliar application methods. The plants were harvested after 125 days of growth while vegetative parameters, antioxidant capacity, electrolyte leakage (EL) in leaves as well as Cd, and Fe concentrations in wheat grains, roots, and shoots were measured. The results showed that the application of Fe NPs mitigated the Cd toxicity on wheat growth and yield parameters. The exogenous application of Fe NPs enhanced the wheat morphological parameters, photosynthetic pigments, and dry biomass of shoots, roots, spike husks and grains. The activities of super oxide dismutase and peroxidase increased, whereas EL reduced from wheat leaves over control. The Cd concentrations were reduced in wheat tissues and grains whereas Fe concentrations increased with Fe NPs application in a dose-additive manner. The current work suggested that the application of Fe NPs on wheat in Cd-contaminated soils could be employed to improve growth, yield and Fe biofortification as well as reduction in Cd concentrations in plants.
Ecotoxicology and En... arrow_drop_down Ecotoxicology and Environmental SafetyArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecoenv.2019.01.118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 183 citations 183 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Ecotoxicology and En... arrow_drop_down Ecotoxicology and Environmental SafetyArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecoenv.2019.01.118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Muhammad Farooq Qayyum; Muhammad Rizwan; Jörg Rinklebe; Jörg Rinklebe; Afzal Hussain; Shafaqat Ali; Muhammad Zia ur Rehman; Hailong Wang; Hailong Wang;pmid: 30771659
The present study demonstrated the possible impacts of iron oxide nanoparticles (Fe NPs) on the alleviation of toxic effects of cadmium (Cd) in wheat and enhance its growth, yield, and Fe biofortification. A pot experiment was conducted in historically Cd-contaminated soil using five levels of Fe NPs (0, 5, 10, 15, and 20 ppm) by soil and foliar application methods. The plants were harvested after 125 days of growth while vegetative parameters, antioxidant capacity, electrolyte leakage (EL) in leaves as well as Cd, and Fe concentrations in wheat grains, roots, and shoots were measured. The results showed that the application of Fe NPs mitigated the Cd toxicity on wheat growth and yield parameters. The exogenous application of Fe NPs enhanced the wheat morphological parameters, photosynthetic pigments, and dry biomass of shoots, roots, spike husks and grains. The activities of super oxide dismutase and peroxidase increased, whereas EL reduced from wheat leaves over control. The Cd concentrations were reduced in wheat tissues and grains whereas Fe concentrations increased with Fe NPs application in a dose-additive manner. The current work suggested that the application of Fe NPs on wheat in Cd-contaminated soils could be employed to improve growth, yield and Fe biofortification as well as reduction in Cd concentrations in plants.
Ecotoxicology and En... arrow_drop_down Ecotoxicology and Environmental SafetyArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecoenv.2019.01.118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 183 citations 183 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Ecotoxicology and En... arrow_drop_down Ecotoxicology and Environmental SafetyArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecoenv.2019.01.118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 China (People's Republic of)Publisher:Elsevier BV Zhiyuan Niu; Guijian Liu; Guijian Liu; Qumber Abbas; Muhammad Zia-ur-Rehman; Amina; Habib Ullah; Balal Yousaf; Ruwei Wang;pmid: 29101855
Potentially toxic elements (PTEs) discharge to the soil environment through increased anthropogenic activities is a global threat. These PTEs can have harmful and chronic-persistent health effects on exposed populations through food consumption grown on contaminated soils. Efforts to investigate the transformation mechanism and accumulation behavior of PTEs in soil-plant system and their adverse health-effects have focused extensively in previous studies. However, limited studies address biochar nanosheets (BCNs) as a potential soil amendment to reduced humans health risks through dietary intake of food-crop grown on PTE-contaminated soil. Here, we showed how BCNs cutback health hazards of PTEs through impacts on bioavailability and phytoaccumulation of PTEs, and their daily intake via consumption of wheat. When BCNs amendment was compared with both conventional organic amendments (COAs) and control, it significantly (P ≤ 0.05) reduced bioavailability and uptake of PTEs by wheat plants. Based on risk assessment results, the hazard indices (HIs) for PTEs in all treatments were <1, however, BCNs addition significantly (P ≤ 0.05) reduced risk level, when compared to control. Furthermore, the cancer risks for Cd, Cr and Ni over a lifetime of exposure were higher in all treatments than the tolerable limit (1.00E-4 to 1.00E-6), however BCNs addition significantly suppressed cancer risk compared to control. Conclusively, our results suggest that BCNs can be used as soil amendment to reduce potential risks of PTEs through consumption of food grown in PTE-contaminated soils.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2017.10.137&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2017.10.137&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 China (People's Republic of)Publisher:Elsevier BV Zhiyuan Niu; Guijian Liu; Guijian Liu; Qumber Abbas; Muhammad Zia-ur-Rehman; Amina; Habib Ullah; Balal Yousaf; Ruwei Wang;pmid: 29101855
Potentially toxic elements (PTEs) discharge to the soil environment through increased anthropogenic activities is a global threat. These PTEs can have harmful and chronic-persistent health effects on exposed populations through food consumption grown on contaminated soils. Efforts to investigate the transformation mechanism and accumulation behavior of PTEs in soil-plant system and their adverse health-effects have focused extensively in previous studies. However, limited studies address biochar nanosheets (BCNs) as a potential soil amendment to reduced humans health risks through dietary intake of food-crop grown on PTE-contaminated soil. Here, we showed how BCNs cutback health hazards of PTEs through impacts on bioavailability and phytoaccumulation of PTEs, and their daily intake via consumption of wheat. When BCNs amendment was compared with both conventional organic amendments (COAs) and control, it significantly (P ≤ 0.05) reduced bioavailability and uptake of PTEs by wheat plants. Based on risk assessment results, the hazard indices (HIs) for PTEs in all treatments were <1, however, BCNs addition significantly (P ≤ 0.05) reduced risk level, when compared to control. Furthermore, the cancer risks for Cd, Cr and Ni over a lifetime of exposure were higher in all treatments than the tolerable limit (1.00E-4 to 1.00E-6), however BCNs addition significantly suppressed cancer risk compared to control. Conclusively, our results suggest that BCNs can be used as soil amendment to reduce potential risks of PTEs through consumption of food grown in PTE-contaminated soils.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2017.10.137&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2017.10.137&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Springer Science and Business Media LLC Abdul Ghafoor; Asif Naeem; Muhammad Zia ur Rehman; Muhammad Sabir; Muhammad Rizwan; Muhammad Farooq Qayyum; Shafaqat Ali;pmid: 26109220
Cadmium (Cd) toxicity is a widespread problem in crops grown on contaminated soils, and little information is available on the role of inorganic amendments in Cd immobilization, uptake, and tolerance in crops especially under filed conditions. The effect of three amendments, monoammonium phosphate (MAP), gypsum, and elemental sulfur (S), on Cd immobilization in soil and uptake in wheat and rice plants, under rotation, were investigated under field conditions receiving raw city effluent since >20 years and contaminated with Cd. Three levels of each treatment, 0.2, 0.4, and 0.8% by weight, were applied at the start of the experiment, and wheat was sown in the field. After wheat harvesting, rice was sown in the same field without application of amendments. Both crops were harvested at physiological maturity, and data regarding grain yield, straw biomass, Cd concentrations, and uptake in grain and straw, and bioavailable Cd in soil and soil pH were recorded. Both MAP and gypsum application increased grain yield and biomass of wheat and rice, while S application did not increase the yield of both crops. MAP and gypsum amendments decreased gain and straw Cd concentrations and uptake in both crops, while S application increased Cd concentrations in these parts which were correlated with soil bioavailable Cd. We conclude that MAP and gypsum amendments could be used to decrease Cd uptake by plants receiving raw city effluents, and gypsum might be a better amendment for in situ immobilization of Cd due to its low cost and frequent availability.
Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2015 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-015-4883-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu236 citations 236 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2015 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-015-4883-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Springer Science and Business Media LLC Abdul Ghafoor; Asif Naeem; Muhammad Zia ur Rehman; Muhammad Sabir; Muhammad Rizwan; Muhammad Farooq Qayyum; Shafaqat Ali;pmid: 26109220
Cadmium (Cd) toxicity is a widespread problem in crops grown on contaminated soils, and little information is available on the role of inorganic amendments in Cd immobilization, uptake, and tolerance in crops especially under filed conditions. The effect of three amendments, monoammonium phosphate (MAP), gypsum, and elemental sulfur (S), on Cd immobilization in soil and uptake in wheat and rice plants, under rotation, were investigated under field conditions receiving raw city effluent since >20 years and contaminated with Cd. Three levels of each treatment, 0.2, 0.4, and 0.8% by weight, were applied at the start of the experiment, and wheat was sown in the field. After wheat harvesting, rice was sown in the same field without application of amendments. Both crops were harvested at physiological maturity, and data regarding grain yield, straw biomass, Cd concentrations, and uptake in grain and straw, and bioavailable Cd in soil and soil pH were recorded. Both MAP and gypsum application increased grain yield and biomass of wheat and rice, while S application did not increase the yield of both crops. MAP and gypsum amendments decreased gain and straw Cd concentrations and uptake in both crops, while S application increased Cd concentrations in these parts which were correlated with soil bioavailable Cd. We conclude that MAP and gypsum amendments could be used to decrease Cd uptake by plants receiving raw city effluents, and gypsum might be a better amendment for in situ immobilization of Cd due to its low cost and frequent availability.
Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2015 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-015-4883-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu236 citations 236 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2015 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-015-4883-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Muhammad Zia ur Rehman; Muhammad Rizwan; Hinnan Khalid; Shafaqat Ali; Asif Naeem; Balal Yousaf; Guijian Liu; Muhammad Sabir; Muhammad Farooq;pmid: 29454169
Cadmium (Cd) stress is a serious concern in agricultural soils worldwide whereas little is known about the impact of farmyard manure (FYM) alone or combined with limestone, lignite and biochar on Cd concentrations in plants. Wheat was grown in Cd-contaminated field amended with control (T1), FYM @ 0.1% (T2), FYM + limestone @ 0.05% each (T3), FYM + lignite @ 0.05% each (T4), FYM + biochar @ 0.05% each (T5) and subsequent rice was grown without additional use of amendments. Soil application of amendments increased straw and grain yield and thousand grain weight being maximum in FYM + limestone treatment. Wheat and rice straw yield increased by 19% and 10% in T3 than control respectively. Photosynthetic pigments increased with the supply of amendments than control. Amendments decreased Cd concentration, total Cd uptake in straw and grains and Cd harvest index of both crops and the maximum reduction in these parameters was recorded with where FYM + limestone (T3). Cd concentration in wheat and rice straw decreased by 78.5% and 65% in T3 than control, respectively. The highest benefit to cost ratio was obtained in FYM + limestone (T3). Ammonium bicarbonate - diethylenetriamine penta acetic acid (AB-DTPA) extractable Cd of the post-harvest soil reduced whereas Cd immobilization index and soil pH increased with the supply of all treatments than control being maximum in T3. The present study revealed that field management with FYM + limestone increased plant yield and reduced Cd concentrations in grains.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2018.02.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu71 citations 71 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2018.02.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Muhammad Zia ur Rehman; Muhammad Rizwan; Hinnan Khalid; Shafaqat Ali; Asif Naeem; Balal Yousaf; Guijian Liu; Muhammad Sabir; Muhammad Farooq;pmid: 29454169
Cadmium (Cd) stress is a serious concern in agricultural soils worldwide whereas little is known about the impact of farmyard manure (FYM) alone or combined with limestone, lignite and biochar on Cd concentrations in plants. Wheat was grown in Cd-contaminated field amended with control (T1), FYM @ 0.1% (T2), FYM + limestone @ 0.05% each (T3), FYM + lignite @ 0.05% each (T4), FYM + biochar @ 0.05% each (T5) and subsequent rice was grown without additional use of amendments. Soil application of amendments increased straw and grain yield and thousand grain weight being maximum in FYM + limestone treatment. Wheat and rice straw yield increased by 19% and 10% in T3 than control respectively. Photosynthetic pigments increased with the supply of amendments than control. Amendments decreased Cd concentration, total Cd uptake in straw and grains and Cd harvest index of both crops and the maximum reduction in these parameters was recorded with where FYM + limestone (T3). Cd concentration in wheat and rice straw decreased by 78.5% and 65% in T3 than control, respectively. The highest benefit to cost ratio was obtained in FYM + limestone (T3). Ammonium bicarbonate - diethylenetriamine penta acetic acid (AB-DTPA) extractable Cd of the post-harvest soil reduced whereas Cd immobilization index and soil pH increased with the supply of all treatments than control being maximum in T3. The present study revealed that field management with FYM + limestone increased plant yield and reduced Cd concentrations in grains.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2018.02.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu71 citations 71 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2018.02.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Muhammad Rizwan; Shafaqat Ali; Basharat Ali; Muhammad Adrees; Muhammad Arshad; Afzal Hussain; Muhammad Zia ur Rehman; Aisha Abdul Waris;pmid: 30265934
The effects of seed priming with zinc oxide (ZnO) and iron (Fe) nanoparticles (NPs) on the growth and cadmium (Cd) accumulation by wheat (Triticum aestivum) were investigated. Seeds of wheat were primed with different concentrations of either ZnO NPs (0, 25, 50, 75, and 100 mg L-1) or Fe NPs (0, 5, 10, 15, and 20 mg L-1) for 24 h by continuous aeration and then the seeds were sown in a soil which was contaminated with Cd due to long-term application of sewage water. Plants were grown till maturity under natural conditions with 60-70% moisture contents of total soil water holding capacity throughout the experiment. Plant height, spike length, and dry weights of shoots, roots, spikes, and grains were increased with NPs, in particular with the higher rates of NPs. The results depicted that NPs positively affected the photosynthesis of wheat as compared to the control. The NPs reduced the electrolyte leakage and superoxide dismutase and peroxidase activities in leaves of Cd-stressed wheat. The concentrations of Cd in roots, shoots, and grains were significantly decreased with NPs application. The Cd content in the grains was below the threshold level of Cd (0.2 mg kg-1) for cereals when the seeds were treated with higher NPs treatments. The application of ZnO NPs increased the Zn concentrations and Fe NPs increased the Fe concentrations in roots, shoots, and grains. Overall, the NPs play a major role in the increase in biomass, nutrients and decrease in Cd toxicity in wheat.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2018.09.120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu711 citations 711 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2018.09.120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Muhammad Rizwan; Shafaqat Ali; Basharat Ali; Muhammad Adrees; Muhammad Arshad; Afzal Hussain; Muhammad Zia ur Rehman; Aisha Abdul Waris;pmid: 30265934
The effects of seed priming with zinc oxide (ZnO) and iron (Fe) nanoparticles (NPs) on the growth and cadmium (Cd) accumulation by wheat (Triticum aestivum) were investigated. Seeds of wheat were primed with different concentrations of either ZnO NPs (0, 25, 50, 75, and 100 mg L-1) or Fe NPs (0, 5, 10, 15, and 20 mg L-1) for 24 h by continuous aeration and then the seeds were sown in a soil which was contaminated with Cd due to long-term application of sewage water. Plants were grown till maturity under natural conditions with 60-70% moisture contents of total soil water holding capacity throughout the experiment. Plant height, spike length, and dry weights of shoots, roots, spikes, and grains were increased with NPs, in particular with the higher rates of NPs. The results depicted that NPs positively affected the photosynthesis of wheat as compared to the control. The NPs reduced the electrolyte leakage and superoxide dismutase and peroxidase activities in leaves of Cd-stressed wheat. The concentrations of Cd in roots, shoots, and grains were significantly decreased with NPs application. The Cd content in the grains was below the threshold level of Cd (0.2 mg kg-1) for cereals when the seeds were treated with higher NPs treatments. The application of ZnO NPs increased the Zn concentrations and Fe NPs increased the Fe concentrations in roots, shoots, and grains. Overall, the NPs play a major role in the increase in biomass, nutrients and decrease in Cd toxicity in wheat.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2018.09.120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu711 citations 711 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2018.09.120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 United StatesPublisher:Elsevier BV Authors: Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad-38040, Pakistan ( host institution ); Saifullah, ( author ); Zia, Munir Hussain ( author ); Meers, Erik ( author ); +5 AuthorsInstitute of Soil and Environmental Sciences, University of Agriculture, Faisalabad-38040, Pakistan ( host institution ); Saifullah, ( author ); Zia, Munir Hussain ( author ); Meers, Erik ( author ); Ghafoor, Abdul ( author ); Murtaza, Ghulam ( author ); Sabir, Muhammad ( author ); Zia-ur-Rehman, Muhammad ( author ); Tack, F.M.G. ( author );pmid: 20334894
A pot study was used to examine the effects of amendments such as EDTA and elemental sulfur on the growth potential, gas exchange features, uptake and mobilization of Pb by wheat (Triticum aestivum L.) in two texturally different contaminated soils at three levels of EDTA (2, 4, 8 mmol kg(-1) dry soil) and two levels of elemental sulfur (100, 200 mmol kg(-1) dry soil). EDTA resulted in more solubilization of Pb than elemental sulfur in both soils. Application of EDTA and elemental sulfur increased shoot dry matter in the loamy sand soil, whereas in the sandy clay loam soil EDTA treated plants produced lower shoot dry matter compared to that observed with elemental sulfur. Application of EDTA 10d prior to harvest increased the amount of Pb accumulated into wheat shoots with more Pb accumulated by plants from the loamy sand than from the sandy clay loam soil. However, evaluation of the relative extraction efficiency expressed as the percentage of solubilized Pb that is subsequently also effectively accumulated by the plant shoots reveals that the relatively low efficiency does not warrant the massive mobilization induced by the environmentally persistent EDTA chelator. More modest mobilization of Pb induced by elemental sulfur and the higher relative extraction of mobilized Pb therefore deserves further attention in future research. In particular, attention needs to be paid to determining soil types in which elemental sulfur can induce significant impact on soil pH and metal mobility after application of a practically realistic dosage.
University of Florid... arrow_drop_down University of Florida: Digital Library CenterArticle . 2010License: CC BY NC NDFull-Text: http://ufdc.ufl.edu/LS00511050/00001Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2010.01.066&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of Florid... arrow_drop_down University of Florida: Digital Library CenterArticle . 2010License: CC BY NC NDFull-Text: http://ufdc.ufl.edu/LS00511050/00001Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2010.01.066&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 United StatesPublisher:Elsevier BV Authors: Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad-38040, Pakistan ( host institution ); Saifullah, ( author ); Zia, Munir Hussain ( author ); Meers, Erik ( author ); +5 AuthorsInstitute of Soil and Environmental Sciences, University of Agriculture, Faisalabad-38040, Pakistan ( host institution ); Saifullah, ( author ); Zia, Munir Hussain ( author ); Meers, Erik ( author ); Ghafoor, Abdul ( author ); Murtaza, Ghulam ( author ); Sabir, Muhammad ( author ); Zia-ur-Rehman, Muhammad ( author ); Tack, F.M.G. ( author );pmid: 20334894
A pot study was used to examine the effects of amendments such as EDTA and elemental sulfur on the growth potential, gas exchange features, uptake and mobilization of Pb by wheat (Triticum aestivum L.) in two texturally different contaminated soils at three levels of EDTA (2, 4, 8 mmol kg(-1) dry soil) and two levels of elemental sulfur (100, 200 mmol kg(-1) dry soil). EDTA resulted in more solubilization of Pb than elemental sulfur in both soils. Application of EDTA and elemental sulfur increased shoot dry matter in the loamy sand soil, whereas in the sandy clay loam soil EDTA treated plants produced lower shoot dry matter compared to that observed with elemental sulfur. Application of EDTA 10d prior to harvest increased the amount of Pb accumulated into wheat shoots with more Pb accumulated by plants from the loamy sand than from the sandy clay loam soil. However, evaluation of the relative extraction efficiency expressed as the percentage of solubilized Pb that is subsequently also effectively accumulated by the plant shoots reveals that the relatively low efficiency does not warrant the massive mobilization induced by the environmentally persistent EDTA chelator. More modest mobilization of Pb induced by elemental sulfur and the higher relative extraction of mobilized Pb therefore deserves further attention in future research. In particular, attention needs to be paid to determining soil types in which elemental sulfur can induce significant impact on soil pH and metal mobility after application of a practically realistic dosage.
University of Florid... arrow_drop_down University of Florida: Digital Library CenterArticle . 2010License: CC BY NC NDFull-Text: http://ufdc.ufl.edu/LS00511050/00001Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2010.01.066&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of Florid... arrow_drop_down University of Florida: Digital Library CenterArticle . 2010License: CC BY NC NDFull-Text: http://ufdc.ufl.edu/LS00511050/00001Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2010.01.066&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Springer Science and Business Media LLC Muhammad Farooq Qayyum; Zaheer Abbas; Muhammad Rizwan; Muhammad Zia-ur-Rehman; Fakhir Hannan; Yong Sik Ok; Shafaqat Ali;pmid: 27061410
Maize (Zea mays L.) has been widely adopted for phytomanagement of cadmium (Cd)-contaminated soils due to its high biomass production and Cd accumulation capacity. This paper reviewed the toxic effects of Cd and its management by maize plants. Maize could tolerate a certain level of Cd in soil while higher Cd stress can decrease seed germination, mineral nutrition, photosynthesis and growth/yields. Toxicity response of maize to Cd varies with cultivar/varieties, growth medium and stress duration/extent. Exogenous application of organic and inorganic amendments has been used for enhancing Cd tolerance of maize. The selection of Cd-tolerant maize cultivar, crop rotation, soil type, and exogenous application of microbes is a representative agronomic practice to enhance Cd tolerance in maize. Proper selection of cultivar and agronomic practices combined with amendments might be successful for the remediation of Cd-contaminated soils with maize. However, there might be the risk of food chain contamination by maize grains obtained from the Cd-contaminated soils. Thus, maize cultivation could be an option for the management of low- and medium-grade Cd-contaminated soils if grain yield is required. On the other hand, maize can be grown on Cd-polluted soils only if biomass is required for energy production purposes. Long-term field trials are required, including risks and benefit analysis for various management strategies aiming Cd phytomanagement with maize.
Environmental Geoche... arrow_drop_down Environmental Geochemistry and HealthArticle . 2016 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10653-016-9826-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu139 citations 139 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Environmental Geoche... arrow_drop_down Environmental Geochemistry and HealthArticle . 2016 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10653-016-9826-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Springer Science and Business Media LLC Muhammad Farooq Qayyum; Zaheer Abbas; Muhammad Rizwan; Muhammad Zia-ur-Rehman; Fakhir Hannan; Yong Sik Ok; Shafaqat Ali;pmid: 27061410
Maize (Zea mays L.) has been widely adopted for phytomanagement of cadmium (Cd)-contaminated soils due to its high biomass production and Cd accumulation capacity. This paper reviewed the toxic effects of Cd and its management by maize plants. Maize could tolerate a certain level of Cd in soil while higher Cd stress can decrease seed germination, mineral nutrition, photosynthesis and growth/yields. Toxicity response of maize to Cd varies with cultivar/varieties, growth medium and stress duration/extent. Exogenous application of organic and inorganic amendments has been used for enhancing Cd tolerance of maize. The selection of Cd-tolerant maize cultivar, crop rotation, soil type, and exogenous application of microbes is a representative agronomic practice to enhance Cd tolerance in maize. Proper selection of cultivar and agronomic practices combined with amendments might be successful for the remediation of Cd-contaminated soils with maize. However, there might be the risk of food chain contamination by maize grains obtained from the Cd-contaminated soils. Thus, maize cultivation could be an option for the management of low- and medium-grade Cd-contaminated soils if grain yield is required. On the other hand, maize can be grown on Cd-polluted soils only if biomass is required for energy production purposes. Long-term field trials are required, including risks and benefit analysis for various management strategies aiming Cd phytomanagement with maize.
Environmental Geoche... arrow_drop_down Environmental Geochemistry and HealthArticle . 2016 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10653-016-9826-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu139 citations 139 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Environmental Geoche... arrow_drop_down Environmental Geochemistry and HealthArticle . 2016 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10653-016-9826-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Muhammad Rizwan; Shafaqat Ali; Muhammad Zia ur Rehman; Muhammad Adrees; Muhammad Arshad; Muhammad Farooq Qayyum; Liaqat Ali; Afzal Hussain; Shahzad Ali Shahid Chatha; Muhammad Imran;pmid: 30818115
Due to the increase in area of cadmium (Cd)-contaminated soils worldwide, effective measures are necessary to minimize the Cd accumulation in cereals including maize (Zea mays L.) plant. A study was therefore performed to explore the effectiveness of foliar spray of zinc oxide (ZnO) nanoparticle (NPs) alone (0, 50, 75, 100 mg/L) or combined with soil application of biochar (1.0% w/w) on biomass, antioxidant enzyme activity and Cd concentrations in maize plants grown on a Cd-contaminated soil. The results depicted that ZnO NPs alone or in combination with biochar improved the height of maize plants, number of leaves, shoot and roots dry biomass, chlorophyll concentrations and gas exchange attributes. All the amendments reduced the electrolyte leakage, malondialdehyde, and hydrogen peroxide contents while improved the activities of antioxidant enzymes in leaf and roots of maize over the control. The application of 50, 75 and 100 mg/L ZnO NPs reduced the Cd contents in shoots by about 12%, 23, and 61%, and in roots by 18%, 33%, and 53%, respectively, over the control. The Cd concentrations in shoot decreased by 15%, 28%, and 68% and in roots by 14%, 35, and 55% after biochar combined with foliar spray of 50, 75 and 100 mg/L ZnO NPs, respectively. All the amendments improved the Zn concentrations in maize shoots and roots whereas reduced the soil bioavailable Cd. Overall, biochar combined with foliar spray of ZnO NPs could be recommended for safely growing the crops on Cd-contaminated soils.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2019.02.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu288 citations 288 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2019.02.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Muhammad Rizwan; Shafaqat Ali; Muhammad Zia ur Rehman; Muhammad Adrees; Muhammad Arshad; Muhammad Farooq Qayyum; Liaqat Ali; Afzal Hussain; Shahzad Ali Shahid Chatha; Muhammad Imran;pmid: 30818115
Due to the increase in area of cadmium (Cd)-contaminated soils worldwide, effective measures are necessary to minimize the Cd accumulation in cereals including maize (Zea mays L.) plant. A study was therefore performed to explore the effectiveness of foliar spray of zinc oxide (ZnO) nanoparticle (NPs) alone (0, 50, 75, 100 mg/L) or combined with soil application of biochar (1.0% w/w) on biomass, antioxidant enzyme activity and Cd concentrations in maize plants grown on a Cd-contaminated soil. The results depicted that ZnO NPs alone or in combination with biochar improved the height of maize plants, number of leaves, shoot and roots dry biomass, chlorophyll concentrations and gas exchange attributes. All the amendments reduced the electrolyte leakage, malondialdehyde, and hydrogen peroxide contents while improved the activities of antioxidant enzymes in leaf and roots of maize over the control. The application of 50, 75 and 100 mg/L ZnO NPs reduced the Cd contents in shoots by about 12%, 23, and 61%, and in roots by 18%, 33%, and 53%, respectively, over the control. The Cd concentrations in shoot decreased by 15%, 28%, and 68% and in roots by 14%, 35, and 55% after biochar combined with foliar spray of 50, 75 and 100 mg/L ZnO NPs, respectively. All the amendments improved the Zn concentrations in maize shoots and roots whereas reduced the soil bioavailable Cd. Overall, biochar combined with foliar spray of ZnO NPs could be recommended for safely growing the crops on Cd-contaminated soils.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2019.02.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu288 citations 288 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2019.02.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Muhammad Zia ur Rehman; Muhammad Usman Khalid; Fatima Akmal; Muhammad Farooq Qayyum; +5 AuthorsMuhammad Zia ur Rehman; Muhammad Usman Khalid; Fatima Akmal; Muhammad Farooq Qayyum; Muhammad Azhar; Hinnan Khalid; Muhammad Rizwan; Shafaqat Ali; Muhammad Iqbal;pmid: 28501770
Cadmium (Cd) uptake and accumulation in crop plants, especially in wheat (Triticum aestivum) and rice (Oryza sativa) is one of the main concerns for food security worldwide. A field experiment was done to investigate the effects of limestone, lignite, and biochar on growth, physiology and Cd uptake in wheat and rice under rotation irrigated with raw effluents. Initially, each treatment was applied alone at 0.1% and combined at 0.05% each and wheat was grown in the field and then, after wheat harvesting, rice was grown in the same field without additional application of amendments. Results showed that the amendments applied increased the grain and straw yields as well as gas exchange attributes compared to the control. In both crops, highest Cd concentrations in straw and grains and total uptake were observed in control treatments while lowest Cd concentrations was observed in limestone + biochar treatment. No Cd concentrations were detected in wheat grains with the application of amendments except limestone (0.1%). The lowest Cd harvest index was observed in limestone + biochar and lignite + biochar treatments for wheat and rice respectively. Application of amendments decreased the AB-DTPA extractable Cd in the soil while increasing the Cd immobilization index after each crop harvest. The benefit-cost ratio and Cd contents in plants revealed that limestone + biochar treatment might be an effective amendment for increasing plant growth with lower Cd concentrations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2017.05.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu207 citations 207 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2017.05.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Muhammad Zia ur Rehman; Muhammad Usman Khalid; Fatima Akmal; Muhammad Farooq Qayyum; +5 AuthorsMuhammad Zia ur Rehman; Muhammad Usman Khalid; Fatima Akmal; Muhammad Farooq Qayyum; Muhammad Azhar; Hinnan Khalid; Muhammad Rizwan; Shafaqat Ali; Muhammad Iqbal;pmid: 28501770
Cadmium (Cd) uptake and accumulation in crop plants, especially in wheat (Triticum aestivum) and rice (Oryza sativa) is one of the main concerns for food security worldwide. A field experiment was done to investigate the effects of limestone, lignite, and biochar on growth, physiology and Cd uptake in wheat and rice under rotation irrigated with raw effluents. Initially, each treatment was applied alone at 0.1% and combined at 0.05% each and wheat was grown in the field and then, after wheat harvesting, rice was grown in the same field without additional application of amendments. Results showed that the amendments applied increased the grain and straw yields as well as gas exchange attributes compared to the control. In both crops, highest Cd concentrations in straw and grains and total uptake were observed in control treatments while lowest Cd concentrations was observed in limestone + biochar treatment. No Cd concentrations were detected in wheat grains with the application of amendments except limestone (0.1%). The lowest Cd harvest index was observed in limestone + biochar and lignite + biochar treatments for wheat and rice respectively. Application of amendments decreased the AB-DTPA extractable Cd in the soil while increasing the Cd immobilization index after each crop harvest. The benefit-cost ratio and Cd contents in plants revealed that limestone + biochar treatment might be an effective amendment for increasing plant growth with lower Cd concentrations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2017.05.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu207 citations 207 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2017.05.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Muhammad Adrees; Abid Mahmood; Shafaqat Ali; Muhammad Rizwan; Muhammad Farooq Qayyum; Muhammad Ibrahim; Muhammad Zia-ur-Rehman; Tahir Abbas; Muhammad Arshad;pmid: 29197797
Cadmium (Cd) and drought stress in plants is a worldwide problem, whereas little is known about the effect of biochar (BC) under combined Cd and drought stress. The current study was conducted to determine the impact of BC on Cd uptake in wheat sown in Cd-contaminated soil under drought stress. Wheat was grown in a soil after incubating the soil for 15 days with three levels of BC (0%, 3.0% and 5.0% w/w). Three levels of drought stress (well-watered, mild drought and severe drought containing 70%, 50%, and 35% of soil water holding capacity respectively) were applied to 45-d-old wheat plants. Drought stress decreased plant height, spike length, chlorophyll contents, gas exchange parameters, root and shoot dry biomasses and grain yields. Drought stress also caused oxidative stress and decreased the antioxidant enzymes activities whereas increased the Cd concentration in plants. Biochar increased morphological and physiological parameters of wheat under combined drought and Cd stress and reduced the oxidative stress and Cd contents and increased antioxidant enzymes activities. The decrease in Cd concentration with BC application in drought-stressed plant might be attributed to BC-induced increase in crop biomass production and reduction in oxidative stress. These results indicate that BC could be used as an amendment in metal contaminated soil for improving wheat growth and reducing Cd concentrations under semiarid conditions.
Ecotoxicology and En... arrow_drop_down Ecotoxicology and Environmental SafetyArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecoenv.2017.11.063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 272 citations 272 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Ecotoxicology and En... arrow_drop_down Ecotoxicology and Environmental SafetyArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecoenv.2017.11.063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Muhammad Adrees; Abid Mahmood; Shafaqat Ali; Muhammad Rizwan; Muhammad Farooq Qayyum; Muhammad Ibrahim; Muhammad Zia-ur-Rehman; Tahir Abbas; Muhammad Arshad;pmid: 29197797
Cadmium (Cd) and drought stress in plants is a worldwide problem, whereas little is known about the effect of biochar (BC) under combined Cd and drought stress. The current study was conducted to determine the impact of BC on Cd uptake in wheat sown in Cd-contaminated soil under drought stress. Wheat was grown in a soil after incubating the soil for 15 days with three levels of BC (0%, 3.0% and 5.0% w/w). Three levels of drought stress (well-watered, mild drought and severe drought containing 70%, 50%, and 35% of soil water holding capacity respectively) were applied to 45-d-old wheat plants. Drought stress decreased plant height, spike length, chlorophyll contents, gas exchange parameters, root and shoot dry biomasses and grain yields. Drought stress also caused oxidative stress and decreased the antioxidant enzymes activities whereas increased the Cd concentration in plants. Biochar increased morphological and physiological parameters of wheat under combined drought and Cd stress and reduced the oxidative stress and Cd contents and increased antioxidant enzymes activities. The decrease in Cd concentration with BC application in drought-stressed plant might be attributed to BC-induced increase in crop biomass production and reduction in oxidative stress. These results indicate that BC could be used as an amendment in metal contaminated soil for improving wheat growth and reducing Cd concentrations under semiarid conditions.
Ecotoxicology and En... arrow_drop_down Ecotoxicology and Environmental SafetyArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecoenv.2017.11.063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 272 citations 272 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Ecotoxicology and En... arrow_drop_down Ecotoxicology and Environmental SafetyArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecoenv.2017.11.063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Muhammad Farooq Qayyum; Muhammad Rizwan; Jörg Rinklebe; Jörg Rinklebe; Afzal Hussain; Shafaqat Ali; Muhammad Zia ur Rehman; Hailong Wang; Hailong Wang;pmid: 30771659
The present study demonstrated the possible impacts of iron oxide nanoparticles (Fe NPs) on the alleviation of toxic effects of cadmium (Cd) in wheat and enhance its growth, yield, and Fe biofortification. A pot experiment was conducted in historically Cd-contaminated soil using five levels of Fe NPs (0, 5, 10, 15, and 20 ppm) by soil and foliar application methods. The plants were harvested after 125 days of growth while vegetative parameters, antioxidant capacity, electrolyte leakage (EL) in leaves as well as Cd, and Fe concentrations in wheat grains, roots, and shoots were measured. The results showed that the application of Fe NPs mitigated the Cd toxicity on wheat growth and yield parameters. The exogenous application of Fe NPs enhanced the wheat morphological parameters, photosynthetic pigments, and dry biomass of shoots, roots, spike husks and grains. The activities of super oxide dismutase and peroxidase increased, whereas EL reduced from wheat leaves over control. The Cd concentrations were reduced in wheat tissues and grains whereas Fe concentrations increased with Fe NPs application in a dose-additive manner. The current work suggested that the application of Fe NPs on wheat in Cd-contaminated soils could be employed to improve growth, yield and Fe biofortification as well as reduction in Cd concentrations in plants.
Ecotoxicology and En... arrow_drop_down Ecotoxicology and Environmental SafetyArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecoenv.2019.01.118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 183 citations 183 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Ecotoxicology and En... arrow_drop_down Ecotoxicology and Environmental SafetyArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecoenv.2019.01.118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Muhammad Farooq Qayyum; Muhammad Rizwan; Jörg Rinklebe; Jörg Rinklebe; Afzal Hussain; Shafaqat Ali; Muhammad Zia ur Rehman; Hailong Wang; Hailong Wang;pmid: 30771659
The present study demonstrated the possible impacts of iron oxide nanoparticles (Fe NPs) on the alleviation of toxic effects of cadmium (Cd) in wheat and enhance its growth, yield, and Fe biofortification. A pot experiment was conducted in historically Cd-contaminated soil using five levels of Fe NPs (0, 5, 10, 15, and 20 ppm) by soil and foliar application methods. The plants were harvested after 125 days of growth while vegetative parameters, antioxidant capacity, electrolyte leakage (EL) in leaves as well as Cd, and Fe concentrations in wheat grains, roots, and shoots were measured. The results showed that the application of Fe NPs mitigated the Cd toxicity on wheat growth and yield parameters. The exogenous application of Fe NPs enhanced the wheat morphological parameters, photosynthetic pigments, and dry biomass of shoots, roots, spike husks and grains. The activities of super oxide dismutase and peroxidase increased, whereas EL reduced from wheat leaves over control. The Cd concentrations were reduced in wheat tissues and grains whereas Fe concentrations increased with Fe NPs application in a dose-additive manner. The current work suggested that the application of Fe NPs on wheat in Cd-contaminated soils could be employed to improve growth, yield and Fe biofortification as well as reduction in Cd concentrations in plants.
Ecotoxicology and En... arrow_drop_down Ecotoxicology and Environmental SafetyArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecoenv.2019.01.118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 183 citations 183 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Ecotoxicology and En... arrow_drop_down Ecotoxicology and Environmental SafetyArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecoenv.2019.01.118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 China (People's Republic of)Publisher:Elsevier BV Zhiyuan Niu; Guijian Liu; Guijian Liu; Qumber Abbas; Muhammad Zia-ur-Rehman; Amina; Habib Ullah; Balal Yousaf; Ruwei Wang;pmid: 29101855
Potentially toxic elements (PTEs) discharge to the soil environment through increased anthropogenic activities is a global threat. These PTEs can have harmful and chronic-persistent health effects on exposed populations through food consumption grown on contaminated soils. Efforts to investigate the transformation mechanism and accumulation behavior of PTEs in soil-plant system and their adverse health-effects have focused extensively in previous studies. However, limited studies address biochar nanosheets (BCNs) as a potential soil amendment to reduced humans health risks through dietary intake of food-crop grown on PTE-contaminated soil. Here, we showed how BCNs cutback health hazards of PTEs through impacts on bioavailability and phytoaccumulation of PTEs, and their daily intake via consumption of wheat. When BCNs amendment was compared with both conventional organic amendments (COAs) and control, it significantly (P ≤ 0.05) reduced bioavailability and uptake of PTEs by wheat plants. Based on risk assessment results, the hazard indices (HIs) for PTEs in all treatments were <1, however, BCNs addition significantly (P ≤ 0.05) reduced risk level, when compared to control. Furthermore, the cancer risks for Cd, Cr and Ni over a lifetime of exposure were higher in all treatments than the tolerable limit (1.00E-4 to 1.00E-6), however BCNs addition significantly suppressed cancer risk compared to control. Conclusively, our results suggest that BCNs can be used as soil amendment to reduce potential risks of PTEs through consumption of food grown in PTE-contaminated soils.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2017.10.137&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2017.10.137&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 China (People's Republic of)Publisher:Elsevier BV Zhiyuan Niu; Guijian Liu; Guijian Liu; Qumber Abbas; Muhammad Zia-ur-Rehman; Amina; Habib Ullah; Balal Yousaf; Ruwei Wang;pmid: 29101855
Potentially toxic elements (PTEs) discharge to the soil environment through increased anthropogenic activities is a global threat. These PTEs can have harmful and chronic-persistent health effects on exposed populations through food consumption grown on contaminated soils. Efforts to investigate the transformation mechanism and accumulation behavior of PTEs in soil-plant system and their adverse health-effects have focused extensively in previous studies. However, limited studies address biochar nanosheets (BCNs) as a potential soil amendment to reduced humans health risks through dietary intake of food-crop grown on PTE-contaminated soil. Here, we showed how BCNs cutback health hazards of PTEs through impacts on bioavailability and phytoaccumulation of PTEs, and their daily intake via consumption of wheat. When BCNs amendment was compared with both conventional organic amendments (COAs) and control, it significantly (P ≤ 0.05) reduced bioavailability and uptake of PTEs by wheat plants. Based on risk assessment results, the hazard indices (HIs) for PTEs in all treatments were <1, however, BCNs addition significantly (P ≤ 0.05) reduced risk level, when compared to control. Furthermore, the cancer risks for Cd, Cr and Ni over a lifetime of exposure were higher in all treatments than the tolerable limit (1.00E-4 to 1.00E-6), however BCNs addition significantly suppressed cancer risk compared to control. Conclusively, our results suggest that BCNs can be used as soil amendment to reduce potential risks of PTEs through consumption of food grown in PTE-contaminated soils.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2017.10.137&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2017.10.137&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Springer Science and Business Media LLC Abdul Ghafoor; Asif Naeem; Muhammad Zia ur Rehman; Muhammad Sabir; Muhammad Rizwan; Muhammad Farooq Qayyum; Shafaqat Ali;pmid: 26109220
Cadmium (Cd) toxicity is a widespread problem in crops grown on contaminated soils, and little information is available on the role of inorganic amendments in Cd immobilization, uptake, and tolerance in crops especially under filed conditions. The effect of three amendments, monoammonium phosphate (MAP), gypsum, and elemental sulfur (S), on Cd immobilization in soil and uptake in wheat and rice plants, under rotation, were investigated under field conditions receiving raw city effluent since >20 years and contaminated with Cd. Three levels of each treatment, 0.2, 0.4, and 0.8% by weight, were applied at the start of the experiment, and wheat was sown in the field. After wheat harvesting, rice was sown in the same field without application of amendments. Both crops were harvested at physiological maturity, and data regarding grain yield, straw biomass, Cd concentrations, and uptake in grain and straw, and bioavailable Cd in soil and soil pH were recorded. Both MAP and gypsum application increased grain yield and biomass of wheat and rice, while S application did not increase the yield of both crops. MAP and gypsum amendments decreased gain and straw Cd concentrations and uptake in both crops, while S application increased Cd concentrations in these parts which were correlated with soil bioavailable Cd. We conclude that MAP and gypsum amendments could be used to decrease Cd uptake by plants receiving raw city effluents, and gypsum might be a better amendment for in situ immobilization of Cd due to its low cost and frequent availability.
Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2015 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-015-4883-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu236 citations 236 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2015 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-015-4883-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Springer Science and Business Media LLC Abdul Ghafoor; Asif Naeem; Muhammad Zia ur Rehman; Muhammad Sabir; Muhammad Rizwan; Muhammad Farooq Qayyum; Shafaqat Ali;pmid: 26109220
Cadmium (Cd) toxicity is a widespread problem in crops grown on contaminated soils, and little information is available on the role of inorganic amendments in Cd immobilization, uptake, and tolerance in crops especially under filed conditions. The effect of three amendments, monoammonium phosphate (MAP), gypsum, and elemental sulfur (S), on Cd immobilization in soil and uptake in wheat and rice plants, under rotation, were investigated under field conditions receiving raw city effluent since >20 years and contaminated with Cd. Three levels of each treatment, 0.2, 0.4, and 0.8% by weight, were applied at the start of the experiment, and wheat was sown in the field. After wheat harvesting, rice was sown in the same field without application of amendments. Both crops were harvested at physiological maturity, and data regarding grain yield, straw biomass, Cd concentrations, and uptake in grain and straw, and bioavailable Cd in soil and soil pH were recorded. Both MAP and gypsum application increased grain yield and biomass of wheat and rice, while S application did not increase the yield of both crops. MAP and gypsum amendments decreased gain and straw Cd concentrations and uptake in both crops, while S application increased Cd concentrations in these parts which were correlated with soil bioavailable Cd. We conclude that MAP and gypsum amendments could be used to decrease Cd uptake by plants receiving raw city effluents, and gypsum might be a better amendment for in situ immobilization of Cd due to its low cost and frequent availability.
Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2015 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-015-4883-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu236 citations 236 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2015 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-015-4883-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Muhammad Zia ur Rehman; Muhammad Rizwan; Hinnan Khalid; Shafaqat Ali; Asif Naeem; Balal Yousaf; Guijian Liu; Muhammad Sabir; Muhammad Farooq;pmid: 29454169
Cadmium (Cd) stress is a serious concern in agricultural soils worldwide whereas little is known about the impact of farmyard manure (FYM) alone or combined with limestone, lignite and biochar on Cd concentrations in plants. Wheat was grown in Cd-contaminated field amended with control (T1), FYM @ 0.1% (T2), FYM + limestone @ 0.05% each (T3), FYM + lignite @ 0.05% each (T4), FYM + biochar @ 0.05% each (T5) and subsequent rice was grown without additional use of amendments. Soil application of amendments increased straw and grain yield and thousand grain weight being maximum in FYM + limestone treatment. Wheat and rice straw yield increased by 19% and 10% in T3 than control respectively. Photosynthetic pigments increased with the supply of amendments than control. Amendments decreased Cd concentration, total Cd uptake in straw and grains and Cd harvest index of both crops and the maximum reduction in these parameters was recorded with where FYM + limestone (T3). Cd concentration in wheat and rice straw decreased by 78.5% and 65% in T3 than control, respectively. The highest benefit to cost ratio was obtained in FYM + limestone (T3). Ammonium bicarbonate - diethylenetriamine penta acetic acid (AB-DTPA) extractable Cd of the post-harvest soil reduced whereas Cd immobilization index and soil pH increased with the supply of all treatments than control being maximum in T3. The present study revealed that field management with FYM + limestone increased plant yield and reduced Cd concentrations in grains.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2018.02.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu71 citations 71 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2018.02.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Muhammad Zia ur Rehman; Muhammad Rizwan; Hinnan Khalid; Shafaqat Ali; Asif Naeem; Balal Yousaf; Guijian Liu; Muhammad Sabir; Muhammad Farooq;pmid: 29454169
Cadmium (Cd) stress is a serious concern in agricultural soils worldwide whereas little is known about the impact of farmyard manure (FYM) alone or combined with limestone, lignite and biochar on Cd concentrations in plants. Wheat was grown in Cd-contaminated field amended with control (T1), FYM @ 0.1% (T2), FYM + limestone @ 0.05% each (T3), FYM + lignite @ 0.05% each (T4), FYM + biochar @ 0.05% each (T5) and subsequent rice was grown without additional use of amendments. Soil application of amendments increased straw and grain yield and thousand grain weight being maximum in FYM + limestone treatment. Wheat and rice straw yield increased by 19% and 10% in T3 than control respectively. Photosynthetic pigments increased with the supply of amendments than control. Amendments decreased Cd concentration, total Cd uptake in straw and grains and Cd harvest index of both crops and the maximum reduction in these parameters was recorded with where FYM + limestone (T3). Cd concentration in wheat and rice straw decreased by 78.5% and 65% in T3 than control, respectively. The highest benefit to cost ratio was obtained in FYM + limestone (T3). Ammonium bicarbonate - diethylenetriamine penta acetic acid (AB-DTPA) extractable Cd of the post-harvest soil reduced whereas Cd immobilization index and soil pH increased with the supply of all treatments than control being maximum in T3. The present study revealed that field management with FYM + limestone increased plant yield and reduced Cd concentrations in grains.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2018.02.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu71 citations 71 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2018.02.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Muhammad Rizwan; Shafaqat Ali; Basharat Ali; Muhammad Adrees; Muhammad Arshad; Afzal Hussain; Muhammad Zia ur Rehman; Aisha Abdul Waris;pmid: 30265934
The effects of seed priming with zinc oxide (ZnO) and iron (Fe) nanoparticles (NPs) on the growth and cadmium (Cd) accumulation by wheat (Triticum aestivum) were investigated. Seeds of wheat were primed with different concentrations of either ZnO NPs (0, 25, 50, 75, and 100 mg L-1) or Fe NPs (0, 5, 10, 15, and 20 mg L-1) for 24 h by continuous aeration and then the seeds were sown in a soil which was contaminated with Cd due to long-term application of sewage water. Plants were grown till maturity under natural conditions with 60-70% moisture contents of total soil water holding capacity throughout the experiment. Plant height, spike length, and dry weights of shoots, roots, spikes, and grains were increased with NPs, in particular with the higher rates of NPs. The results depicted that NPs positively affected the photosynthesis of wheat as compared to the control. The NPs reduced the electrolyte leakage and superoxide dismutase and peroxidase activities in leaves of Cd-stressed wheat. The concentrations of Cd in roots, shoots, and grains were significantly decreased with NPs application. The Cd content in the grains was below the threshold level of Cd (0.2 mg kg-1) for cereals when the seeds were treated with higher NPs treatments. The application of ZnO NPs increased the Zn concentrations and Fe NPs increased the Fe concentrations in roots, shoots, and grains. Overall, the NPs play a major role in the increase in biomass, nutrients and decrease in Cd toxicity in wheat.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2018.09.120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu711 citations 711 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2018.09.120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Muhammad Rizwan; Shafaqat Ali; Basharat Ali; Muhammad Adrees; Muhammad Arshad; Afzal Hussain; Muhammad Zia ur Rehman; Aisha Abdul Waris;pmid: 30265934
The effects of seed priming with zinc oxide (ZnO) and iron (Fe) nanoparticles (NPs) on the growth and cadmium (Cd) accumulation by wheat (Triticum aestivum) were investigated. Seeds of wheat were primed with different concentrations of either ZnO NPs (0, 25, 50, 75, and 100 mg L-1) or Fe NPs (0, 5, 10, 15, and 20 mg L-1) for 24 h by continuous aeration and then the seeds were sown in a soil which was contaminated with Cd due to long-term application of sewage water. Plants were grown till maturity under natural conditions with 60-70% moisture contents of total soil water holding capacity throughout the experiment. Plant height, spike length, and dry weights of shoots, roots, spikes, and grains were increased with NPs, in particular with the higher rates of NPs. The results depicted that NPs positively affected the photosynthesis of wheat as compared to the control. The NPs reduced the electrolyte leakage and superoxide dismutase and peroxidase activities in leaves of Cd-stressed wheat. The concentrations of Cd in roots, shoots, and grains were significantly decreased with NPs application. The Cd content in the grains was below the threshold level of Cd (0.2 mg kg-1) for cereals when the seeds were treated with higher NPs treatments. The application of ZnO NPs increased the Zn concentrations and Fe NPs increased the Fe concentrations in roots, shoots, and grains. Overall, the NPs play a major role in the increase in biomass, nutrients and decrease in Cd toxicity in wheat.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2018.09.120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu711 citations 711 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2018.09.120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 United StatesPublisher:Elsevier BV Authors: Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad-38040, Pakistan ( host institution ); Saifullah, ( author ); Zia, Munir Hussain ( author ); Meers, Erik ( author ); +5 AuthorsInstitute of Soil and Environmental Sciences, University of Agriculture, Faisalabad-38040, Pakistan ( host institution ); Saifullah, ( author ); Zia, Munir Hussain ( author ); Meers, Erik ( author ); Ghafoor, Abdul ( author ); Murtaza, Ghulam ( author ); Sabir, Muhammad ( author ); Zia-ur-Rehman, Muhammad ( author ); Tack, F.M.G. ( author );pmid: 20334894
A pot study was used to examine the effects of amendments such as EDTA and elemental sulfur on the growth potential, gas exchange features, uptake and mobilization of Pb by wheat (Triticum aestivum L.) in two texturally different contaminated soils at three levels of EDTA (2, 4, 8 mmol kg(-1) dry soil) and two levels of elemental sulfur (100, 200 mmol kg(-1) dry soil). EDTA resulted in more solubilization of Pb than elemental sulfur in both soils. Application of EDTA and elemental sulfur increased shoot dry matter in the loamy sand soil, whereas in the sandy clay loam soil EDTA treated plants produced lower shoot dry matter compared to that observed with elemental sulfur. Application of EDTA 10d prior to harvest increased the amount of Pb accumulated into wheat shoots with more Pb accumulated by plants from the loamy sand than from the sandy clay loam soil. However, evaluation of the relative extraction efficiency expressed as the percentage of solubilized Pb that is subsequently also effectively accumulated by the plant shoots reveals that the relatively low efficiency does not warrant the massive mobilization induced by the environmentally persistent EDTA chelator. More modest mobilization of Pb induced by elemental sulfur and the higher relative extraction of mobilized Pb therefore deserves further attention in future research. In particular, attention needs to be paid to determining soil types in which elemental sulfur can induce significant impact on soil pH and metal mobility after application of a practically realistic dosage.
University of Florid... arrow_drop_down University of Florida: Digital Library CenterArticle . 2010License: CC BY NC NDFull-Text: http://ufdc.ufl.edu/LS00511050/00001Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2010.01.066&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of Florid... arrow_drop_down University of Florida: Digital Library CenterArticle . 2010License: CC BY NC NDFull-Text: http://ufdc.ufl.edu/LS00511050/00001Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2010.01.066&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 United StatesPublisher:Elsevier BV Authors: Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad-38040, Pakistan ( host institution ); Saifullah, ( author ); Zia, Munir Hussain ( author ); Meers, Erik ( author ); +5 AuthorsInstitute of Soil and Environmental Sciences, University of Agriculture, Faisalabad-38040, Pakistan ( host institution ); Saifullah, ( author ); Zia, Munir Hussain ( author ); Meers, Erik ( author ); Ghafoor, Abdul ( author ); Murtaza, Ghulam ( author ); Sabir, Muhammad ( author ); Zia-ur-Rehman, Muhammad ( author ); Tack, F.M.G. ( author );pmid: 20334894
A pot study was used to examine the effects of amendments such as EDTA and elemental sulfur on the growth potential, gas exchange features, uptake and mobilization of Pb by wheat (Triticum aestivum L.) in two texturally different contaminated soils at three levels of EDTA (2, 4, 8 mmol kg(-1) dry soil) and two levels of elemental sulfur (100, 200 mmol kg(-1) dry soil). EDTA resulted in more solubilization of Pb than elemental sulfur in both soils. Application of EDTA and elemental sulfur increased shoot dry matter in the loamy sand soil, whereas in the sandy clay loam soil EDTA treated plants produced lower shoot dry matter compared to that observed with elemental sulfur. Application of EDTA 10d prior to harvest increased the amount of Pb accumulated into wheat shoots with more Pb accumulated by plants from the loamy sand than from the sandy clay loam soil. However, evaluation of the relative extraction efficiency expressed as the percentage of solubilized Pb that is subsequently also effectively accumulated by the plant shoots reveals that the relatively low efficiency does not warrant the massive mobilization induced by the environmentally persistent EDTA chelator. More modest mobilization of Pb induced by elemental sulfur and the higher relative extraction of mobilized Pb therefore deserves further attention in future research. In particular, attention needs to be paid to determining soil types in which elemental sulfur can induce significant impact on soil pH and metal mobility after application of a practically realistic dosage.
University of Florid... arrow_drop_down University of Florida: Digital Library CenterArticle . 2010License: CC BY NC NDFull-Text: http://ufdc.ufl.edu/LS00511050/00001Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2010.01.066&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of Florid... arrow_drop_down University of Florida: Digital Library CenterArticle . 2010License: CC BY NC NDFull-Text: http://ufdc.ufl.edu/LS00511050/00001Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2010.01.066&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Springer Science and Business Media LLC Muhammad Farooq Qayyum; Zaheer Abbas; Muhammad Rizwan; Muhammad Zia-ur-Rehman; Fakhir Hannan; Yong Sik Ok; Shafaqat Ali;pmid: 27061410
Maize (Zea mays L.) has been widely adopted for phytomanagement of cadmium (Cd)-contaminated soils due to its high biomass production and Cd accumulation capacity. This paper reviewed the toxic effects of Cd and its management by maize plants. Maize could tolerate a certain level of Cd in soil while higher Cd stress can decrease seed germination, mineral nutrition, photosynthesis and growth/yields. Toxicity response of maize to Cd varies with cultivar/varieties, growth medium and stress duration/extent. Exogenous application of organic and inorganic amendments has been used for enhancing Cd tolerance of maize. The selection of Cd-tolerant maize cultivar, crop rotation, soil type, and exogenous application of microbes is a representative agronomic practice to enhance Cd tolerance in maize. Proper selection of cultivar and agronomic practices combined with amendments might be successful for the remediation of Cd-contaminated soils with maize. However, there might be the risk of food chain contamination by maize grains obtained from the Cd-contaminated soils. Thus, maize cultivation could be an option for the management of low- and medium-grade Cd-contaminated soils if grain yield is required. On the other hand, maize can be grown on Cd-polluted soils only if biomass is required for energy production purposes. Long-term field trials are required, including risks and benefit analysis for various management strategies aiming Cd phytomanagement with maize.
Environmental Geoche... arrow_drop_down Environmental Geochemistry and HealthArticle . 2016 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10653-016-9826-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu139 citations 139 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Environmental Geoche... arrow_drop_down Environmental Geochemistry and HealthArticle . 2016 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10653-016-9826-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Springer Science and Business Media LLC Muhammad Farooq Qayyum; Zaheer Abbas; Muhammad Rizwan; Muhammad Zia-ur-Rehman; Fakhir Hannan; Yong Sik Ok; Shafaqat Ali;pmid: 27061410
Maize (Zea mays L.) has been widely adopted for phytomanagement of cadmium (Cd)-contaminated soils due to its high biomass production and Cd accumulation capacity. This paper reviewed the toxic effects of Cd and its management by maize plants. Maize could tolerate a certain level of Cd in soil while higher Cd stress can decrease seed germination, mineral nutrition, photosynthesis and growth/yields. Toxicity response of maize to Cd varies with cultivar/varieties, growth medium and stress duration/extent. Exogenous application of organic and inorganic amendments has been used for enhancing Cd tolerance of maize. The selection of Cd-tolerant maize cultivar, crop rotation, soil type, and exogenous application of microbes is a representative agronomic practice to enhance Cd tolerance in maize. Proper selection of cultivar and agronomic practices combined with amendments might be successful for the remediation of Cd-contaminated soils with maize. However, there might be the risk of food chain contamination by maize grains obtained from the Cd-contaminated soils. Thus, maize cultivation could be an option for the management of low- and medium-grade Cd-contaminated soils if grain yield is required. On the other hand, maize can be grown on Cd-polluted soils only if biomass is required for energy production purposes. Long-term field trials are required, including risks and benefit analysis for various management strategies aiming Cd phytomanagement with maize.
Environmental Geoche... arrow_drop_down Environmental Geochemistry and HealthArticle . 2016 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10653-016-9826-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu139 citations 139 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Environmental Geoche... arrow_drop_down Environmental Geochemistry and HealthArticle . 2016 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10653-016-9826-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Muhammad Rizwan; Shafaqat Ali; Muhammad Zia ur Rehman; Muhammad Adrees; Muhammad Arshad; Muhammad Farooq Qayyum; Liaqat Ali; Afzal Hussain; Shahzad Ali Shahid Chatha; Muhammad Imran;pmid: 30818115
Due to the increase in area of cadmium (Cd)-contaminated soils worldwide, effective measures are necessary to minimize the Cd accumulation in cereals including maize (Zea mays L.) plant. A study was therefore performed to explore the effectiveness of foliar spray of zinc oxide (ZnO) nanoparticle (NPs) alone (0, 50, 75, 100 mg/L) or combined with soil application of biochar (1.0% w/w) on biomass, antioxidant enzyme activity and Cd concentrations in maize plants grown on a Cd-contaminated soil. The results depicted that ZnO NPs alone or in combination with biochar improved the height of maize plants, number of leaves, shoot and roots dry biomass, chlorophyll concentrations and gas exchange attributes. All the amendments reduced the electrolyte leakage, malondialdehyde, and hydrogen peroxide contents while improved the activities of antioxidant enzymes in leaf and roots of maize over the control. The application of 50, 75 and 100 mg/L ZnO NPs reduced the Cd contents in shoots by about 12%, 23, and 61%, and in roots by 18%, 33%, and 53%, respectively, over the control. The Cd concentrations in shoot decreased by 15%, 28%, and 68% and in roots by 14%, 35, and 55% after biochar combined with foliar spray of 50, 75 and 100 mg/L ZnO NPs, respectively. All the amendments improved the Zn concentrations in maize shoots and roots whereas reduced the soil bioavailable Cd. Overall, biochar combined with foliar spray of ZnO NPs could be recommended for safely growing the crops on Cd-contaminated soils.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2019.02.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu288 citations 288 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2019.02.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Muhammad Rizwan; Shafaqat Ali; Muhammad Zia ur Rehman; Muhammad Adrees; Muhammad Arshad; Muhammad Farooq Qayyum; Liaqat Ali; Afzal Hussain; Shahzad Ali Shahid Chatha; Muhammad Imran;pmid: 30818115
Due to the increase in area of cadmium (Cd)-contaminated soils worldwide, effective measures are necessary to minimize the Cd accumulation in cereals including maize (Zea mays L.) plant. A study was therefore performed to explore the effectiveness of foliar spray of zinc oxide (ZnO) nanoparticle (NPs) alone (0, 50, 75, 100 mg/L) or combined with soil application of biochar (1.0% w/w) on biomass, antioxidant enzyme activity and Cd concentrations in maize plants grown on a Cd-contaminated soil. The results depicted that ZnO NPs alone or in combination with biochar improved the height of maize plants, number of leaves, shoot and roots dry biomass, chlorophyll concentrations and gas exchange attributes. All the amendments reduced the electrolyte leakage, malondialdehyde, and hydrogen peroxide contents while improved the activities of antioxidant enzymes in leaf and roots of maize over the control. The application of 50, 75 and 100 mg/L ZnO NPs reduced the Cd contents in shoots by about 12%, 23, and 61%, and in roots by 18%, 33%, and 53%, respectively, over the control. The Cd concentrations in shoot decreased by 15%, 28%, and 68% and in roots by 14%, 35, and 55% after biochar combined with foliar spray of 50, 75 and 100 mg/L ZnO NPs, respectively. All the amendments improved the Zn concentrations in maize shoots and roots whereas reduced the soil bioavailable Cd. Overall, biochar combined with foliar spray of ZnO NPs could be recommended for safely growing the crops on Cd-contaminated soils.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2019.02.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu288 citations 288 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2019.02.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Muhammad Zia ur Rehman; Muhammad Usman Khalid; Fatima Akmal; Muhammad Farooq Qayyum; +5 AuthorsMuhammad Zia ur Rehman; Muhammad Usman Khalid; Fatima Akmal; Muhammad Farooq Qayyum; Muhammad Azhar; Hinnan Khalid; Muhammad Rizwan; Shafaqat Ali; Muhammad Iqbal;pmid: 28501770
Cadmium (Cd) uptake and accumulation in crop plants, especially in wheat (Triticum aestivum) and rice (Oryza sativa) is one of the main concerns for food security worldwide. A field experiment was done to investigate the effects of limestone, lignite, and biochar on growth, physiology and Cd uptake in wheat and rice under rotation irrigated with raw effluents. Initially, each treatment was applied alone at 0.1% and combined at 0.05% each and wheat was grown in the field and then, after wheat harvesting, rice was grown in the same field without additional application of amendments. Results showed that the amendments applied increased the grain and straw yields as well as gas exchange attributes compared to the control. In both crops, highest Cd concentrations in straw and grains and total uptake were observed in control treatments while lowest Cd concentrations was observed in limestone + biochar treatment. No Cd concentrations were detected in wheat grains with the application of amendments except limestone (0.1%). The lowest Cd harvest index was observed in limestone + biochar and lignite + biochar treatments for wheat and rice respectively. Application of amendments decreased the AB-DTPA extractable Cd in the soil while increasing the Cd immobilization index after each crop harvest. The benefit-cost ratio and Cd contents in plants revealed that limestone + biochar treatment might be an effective amendment for increasing plant growth with lower Cd concentrations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2017.05.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu207 citations 207 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2017.05.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Muhammad Zia ur Rehman; Muhammad Usman Khalid; Fatima Akmal; Muhammad Farooq Qayyum; +5 AuthorsMuhammad Zia ur Rehman; Muhammad Usman Khalid; Fatima Akmal; Muhammad Farooq Qayyum; Muhammad Azhar; Hinnan Khalid; Muhammad Rizwan; Shafaqat Ali; Muhammad Iqbal;pmid: 28501770
Cadmium (Cd) uptake and accumulation in crop plants, especially in wheat (Triticum aestivum) and rice (Oryza sativa) is one of the main concerns for food security worldwide. A field experiment was done to investigate the effects of limestone, lignite, and biochar on growth, physiology and Cd uptake in wheat and rice under rotation irrigated with raw effluents. Initially, each treatment was applied alone at 0.1% and combined at 0.05% each and wheat was grown in the field and then, after wheat harvesting, rice was grown in the same field without additional application of amendments. Results showed that the amendments applied increased the grain and straw yields as well as gas exchange attributes compared to the control. In both crops, highest Cd concentrations in straw and grains and total uptake were observed in control treatments while lowest Cd concentrations was observed in limestone + biochar treatment. No Cd concentrations were detected in wheat grains with the application of amendments except limestone (0.1%). The lowest Cd harvest index was observed in limestone + biochar and lignite + biochar treatments for wheat and rice respectively. Application of amendments decreased the AB-DTPA extractable Cd in the soil while increasing the Cd immobilization index after each crop harvest. The benefit-cost ratio and Cd contents in plants revealed that limestone + biochar treatment might be an effective amendment for increasing plant growth with lower Cd concentrations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2017.05.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu207 citations 207 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2017.05.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Muhammad Adrees; Abid Mahmood; Shafaqat Ali; Muhammad Rizwan; Muhammad Farooq Qayyum; Muhammad Ibrahim; Muhammad Zia-ur-Rehman; Tahir Abbas; Muhammad Arshad;pmid: 29197797
Cadmium (Cd) and drought stress in plants is a worldwide problem, whereas little is known about the effect of biochar (BC) under combined Cd and drought stress. The current study was conducted to determine the impact of BC on Cd uptake in wheat sown in Cd-contaminated soil under drought stress. Wheat was grown in a soil after incubating the soil for 15 days with three levels of BC (0%, 3.0% and 5.0% w/w). Three levels of drought stress (well-watered, mild drought and severe drought containing 70%, 50%, and 35% of soil water holding capacity respectively) were applied to 45-d-old wheat plants. Drought stress decreased plant height, spike length, chlorophyll contents, gas exchange parameters, root and shoot dry biomasses and grain yields. Drought stress also caused oxidative stress and decreased the antioxidant enzymes activities whereas increased the Cd concentration in plants. Biochar increased morphological and physiological parameters of wheat under combined drought and Cd stress and reduced the oxidative stress and Cd contents and increased antioxidant enzymes activities. The decrease in Cd concentration with BC application in drought-stressed plant might be attributed to BC-induced increase in crop biomass production and reduction in oxidative stress. These results indicate that BC could be used as an amendment in metal contaminated soil for improving wheat growth and reducing Cd concentrations under semiarid conditions.
Ecotoxicology and En... arrow_drop_down Ecotoxicology and Environmental SafetyArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecoenv.2017.11.063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 272 citations 272 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Ecotoxicology and En... arrow_drop_down Ecotoxicology and Environmental SafetyArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecoenv.2017.11.063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Muhammad Adrees; Abid Mahmood; Shafaqat Ali; Muhammad Rizwan; Muhammad Farooq Qayyum; Muhammad Ibrahim; Muhammad Zia-ur-Rehman; Tahir Abbas; Muhammad Arshad;pmid: 29197797
Cadmium (Cd) and drought stress in plants is a worldwide problem, whereas little is known about the effect of biochar (BC) under combined Cd and drought stress. The current study was conducted to determine the impact of BC on Cd uptake in wheat sown in Cd-contaminated soil under drought stress. Wheat was grown in a soil after incubating the soil for 15 days with three levels of BC (0%, 3.0% and 5.0% w/w). Three levels of drought stress (well-watered, mild drought and severe drought containing 70%, 50%, and 35% of soil water holding capacity respectively) were applied to 45-d-old wheat plants. Drought stress decreased plant height, spike length, chlorophyll contents, gas exchange parameters, root and shoot dry biomasses and grain yields. Drought stress also caused oxidative stress and decreased the antioxidant enzymes activities whereas increased the Cd concentration in plants. Biochar increased morphological and physiological parameters of wheat under combined drought and Cd stress and reduced the oxidative stress and Cd contents and increased antioxidant enzymes activities. The decrease in Cd concentration with BC application in drought-stressed plant might be attributed to BC-induced increase in crop biomass production and reduction in oxidative stress. These results indicate that BC could be used as an amendment in metal contaminated soil for improving wheat growth and reducing Cd concentrations under semiarid conditions.
Ecotoxicology and En... arrow_drop_down Ecotoxicology and Environmental SafetyArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecoenv.2017.11.063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 272 citations 272 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Ecotoxicology and En... arrow_drop_down Ecotoxicology and Environmental SafetyArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecoenv.2017.11.063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu