- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2020 SpainPublisher:Elsevier BV Funded by:FCT | SFRH/BD/144562/2019, FCT | CICECO-Aveiro Institute o...FCT| SFRH/BD/144562/2019 ,FCT| CICECO-Aveiro Institute of MaterialsNovais, Rui M.; Carvalheiras, João; Senff, Luciano; Lacasta Palacio, Ana María; Rodríguez Cantalapiedra, Inma; Giró Paloma, Jessica; Seabra, Maria Paula; Labrincha Batista, João António;handle: 2117/180828 , 20.500.12251/1956
This work evaluates, for the first time, the possibility of producing multifunctional alkali-activated composites combining ultra-low density, low thermal conductivity, high acoustic absorption, and good moisture buffering capacity. The composites were prepared using cork as a lightweight aggregate. This novel material might promote energy savings and tackle the CO2 emissions of the building sector, while simultaneously improve the comfort for inhabitants (e.g. humidity levels regulation and sound pollution reduction). The composites apparent density (as low as 168 kg/m3) and thermal conductivity (as low as 68 mW/m K) are amongst the lowest ever reported for alkali-activated materials (AAM) composites and foams, while their sound absorption ability is comparable to the best performing AAM foams reported to date, but in addition these eco-friendly composites also show good ability to passively adjust the humidity levels inside buildings. The multifunctional properties shown by the cork – AAM composites set them apart from other conventional building materials and might contribute to the global sustainability of the construction sector. Peer Reviewed
Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCDiposit Digital de la Universitat de BarcelonaArticle . 2019License: CC BY NC NDData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2019.109739&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 122visibility views 122 download downloads 263 Powered bymore_vert Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCDiposit Digital de la Universitat de BarcelonaArticle . 2019License: CC BY NC NDData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2019.109739&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2021 Spain, France, SpainPublisher:MDPI AG Authors: Haurie Ibarra, Laia; Palumbo Fernández, Mariana; Lacasta Palacio, Ana María; Mayer Laigle, Claire; +3 AuthorsHaurie Ibarra, Laia; Palumbo Fernández, Mariana; Lacasta Palacio, Ana María; Mayer Laigle, Claire; Breysse, Améllie; Barron, Cécile; Mabille, Frédéric;Plant biomass has various compositions and structures at different scales (from the component organs to their constitutive tissues) to support its functional properties. Recovering each part of the plant without damaging its structure poses a challenge to preserving its original properties for differential dedicated end uses, and considerably increases its added value. In this work, an original combination of grinding based on shearing stress and separation based on particle size and density was successfully used to sort rind (65% w/w) and pith (35% w/w) from maize stem internodes. More than 97% of the rind was isolated. The pith alveolar structure was well preserved in coarse particles, making them suitable for insulation bio-based composite materials, a promising alternative to conventional nonbiodegradable insulation panels. Boards produced from the dry fractionated pith exhibited thermal conductivities like those produced from hand dissected pith, with values equal to 0.037 W·mK−1 and 0.039 W·mK−1, respectively. In the finest fraction (particle size <1 mm), the pith vascular bundles (around 300–400 µm in diameter) were dissociated from parenchyma cells and successfully isolated using a cutting-edge electrostatic separator. Their structures, which provide the plant structural support, make them potentially valuable for reinforcement in composite materials.
Materials arrow_drop_down MaterialsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1944/14/18/5350/pdfData sources: Multidisciplinary Digital Publishing InstituteCIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.inrae.fr/hal-03364874Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Full-Text: https://hal.inrae.fr/hal-03364874Data sources: Bielefeld Academic Search Engine (BASE)Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2021License: CC BYFull-Text: https://www.mdpi.com/1996-1944/14/18/5350Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2021 . Peer-reviewedLicense: CC BYData sources: UPCommons. Portal del coneixement obert de la UPCadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/ma14185350&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 29visibility views 29 download downloads 64 Powered bymore_vert Materials arrow_drop_down MaterialsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1944/14/18/5350/pdfData sources: Multidisciplinary Digital Publishing InstituteCIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.inrae.fr/hal-03364874Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Full-Text: https://hal.inrae.fr/hal-03364874Data sources: Bielefeld Academic Search Engine (BASE)Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2021License: CC BYFull-Text: https://www.mdpi.com/1996-1944/14/18/5350Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2021 . Peer-reviewedLicense: CC BYData sources: UPCommons. Portal del coneixement obert de la UPCadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/ma14185350&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2022 Spain, ItalyPublisher:IOP Publishing Jebali, Meriem; Colangelo, Gianpiero; Haurie Ibarra, Laia; Berri Abbes, Imene; Lacasta Palacio, Ana María;handle: 2117/383417 , 11587/480905
Abstract Phase change materials (PCMs) are growing in importance in many thermal applications as heat storage or to smooth the energy peak demand in many technological fields in industrial as well as in civil applications. Conductive nanoparticles can be added to phase change material to improve their thermo-physical properties. In this work, Iron oxide nanoparticles (IOx-NPs) were synthesized using a simple and green synthesis method, free of toxic and harmful solvents, using the extract of a plant as a reducer and stabilizer at two different temperatures of calcination 500°C and 750°C. The metallic oxide was used as an additive with 2% wt. compositions to paraffin wax to prepare a nanocomposite. The variation in thermal properties of paraffin wax in the composite was experimentally investigated. The biosynthesized IOx-NPs were characterized by X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscope (SEM) and Thermal Gravimetric Analysis (TGA) techniques. The thermal properties of the synthesized nanocomposites were characterized by a thermal conductivity analyzer and differential scanning calorimetry (DSC). The FTIR spectra showed a bond at 535 cm-1, which confirms the Fe-O vibration. The XRD powder analysis revealed the formation of the cubic phase of Fe3O4 with an average particle size of 11 nm at 500°C and the presence of the phase α-Fe2O3 with Fe3O4 at 750°C. Scanning Electron Microscopy (SEM) showed that the obtained oxide was made up of particles of nanoscale size. Experimental measurements showed that the presence of nanoparticles can improve the latent heat capacity by a maximum of 16.16 % and the thermal conductivity of the nanocomposites by a maximum of 16.99%.
Archivio Istituziona... arrow_drop_down Archivio Istituzionale della Ricerca- Università del SalentoArticle . 2022License: CC BYJournal of Physics : Conference SeriesArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAConference object . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCConference object . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1742-6596/2385/1/012026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 58visibility views 58 download downloads 42 Powered bymore_vert Archivio Istituziona... arrow_drop_down Archivio Istituzionale della Ricerca- Università del SalentoArticle . 2022License: CC BYJournal of Physics : Conference SeriesArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAConference object . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCConference object . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1742-6596/2385/1/012026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Mexico, Mexico, SpainPublisher:Elsevier BV Authors: Aza-Medina, Leyda Cinthia; Palumbo Fernández, Mariana; Lacasta Palacio, Ana María; González Lezcano, Roberto Alonso;handle: 2117/394800 , 10637/14145
The extraction and use of construction materials generate an impact on the environment due to human activity. Facing these problems requires the development of new alternatives that support changes toward sustainable construction. The development of materials using natural resources creates an important opportunity to reduce the demand for energy, such as the energy used in manufacturing materials. This will contribute to the reduction of exhausting nonrenewable resources and waste production. The objective of this study is to develop a new kind of thermal insulation out of natural vegetation. In this case, using totora (Schoenoplectus californicus (C.A. Mey.) Sojak), which is an aquatic plant that grows in Lake Titicaca. Panels were made from both shredded and whole totora. These panels could be used to improve the thermal comfort inside houses in the high Andes region of Peru, where there are extreme variations in temperature. Studies have demonstrated that one of the characteristics of this plant is its low thermal conductivity, which reveals its potential for insulation. Considering which variables exist that affect the thermal efficiency of an insulating material, flexural tests, air permeability, water vapor permeability, and fire resistance tests were done. Peer Reviewed
Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/2117/394800Data sources: Bielefeld Academic Search Engine (BASE)CEU Institutional RepositoryArticle . 2023License: CC BY NC NDFull-Text: http://hdl.handle.net/10637/14145Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2023Data sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2023 . Peer-reviewedLicense: CC BYData sources: UPCommons. Portal del coneixement obert de la UPCCEU Repositorio InstitucionalArticle . 2023License: CC BY NC NDData sources: CEU Repositorio Institucionaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jobe.2023.105984&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 70visibility views 70 download downloads 50 Powered bymore_vert Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/2117/394800Data sources: Bielefeld Academic Search Engine (BASE)CEU Institutional RepositoryArticle . 2023License: CC BY NC NDFull-Text: http://hdl.handle.net/10637/14145Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2023Data sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2023 . Peer-reviewedLicense: CC BYData sources: UPCommons. Portal del coneixement obert de la UPCCEU Repositorio InstitucionalArticle . 2023License: CC BY NC NDData sources: CEU Repositorio Institucionaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jobe.2023.105984&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 SpainPublisher:Elsevier BV Authors: Palumbo, Mariana; Lacasta Palacio, Ana María; Haurie Ibarra, Laia; Giraldo Forero, María del Pilar; +1 AuthorsPalumbo, Mariana; Lacasta Palacio, Ana María; Haurie Ibarra, Laia; Giraldo Forero, María del Pilar; Correal Modol, Eduard;handle: 10459.1/69014 , 2117/126064
Bio-based insulation materials (such as wood or hemp) are emerging as a promising alternative in building envelope applications, aiming at improving in-use energy efficiency. When compared to common insulation materials (rock and glass wool or petrol-based foams) bio-based materials present the advantage of being renewable, with a low embodied energy and CO2 neutral or negative. Moreover, these materials have a distinct hygrothermal performance, as the sorption/desorption of water vapour in their porous structure, in dynamic equilibrium with their surrounding environment, constantly modifies their hygric and thermal properties while causing energy transfers itself. In this paper, the hygrothermal performance of two different bio-based materials in outdoor conditions is evaluated. The first is an innovative light-weight composite made from corn pith and alginate. The second a commercially available wood insulator. The materials are tested alone and as components of external thermal insulation systems (ETICS) and compared to a conventional polystyrene foam. The results show how the sorption process influence the hygrothermal performance of the materials when the surrounding conditions are modified. When subjected to cyclic changes in temperature and relative humidity, the bio-based materials tested show a lower temperature variation than polystyrene. This is in part due to their lower thermal diffusivity, but also to the water absorption and desorption mechanisms occurring within the materials, which were measured by the change in mass of the materials during the tests. The differences in the thermal performance were more noticeable when the insulation materials were tested alone than when these were tested as a part of an ETIC System. Peer Reviewed
Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2018License: CC BY NC NDFull-Text: http://hdl.handle.net/2117/126064Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2018.06.042&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 56 citations 56 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 76visibility views 76 download downloads 224 Powered bymore_vert Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2018License: CC BY NC NDFull-Text: http://hdl.handle.net/2117/126064Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2018.06.042&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 SpainPublisher:Elsevier BV Authors: Rakhsh Mahpour, Ali; Sadrolodabaee, Payam; Ardanuy Raso, Mònica; Haurie Ibarra, Laia; +3 AuthorsRakhsh Mahpour, Ali; Sadrolodabaee, Payam; Ardanuy Raso, Mònica; Haurie Ibarra, Laia; Lacasta Palacio, Ana María; Rosell Amigó, Juan Ramón; Claramunt Blanes, Josep;handle: 20.500.12251/3406 , 2117/392061
In the search of more environmentally-friendly construction materials, the use of natural-based fibers has gained much attention as reinforcement in the inorganic-based matrix. In this paper, the nonwoven flax fabric reinforced lime composites are created using a dewatering technique, and the serviceability parameters –thermal conductivity, sound absorption coefficient, and residual flexural resistance after exposure to elevated temperature– are determined experimentally. The tests are carried out on two different lime composites prepared under two distinct curing regimens, i.e., accelerated carbonation in a CO2 chamber and natural carbonation in laboratory conditions, to evaluate the effect of forced carbonation. In addition, the experimental results of the serviceability parameters are included in the MIVES model (Integrated Value Model for Sustainability Assessment) to evaluate the social sustainability of the developed material as an interior drywall panel. MIVES, a type of multi-criteria decision-making method, is based on the value function concept and seminars with experts. According to the results of experimental tests, the accelerated cured sample has higher thermal conductivity (~4 times) and lower sound absorption coefficients (~20%) than the naturally cured one. Nonetheless, the flexural performance of the former is 50% (at room temperature) and 100% (at elevated temperature) better. As for the social sustainability index assessed by the MIVES-based multi-objective approach, it ranges between 0.65 and 0.75 (out of 1.0) for both lime composite panels, at least 20% higher than the control lime panel with no reinforcement. The sustainability model designed for this research can be used for assessing the social sustainability performance of other materials although the weights assigned by the experts could be adapted to reflect the perceptions and local preferences. This work was supported through the project grants PID2019-108067RB-I00/AEI/10.13039/501100011033 and PID2020-117530RB-I00/MCIN/AEI/10.13039/501100011033 by the Ministerio de Ciencia e Innovación (MCIN)/Agencia Estatal de Investigación (AEI) of the Spanish Government. The author Payam Sadrolodabaee acknowledges the Banco Santander for the Research Scholarships (Postdoc-UPC 2022 Grant). Peer Reviewed Objectius de Desenvolupament Sostenible::12 - Producció i Consum Responsables
Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2023License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Journal of Building EngineeringArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jobe.2023.107406&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
visibility 121visibility views 121 download downloads 88 Powered bymore_vert Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2023License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Journal of Building EngineeringArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jobe.2023.107406&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020 SpainPublisher:Elsevier BV Funded by:FCT | SFRH/BD/144562/2019, FCT | CICECO-Aveiro Institute o...FCT| SFRH/BD/144562/2019 ,FCT| CICECO-Aveiro Institute of MaterialsNovais, Rui M.; Carvalheiras, João; Senff, Luciano; Lacasta Palacio, Ana María; Rodríguez Cantalapiedra, Inma; Giró Paloma, Jessica; Seabra, Maria Paula; Labrincha Batista, João António;handle: 2117/180828 , 20.500.12251/1956
This work evaluates, for the first time, the possibility of producing multifunctional alkali-activated composites combining ultra-low density, low thermal conductivity, high acoustic absorption, and good moisture buffering capacity. The composites were prepared using cork as a lightweight aggregate. This novel material might promote energy savings and tackle the CO2 emissions of the building sector, while simultaneously improve the comfort for inhabitants (e.g. humidity levels regulation and sound pollution reduction). The composites apparent density (as low as 168 kg/m3) and thermal conductivity (as low as 68 mW/m K) are amongst the lowest ever reported for alkali-activated materials (AAM) composites and foams, while their sound absorption ability is comparable to the best performing AAM foams reported to date, but in addition these eco-friendly composites also show good ability to passively adjust the humidity levels inside buildings. The multifunctional properties shown by the cork – AAM composites set them apart from other conventional building materials and might contribute to the global sustainability of the construction sector. Peer Reviewed
Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCDiposit Digital de la Universitat de BarcelonaArticle . 2019License: CC BY NC NDData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2019.109739&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 122visibility views 122 download downloads 263 Powered bymore_vert Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCDiposit Digital de la Universitat de BarcelonaArticle . 2019License: CC BY NC NDData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2019.109739&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2021 Spain, France, SpainPublisher:MDPI AG Authors: Haurie Ibarra, Laia; Palumbo Fernández, Mariana; Lacasta Palacio, Ana María; Mayer Laigle, Claire; +3 AuthorsHaurie Ibarra, Laia; Palumbo Fernández, Mariana; Lacasta Palacio, Ana María; Mayer Laigle, Claire; Breysse, Améllie; Barron, Cécile; Mabille, Frédéric;Plant biomass has various compositions and structures at different scales (from the component organs to their constitutive tissues) to support its functional properties. Recovering each part of the plant without damaging its structure poses a challenge to preserving its original properties for differential dedicated end uses, and considerably increases its added value. In this work, an original combination of grinding based on shearing stress and separation based on particle size and density was successfully used to sort rind (65% w/w) and pith (35% w/w) from maize stem internodes. More than 97% of the rind was isolated. The pith alveolar structure was well preserved in coarse particles, making them suitable for insulation bio-based composite materials, a promising alternative to conventional nonbiodegradable insulation panels. Boards produced from the dry fractionated pith exhibited thermal conductivities like those produced from hand dissected pith, with values equal to 0.037 W·mK−1 and 0.039 W·mK−1, respectively. In the finest fraction (particle size <1 mm), the pith vascular bundles (around 300–400 µm in diameter) were dissociated from parenchyma cells and successfully isolated using a cutting-edge electrostatic separator. Their structures, which provide the plant structural support, make them potentially valuable for reinforcement in composite materials.
Materials arrow_drop_down MaterialsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1944/14/18/5350/pdfData sources: Multidisciplinary Digital Publishing InstituteCIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.inrae.fr/hal-03364874Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Full-Text: https://hal.inrae.fr/hal-03364874Data sources: Bielefeld Academic Search Engine (BASE)Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2021License: CC BYFull-Text: https://www.mdpi.com/1996-1944/14/18/5350Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2021 . Peer-reviewedLicense: CC BYData sources: UPCommons. Portal del coneixement obert de la UPCadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/ma14185350&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 29visibility views 29 download downloads 64 Powered bymore_vert Materials arrow_drop_down MaterialsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1944/14/18/5350/pdfData sources: Multidisciplinary Digital Publishing InstituteCIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.inrae.fr/hal-03364874Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Full-Text: https://hal.inrae.fr/hal-03364874Data sources: Bielefeld Academic Search Engine (BASE)Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2021License: CC BYFull-Text: https://www.mdpi.com/1996-1944/14/18/5350Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2021 . Peer-reviewedLicense: CC BYData sources: UPCommons. Portal del coneixement obert de la UPCadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/ma14185350&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2022 Spain, ItalyPublisher:IOP Publishing Jebali, Meriem; Colangelo, Gianpiero; Haurie Ibarra, Laia; Berri Abbes, Imene; Lacasta Palacio, Ana María;handle: 2117/383417 , 11587/480905
Abstract Phase change materials (PCMs) are growing in importance in many thermal applications as heat storage or to smooth the energy peak demand in many technological fields in industrial as well as in civil applications. Conductive nanoparticles can be added to phase change material to improve their thermo-physical properties. In this work, Iron oxide nanoparticles (IOx-NPs) were synthesized using a simple and green synthesis method, free of toxic and harmful solvents, using the extract of a plant as a reducer and stabilizer at two different temperatures of calcination 500°C and 750°C. The metallic oxide was used as an additive with 2% wt. compositions to paraffin wax to prepare a nanocomposite. The variation in thermal properties of paraffin wax in the composite was experimentally investigated. The biosynthesized IOx-NPs were characterized by X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscope (SEM) and Thermal Gravimetric Analysis (TGA) techniques. The thermal properties of the synthesized nanocomposites were characterized by a thermal conductivity analyzer and differential scanning calorimetry (DSC). The FTIR spectra showed a bond at 535 cm-1, which confirms the Fe-O vibration. The XRD powder analysis revealed the formation of the cubic phase of Fe3O4 with an average particle size of 11 nm at 500°C and the presence of the phase α-Fe2O3 with Fe3O4 at 750°C. Scanning Electron Microscopy (SEM) showed that the obtained oxide was made up of particles of nanoscale size. Experimental measurements showed that the presence of nanoparticles can improve the latent heat capacity by a maximum of 16.16 % and the thermal conductivity of the nanocomposites by a maximum of 16.99%.
Archivio Istituziona... arrow_drop_down Archivio Istituzionale della Ricerca- Università del SalentoArticle . 2022License: CC BYJournal of Physics : Conference SeriesArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAConference object . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCConference object . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1742-6596/2385/1/012026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 58visibility views 58 download downloads 42 Powered bymore_vert Archivio Istituziona... arrow_drop_down Archivio Istituzionale della Ricerca- Università del SalentoArticle . 2022License: CC BYJournal of Physics : Conference SeriesArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAConference object . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCConference object . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1742-6596/2385/1/012026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Mexico, Mexico, SpainPublisher:Elsevier BV Authors: Aza-Medina, Leyda Cinthia; Palumbo Fernández, Mariana; Lacasta Palacio, Ana María; González Lezcano, Roberto Alonso;handle: 2117/394800 , 10637/14145
The extraction and use of construction materials generate an impact on the environment due to human activity. Facing these problems requires the development of new alternatives that support changes toward sustainable construction. The development of materials using natural resources creates an important opportunity to reduce the demand for energy, such as the energy used in manufacturing materials. This will contribute to the reduction of exhausting nonrenewable resources and waste production. The objective of this study is to develop a new kind of thermal insulation out of natural vegetation. In this case, using totora (Schoenoplectus californicus (C.A. Mey.) Sojak), which is an aquatic plant that grows in Lake Titicaca. Panels were made from both shredded and whole totora. These panels could be used to improve the thermal comfort inside houses in the high Andes region of Peru, where there are extreme variations in temperature. Studies have demonstrated that one of the characteristics of this plant is its low thermal conductivity, which reveals its potential for insulation. Considering which variables exist that affect the thermal efficiency of an insulating material, flexural tests, air permeability, water vapor permeability, and fire resistance tests were done. Peer Reviewed
Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/2117/394800Data sources: Bielefeld Academic Search Engine (BASE)CEU Institutional RepositoryArticle . 2023License: CC BY NC NDFull-Text: http://hdl.handle.net/10637/14145Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2023Data sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2023 . Peer-reviewedLicense: CC BYData sources: UPCommons. Portal del coneixement obert de la UPCCEU Repositorio InstitucionalArticle . 2023License: CC BY NC NDData sources: CEU Repositorio Institucionaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jobe.2023.105984&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 70visibility views 70 download downloads 50 Powered bymore_vert Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/2117/394800Data sources: Bielefeld Academic Search Engine (BASE)CEU Institutional RepositoryArticle . 2023License: CC BY NC NDFull-Text: http://hdl.handle.net/10637/14145Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2023Data sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2023 . Peer-reviewedLicense: CC BYData sources: UPCommons. Portal del coneixement obert de la UPCCEU Repositorio InstitucionalArticle . 2023License: CC BY NC NDData sources: CEU Repositorio Institucionaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jobe.2023.105984&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 SpainPublisher:Elsevier BV Authors: Palumbo, Mariana; Lacasta Palacio, Ana María; Haurie Ibarra, Laia; Giraldo Forero, María del Pilar; +1 AuthorsPalumbo, Mariana; Lacasta Palacio, Ana María; Haurie Ibarra, Laia; Giraldo Forero, María del Pilar; Correal Modol, Eduard;handle: 10459.1/69014 , 2117/126064
Bio-based insulation materials (such as wood or hemp) are emerging as a promising alternative in building envelope applications, aiming at improving in-use energy efficiency. When compared to common insulation materials (rock and glass wool or petrol-based foams) bio-based materials present the advantage of being renewable, with a low embodied energy and CO2 neutral or negative. Moreover, these materials have a distinct hygrothermal performance, as the sorption/desorption of water vapour in their porous structure, in dynamic equilibrium with their surrounding environment, constantly modifies their hygric and thermal properties while causing energy transfers itself. In this paper, the hygrothermal performance of two different bio-based materials in outdoor conditions is evaluated. The first is an innovative light-weight composite made from corn pith and alginate. The second a commercially available wood insulator. The materials are tested alone and as components of external thermal insulation systems (ETICS) and compared to a conventional polystyrene foam. The results show how the sorption process influence the hygrothermal performance of the materials when the surrounding conditions are modified. When subjected to cyclic changes in temperature and relative humidity, the bio-based materials tested show a lower temperature variation than polystyrene. This is in part due to their lower thermal diffusivity, but also to the water absorption and desorption mechanisms occurring within the materials, which were measured by the change in mass of the materials during the tests. The differences in the thermal performance were more noticeable when the insulation materials were tested alone than when these were tested as a part of an ETIC System. Peer Reviewed
Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2018License: CC BY NC NDFull-Text: http://hdl.handle.net/2117/126064Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2018.06.042&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 56 citations 56 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 76visibility views 76 download downloads 224 Powered bymore_vert Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2018License: CC BY NC NDFull-Text: http://hdl.handle.net/2117/126064Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2018.06.042&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 SpainPublisher:Elsevier BV Authors: Rakhsh Mahpour, Ali; Sadrolodabaee, Payam; Ardanuy Raso, Mònica; Haurie Ibarra, Laia; +3 AuthorsRakhsh Mahpour, Ali; Sadrolodabaee, Payam; Ardanuy Raso, Mònica; Haurie Ibarra, Laia; Lacasta Palacio, Ana María; Rosell Amigó, Juan Ramón; Claramunt Blanes, Josep;handle: 20.500.12251/3406 , 2117/392061
In the search of more environmentally-friendly construction materials, the use of natural-based fibers has gained much attention as reinforcement in the inorganic-based matrix. In this paper, the nonwoven flax fabric reinforced lime composites are created using a dewatering technique, and the serviceability parameters –thermal conductivity, sound absorption coefficient, and residual flexural resistance after exposure to elevated temperature– are determined experimentally. The tests are carried out on two different lime composites prepared under two distinct curing regimens, i.e., accelerated carbonation in a CO2 chamber and natural carbonation in laboratory conditions, to evaluate the effect of forced carbonation. In addition, the experimental results of the serviceability parameters are included in the MIVES model (Integrated Value Model for Sustainability Assessment) to evaluate the social sustainability of the developed material as an interior drywall panel. MIVES, a type of multi-criteria decision-making method, is based on the value function concept and seminars with experts. According to the results of experimental tests, the accelerated cured sample has higher thermal conductivity (~4 times) and lower sound absorption coefficients (~20%) than the naturally cured one. Nonetheless, the flexural performance of the former is 50% (at room temperature) and 100% (at elevated temperature) better. As for the social sustainability index assessed by the MIVES-based multi-objective approach, it ranges between 0.65 and 0.75 (out of 1.0) for both lime composite panels, at least 20% higher than the control lime panel with no reinforcement. The sustainability model designed for this research can be used for assessing the social sustainability performance of other materials although the weights assigned by the experts could be adapted to reflect the perceptions and local preferences. This work was supported through the project grants PID2019-108067RB-I00/AEI/10.13039/501100011033 and PID2020-117530RB-I00/MCIN/AEI/10.13039/501100011033 by the Ministerio de Ciencia e Innovación (MCIN)/Agencia Estatal de Investigación (AEI) of the Spanish Government. The author Payam Sadrolodabaee acknowledges the Banco Santander for the Research Scholarships (Postdoc-UPC 2022 Grant). Peer Reviewed Objectius de Desenvolupament Sostenible::12 - Producció i Consum Responsables
Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2023License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Journal of Building EngineeringArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jobe.2023.107406&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
visibility 121visibility views 121 download downloads 88 Powered bymore_vert Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2023License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Journal of Building EngineeringArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jobe.2023.107406&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu