- home
- Advanced Search
- Energy Research
- 2021-2025
- Energy Research
- 2021-2025
description Publicationkeyboard_double_arrow_right Article 2024 NetherlandsPublisher:Wiley Funded by:NSERCNSERCAurélie Chagnon‐Lafortune; Éliane Duchesne; Pierre Legagneux; Laura McKinnon; Jeroen Reneerkens; Nicolas Casajus; Kenneth F. Abraham; Élise Bolduc; Glen S. Brown; Stephen C. Brown; H. River Gates; Olivier Gilg; Marie‐Andrée Giroux; Kirsty Gurney; Steve Kendall; Eunbi Kwon; Richard B. Lanctot; David B. Lank; Nicolas Lecomte; Maria Leung; Joseph R. Liebezeit; R. I. Guy Morrison; Erica Nol; David C. Payer; Donald Reid; Daniel Ruthrauff; Sarah T. Saalfeld; Brett K. Sandercock; Paul A. Smith; Niels Martin Schmidt; Ingrid Tulp; David H. Ward; Toke T. Høye; Dominique Berteaux; Joël Bêty;doi: 10.1111/gcb.17356
pmid: 38853470
AbstractSeasonally abundant arthropods are a crucial food source for many migratory birds that breed in the Arctic. In cold environments, the growth and emergence of arthropods are particularly tied to temperature. Thus, the phenology of arthropods is anticipated to undergo a rapid change in response to a warming climate, potentially leading to a trophic mismatch between migratory insectivorous birds and their prey. Using data from 19 sites spanning a wide temperature gradient from the Subarctic to the High Arctic, we investigated the effects of temperature on the phenology and biomass of arthropods available to shorebirds during their short breeding season at high latitudes. We hypothesized that prolonged exposure to warmer summer temperatures would generate earlier peaks in arthropod biomass, as well as higher peak and seasonal biomass. Across the temperature gradient encompassed by our study sites (>10°C in average summer temperatures), we found a 3‐day shift in average peak date for every increment of 80 cumulative thawing degree‐days. Interestingly, we found a linear relationship between temperature and arthropod biomass only below temperature thresholds. Higher temperatures were associated with higher peak and seasonal biomass below 106 and 177 cumulative thawing degree‐days, respectively, between June 5 and July 15. Beyond these thresholds, no relationship was observed between temperature and arthropod biomass. Our results suggest that prolonged exposure to elevated temperatures can positively influence prey availability for some arctic birds. This positive effect could, in part, stem from changes in arthropod assemblages and may reduce the risk of trophic mismatch.
Global Change Biolog... arrow_drop_down Wageningen Staff PublicationsArticle . 2024License: CC BY NC NDData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17356&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Wageningen Staff PublicationsArticle . 2024License: CC BY NC NDData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17356&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2021 GermanyPublisher:Canadian Science Publishing Xaver von Beckerath; Gita Benadi; Olivier Gilg; Benoît Sittler; Glenn Yannic; Alexandra-Maria Klein; Bernhard Eitzinger;The quality of wintering habitats, such as depth of snow cover, plays a key role in sustaining population dynamics of Arctic lemmings. However, few studies so far investigated habitat use during the Arctic winter. Here, we used a unique long-term time series to test whether lemmings are associated with topographical and vegetational habitat features for their wintering sites. We examined yearly numbers and distribution of 22 769 winter nests of the collared lemming Dicrostonyx groenlandicus (Traill, 1823) from an ongoing long-term research on Traill Island, Northeast Greenland, collected between 1989 and 2019, and correlated this information with data on dominant vegetation types, elevation, and slope. We found that the number of lemming nests was highest in areas with a high proportion of Dryas heath, but was also correlated with other vegetation types, suggesting some flexibility in resource use of wintering lemmings. Furthermore, lemmings showed a higher use for sloped terrain, probably as it enhances the formation of deep snow drifts, which increases the insulative characteristics of the snowpack and protection from predators. With global warming, prime lemming winter habitats may become scarce through alteration of snow physical properties, potentially resulting in negative consequence for the whole community of terrestrial vertebrates.
University of Freibu... arrow_drop_down University of Freiburg: FreiDokArticle . 2022Full-Text: https://freidok.uni-freiburg.de/data/221504Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1139/as-2021-0010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert University of Freibu... arrow_drop_down University of Freiburg: FreiDokArticle . 2022Full-Text: https://freidok.uni-freiburg.de/data/221504Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1139/as-2021-0010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2024 NetherlandsPublisher:Wiley Funded by:NSERCNSERCAurélie Chagnon‐Lafortune; Éliane Duchesne; Pierre Legagneux; Laura McKinnon; Jeroen Reneerkens; Nicolas Casajus; Kenneth F. Abraham; Élise Bolduc; Glen S. Brown; Stephen C. Brown; H. River Gates; Olivier Gilg; Marie‐Andrée Giroux; Kirsty Gurney; Steve Kendall; Eunbi Kwon; Richard B. Lanctot; David B. Lank; Nicolas Lecomte; Maria Leung; Joseph R. Liebezeit; R. I. Guy Morrison; Erica Nol; David C. Payer; Donald Reid; Daniel Ruthrauff; Sarah T. Saalfeld; Brett K. Sandercock; Paul A. Smith; Niels Martin Schmidt; Ingrid Tulp; David H. Ward; Toke T. Høye; Dominique Berteaux; Joël Bêty;doi: 10.1111/gcb.17356
pmid: 38853470
AbstractSeasonally abundant arthropods are a crucial food source for many migratory birds that breed in the Arctic. In cold environments, the growth and emergence of arthropods are particularly tied to temperature. Thus, the phenology of arthropods is anticipated to undergo a rapid change in response to a warming climate, potentially leading to a trophic mismatch between migratory insectivorous birds and their prey. Using data from 19 sites spanning a wide temperature gradient from the Subarctic to the High Arctic, we investigated the effects of temperature on the phenology and biomass of arthropods available to shorebirds during their short breeding season at high latitudes. We hypothesized that prolonged exposure to warmer summer temperatures would generate earlier peaks in arthropod biomass, as well as higher peak and seasonal biomass. Across the temperature gradient encompassed by our study sites (>10°C in average summer temperatures), we found a 3‐day shift in average peak date for every increment of 80 cumulative thawing degree‐days. Interestingly, we found a linear relationship between temperature and arthropod biomass only below temperature thresholds. Higher temperatures were associated with higher peak and seasonal biomass below 106 and 177 cumulative thawing degree‐days, respectively, between June 5 and July 15. Beyond these thresholds, no relationship was observed between temperature and arthropod biomass. Our results suggest that prolonged exposure to elevated temperatures can positively influence prey availability for some arctic birds. This positive effect could, in part, stem from changes in arthropod assemblages and may reduce the risk of trophic mismatch.
Global Change Biolog... arrow_drop_down Wageningen Staff PublicationsArticle . 2024License: CC BY NC NDData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17356&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Wageningen Staff PublicationsArticle . 2024License: CC BY NC NDData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17356&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2021 GermanyPublisher:Canadian Science Publishing Xaver von Beckerath; Gita Benadi; Olivier Gilg; Benoît Sittler; Glenn Yannic; Alexandra-Maria Klein; Bernhard Eitzinger;The quality of wintering habitats, such as depth of snow cover, plays a key role in sustaining population dynamics of Arctic lemmings. However, few studies so far investigated habitat use during the Arctic winter. Here, we used a unique long-term time series to test whether lemmings are associated with topographical and vegetational habitat features for their wintering sites. We examined yearly numbers and distribution of 22 769 winter nests of the collared lemming Dicrostonyx groenlandicus (Traill, 1823) from an ongoing long-term research on Traill Island, Northeast Greenland, collected between 1989 and 2019, and correlated this information with data on dominant vegetation types, elevation, and slope. We found that the number of lemming nests was highest in areas with a high proportion of Dryas heath, but was also correlated with other vegetation types, suggesting some flexibility in resource use of wintering lemmings. Furthermore, lemmings showed a higher use for sloped terrain, probably as it enhances the formation of deep snow drifts, which increases the insulative characteristics of the snowpack and protection from predators. With global warming, prime lemming winter habitats may become scarce through alteration of snow physical properties, potentially resulting in negative consequence for the whole community of terrestrial vertebrates.
University of Freibu... arrow_drop_down University of Freiburg: FreiDokArticle . 2022Full-Text: https://freidok.uni-freiburg.de/data/221504Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1139/as-2021-0010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert University of Freibu... arrow_drop_down University of Freiburg: FreiDokArticle . 2022Full-Text: https://freidok.uni-freiburg.de/data/221504Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1139/as-2021-0010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu