- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors: Detlef Deumlich; Andreas Gericke;doi: 10.3390/w12071950
Climate change is expected to affect the occurrence of heavy rainfall. We analyzed trends of heavy rainfall days for the last decades in Germany. For all available stations with daily data, days exceeding daily thresholds (10, 20, 30 mm) were counted annually. The Mann–Kendall trend test was applied to overlapping periods of 30 years (1951–2019). This period was extended to 1901 for 111 stations. The stations were aggregated by natural regions to assess regional patterns. Impacts of data inconsistencies on the calculated trends were evaluated with the metadata and recent hourly data. Although the trend variability depended on the chosen exceedance threshold, a general long-term trend for the whole of Germany was consistently not evident. After 1951, stable positive trends occurred in the mountainous south and partly in the northern coastal region, while parts of Central Germany experienced negative trends. The frequent location shifts and the recent change in the time interval for daily rainfall could affect individual trends but were statistically insignificant for regional analyses. A case study supported that heavy rains became more erosive during the last 20 years. The results showed the merit of historical data for a better understanding of recent changes in heavy rainfall.
Water arrow_drop_down WaterOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2073-4441/12/7/1950/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w12071950&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Water arrow_drop_down WaterOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2073-4441/12/7/1950/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w12071950&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Review , Journal 2021 Spain, Germany, Italy, Germany, Italy, France, Italy, Italy, Italy, Slovenia, Switzerland, Netherlands, Netherlands, Italy, Germany, Italy, Netherlands, Italy, Italy, Spain, India, IndiaPublisher:Elsevier BV Pasquale Borrelli; Pasquale Borrelli; Pasquale Borrelli; Artemi Cerdà; Amelie Jeanneau; Paulo Tarso Sanches de Oliveira; Jae E. Yang; Giovanni Francesco Ricci; Edouard Patault; Raquel de Castro Portes; Konstantinos Kaffas; Calogero Schillaci; Jesús Rodrigo-Comino; Marcella Biddoccu; Christine Alewell; Michele Freppaz; Shuiqing Yin; Nejc Bezak; Francis Matthews; Anna Maria De Girolamo; Diogo Noses Spinola; Francesco Gentile; Konstantinos Vantas; Diana Vieira; Ivan Lizaga Villuendas; Manuel Esteban Lucas-Borja; Nazzareno Diodato; Resham Thapa; Vasileios Syrris; Mark A. Nearing; Jamil Alexandre Ayach Anache; Gizaw Desta Gessesse; Matjaž Mikoš; Mahboobeh Kiani-Harchegani; Nigussie Haregeweyn; Laura Poggio; Dinesh Panday; Aliakbar Nazari Samani; Victoria Naipal; Hyuck Soo Kim; Cristian Valeriu Patriche; Chiyuan Miao; Markus Möller; Nikolaos Efthimiou; Andreas Gericke; Bifeng Hu; Demetrio Antonio Zema; Luigi Lombardo; Detlef Deumlich; Hongfen Teng; Laura Quijano; Peter Fiener; Changjia Li; Panos Panagos; Gunay Erpul; Jantiene Baartman; Sergio Saia; Sirio Modugno; Songchao Chen; Stephen Owusu; Mohammad Reza Rahdari; Walter W. Chen; Guangju Zhao; Cristiano Ballabio; Devraj Chalise; Mohammed Renima; Pablo Alvarez; Manuel López-Vicente; Michael Märker;doi: 10.1016/j.scitotenv.2021.146494 , 10.60692/b0wdh-tp130 , 10.5445/ir/1000131052 , 10.60692/0amdv-w9z03
pmid: 33773346
pmc: PMC8140410
handle: 20.500.14243/402430 , 10261/244934 , 2434/895913 , 20.500.12556/RUL-127272 , 11590/416222 , 11568/1115150 , 2318/2033719 , 11586/408115 , 11571/1509070
doi: 10.1016/j.scitotenv.2021.146494 , 10.60692/b0wdh-tp130 , 10.5445/ir/1000131052 , 10.60692/0amdv-w9z03
pmid: 33773346
pmc: PMC8140410
handle: 20.500.14243/402430 , 10261/244934 , 2434/895913 , 20.500.12556/RUL-127272 , 11590/416222 , 11568/1115150 , 2318/2033719 , 11586/408115 , 11571/1509070
Pour mieux comprendre l'application mondiale des modèles de prédiction de l'érosion des sols, nous avons examiné de manière approfondie la littérature de recherche pertinente évaluée par des pairs sur la modélisation de l'érosion des sols publiée entre 1994 et 2017. Nous avons cherché à identifier (i) les processus et les modèles les plus fréquemment abordés dans la littérature, (ii) les régions dans lesquelles les modèles sont principalement appliqués, (iii) les régions qui restent non traitées et pourquoi, et (iv) la fréquence des études menées pour valider/évaluer les résultats des modèles par rapport aux données mesurées. Pour mener à bien cette tâche, nous avons combiné les connaissances collectives de 67 scientifiques spécialistes de l'érosion des sols de 25 pays. La base de données résultante, intitulée « Global Applications of Soil Erosion Modelling Tracker (GASEMT) », comprend 3030 enregistrements de modélisation individuels provenant de 126 pays, englobant tous les continents (à l'exception de l'Antarctique). Sur les 8471 articles identifiés comme potentiellement pertinents, nous avons examiné 1697 articles appropriés et systématiquement évalué et transféré 42 attributs pertinents dans la base de données. Cette base de données GASEMT fournit des informations complètes sur l'état de l'art des modèles d'érosion des sols et des applications de modèles dans le monde entier. Cette base de données vise à soutenir la prochaine évaluation mondiale de l'érosion des sols par les Nations Unies basée sur les pays, en plus d'aider à éclairer les priorités de recherche sur l'érosion des sols en construisant une base pour de futures analyses ciblées et approfondies. GASEMT est une base de données open-source à la disposition de l'ensemble de la communauté des utilisateurs pour développer la recherche, corriger les erreurs et faire des extensions futures. Para comprender mejor la aplicación global de los modelos de predicción de la erosión del suelo, revisamos exhaustivamente la literatura de investigación relevante revisada por pares sobre modelos de erosión del suelo publicada entre 1994 y 2017. Nuestro objetivo fue identificar (i) los procesos y modelos abordados con mayor frecuencia en la literatura, (ii) las regiones dentro de las cuales se aplican principalmente los modelos, (iii) las regiones que permanecen sin abordar y por qué, y (iv) con qué frecuencia se realizan estudios para validar/evaluar los resultados del modelo en relación con los datos medidos. Para realizar esta tarea, combinamos el conocimiento colectivo de 67 científicos de erosión de suelos de 25 países. La base de datos resultante, denominada 'Global Applications of Soil Erosion Modelling Tracker (GASEMT)', incluye 3030 registros de modelado individuales de 126 países, que abarcan todos los continentes (excepto la Antártida). De los 8471 artículos identificados como potencialmente relevantes, revisamos 1697 artículos apropiados y evaluamos y transferimos sistemáticamente 42 atributos relevantes a la base de datos. Esta base de datos GASEMT proporciona información integral sobre el estado del arte de los modelos de erosión del suelo y las aplicaciones de modelos en todo el mundo. Esta base de datos tiene la intención de apoyar la próxima evaluación mundial de la erosión del suelo de las Naciones Unidas basada en los países, además de ayudar a informar las prioridades de investigación de la erosión del suelo mediante la creación de una base para futuros análisis específicos y en profundidad. GASEMT es una base de datos de código abierto disponible para toda la comunidad de usuarios para desarrollar investigaciones, rectificar errores y realizar futuras expansiones. To gain a better understanding of the global application of soil erosion prediction models, we comprehensively reviewed relevant peer-reviewed research literature on soil-erosion modelling published between 1994 and 2017. We aimed to identify (i) the processes and models most frequently addressed in the literature, (ii) the regions within which models are primarily applied, (iii) the regions which remain unaddressed and why, and (iv) how frequently studies are conducted to validate/evaluate model outcomes relative to measured data. To perform this task, we combined the collective knowledge of 67 soil-erosion scientists from 25 countries. The resulting database, named 'Global Applications of Soil Erosion Modelling Tracker (GASEMT)', includes 3030 individual modelling records from 126 countries, encompassing all continents (except Antarctica). Out of the 8471 articles identified as potentially relevant, we reviewed 1697 appropriate articles and systematically evaluated and transferred 42 relevant attributes into the database. This GASEMT database provides comprehensive insights into the state-of-the-art of soil- erosion models and model applications worldwide. This database intends to support the upcoming country-based United Nations global soil-erosion assessment in addition to helping to inform soil erosion research priorities by building a foundation for future targeted, in-depth analyses. GASEMT is an open-source database available to the entire user-community to develop research, rectify errors, and make future expansions. للحصول على فهم أفضل للتطبيق العالمي لنماذج التنبؤ بتآكل التربة، قمنا بمراجعة شاملة للأدبيات البحثية ذات الصلة التي استعرضها الأقران حول نمذجة تآكل التربة المنشورة بين عامي 1994 و 2017. كنا نهدف إلى تحديد (1) العمليات والنماذج التي يتم تناولها بشكل متكرر في الأدبيات، (2) المناطق التي يتم فيها تطبيق النماذج في المقام الأول، (3) المناطق التي لا تزال دون معالجة ولماذا، و (4) عدد المرات التي يتم فيها إجراء دراسات للتحقق من صحة/تقييم نتائج النموذج بالنسبة للبيانات المقاسة. لأداء هذه المهمة، جمعنا المعرفة الجماعية لـ 67 عالمًا في مجال تآكل التربة من 25 دولة. تتضمن قاعدة البيانات الناتجة، المسماة "التطبيقات العالمية لتتبع نمذجة تآكل التربة (GASEMT )"، 3030 سجل نمذجة فردي من 126 دولة، تشمل جميع القارات (باستثناء القارة القطبية الجنوبية). من بين 8471 مقالة تم تحديدها على أنها ذات صلة محتملة، قمنا بمراجعة 1697 مقالة مناسبة وقمنا بتقييم ونقل 42 سمة ذات صلة بشكل منهجي إلى قاعدة البيانات. توفر قاعدة بيانات GASEMT هذه رؤى شاملة حول أحدث نماذج تآكل التربة وتطبيقات النماذج في جميع أنحاء العالم. تهدف قاعدة البيانات هذه إلى دعم التقييم العالمي المقبل لتآكل التربة الذي تجريه الأمم المتحدة على المستوى القطري بالإضافة إلى المساعدة في توجيه أولويات أبحاث تآكل التربة من خلال بناء أساس للتحليلات المتعمقة المستهدفة في المستقبل. GASEMT هي قاعدة بيانات مفتوحة المصدر متاحة لمجتمع المستخدمين بأكمله لتطوير البحث وتصحيح الأخطاء وإجراء التوسعات المستقبلية.
IRIS Cnr arrow_drop_down Archivio della Ricerca - Università di PisaArticle . 2021License: CC BYData sources: Archivio della Ricerca - Università di PisaNormandie Université: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03481665Data sources: Bielefeld Academic Search Engine (BASE)Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2021Full-Text: https://hdl.handle.net/11586/408115Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.inrae.fr/hal-03481665Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAThe Science of The Total EnvironmentReview . 2021Data sources: University of Twente Research InformationRepositorio da Universidade da CoruñaArticle . 2021License: CC BYData sources: Repositorio da Universidade da CoruñaRepository of the University of LjubljanaArticle . 2021Data sources: Repository of the University of LjubljanaWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Archivio della Ricerca - Università degli Studi Roma TreArticle . 2021Data sources: Archivio della Ricerca - Università degli Studi Roma TreIRIS UNIPV (Università degli studi di Pavia)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.146494&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 445 citations 445 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
visibility 49visibility views 49 download downloads 126 Powered bymore_vert IRIS Cnr arrow_drop_down Archivio della Ricerca - Università di PisaArticle . 2021License: CC BYData sources: Archivio della Ricerca - Università di PisaNormandie Université: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03481665Data sources: Bielefeld Academic Search Engine (BASE)Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2021Full-Text: https://hdl.handle.net/11586/408115Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.inrae.fr/hal-03481665Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAThe Science of The Total EnvironmentReview . 2021Data sources: University of Twente Research InformationRepositorio da Universidade da CoruñaArticle . 2021License: CC BYData sources: Repositorio da Universidade da CoruñaRepository of the University of LjubljanaArticle . 2021Data sources: Repository of the University of LjubljanaWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Archivio della Ricerca - Università degli Studi Roma TreArticle . 2021Data sources: Archivio della Ricerca - Università degli Studi Roma TreIRIS UNIPV (Università degli studi di Pavia)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.146494&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2019Publisher:MDPI AG Authors: Andreas Gericke; Jens Kiesel; Detlef Deumlich; Markus Venohr;doi: 10.3390/w11050904
The universal soil loss equation (USLE) is widely used to identify areas of erosion risk at regional scales. In Brandenburg, USLE R factors are usually estimated from summer rainfall, based on a relationship from the 1990s. We compared estimated and calculated factors of 22 stations with 10-min rainfall data. To obtain more realistic estimations, we regressed the latter to three rainfall indices (total and heavy-rainfall sums). These models were applied to estimate future R factors of 188 climate stations. To assess uncertainties, we derived eight scenarios from 15 climate models and two representative concentration pathways (RCP), and compared the effects of index choice to the choices of climate model, RCP, and bias correction. The existing regression model underestimated the calculated R factors by 40%. Moreover, using heavy-rainfall sums instead of total sums explained the variability of current R factors better, increased their future changes, and reduced the model uncertainty. The impact of index choice on future R factors was similar to the other choices. Despite all uncertainties, the results indicate that average R factors will remain above past values. Instead, the extent of arable land experiencing excessive soil loss might double until the mid-century with RCP 8.5 and unchanged land management.
Water arrow_drop_down WaterOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2073-4441/11/5/904/pdfData sources: Multidisciplinary Digital Publishing InstituteFachrepositorium LebenswissenschaftenArticle . 2019License: CC BYData sources: Fachrepositorium Lebenswissenschaftenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w11050904&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Water arrow_drop_down WaterOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2073-4441/11/5/904/pdfData sources: Multidisciplinary Digital Publishing InstituteFachrepositorium LebenswissenschaftenArticle . 2019License: CC BYData sources: Fachrepositorium Lebenswissenschaftenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w11050904&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors: Detlef Deumlich; Andreas Gericke;doi: 10.3390/w12071950
Climate change is expected to affect the occurrence of heavy rainfall. We analyzed trends of heavy rainfall days for the last decades in Germany. For all available stations with daily data, days exceeding daily thresholds (10, 20, 30 mm) were counted annually. The Mann–Kendall trend test was applied to overlapping periods of 30 years (1951–2019). This period was extended to 1901 for 111 stations. The stations were aggregated by natural regions to assess regional patterns. Impacts of data inconsistencies on the calculated trends were evaluated with the metadata and recent hourly data. Although the trend variability depended on the chosen exceedance threshold, a general long-term trend for the whole of Germany was consistently not evident. After 1951, stable positive trends occurred in the mountainous south and partly in the northern coastal region, while parts of Central Germany experienced negative trends. The frequent location shifts and the recent change in the time interval for daily rainfall could affect individual trends but were statistically insignificant for regional analyses. A case study supported that heavy rains became more erosive during the last 20 years. The results showed the merit of historical data for a better understanding of recent changes in heavy rainfall.
Water arrow_drop_down WaterOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2073-4441/12/7/1950/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w12071950&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Water arrow_drop_down WaterOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2073-4441/12/7/1950/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w12071950&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Review , Journal 2021 Spain, Germany, Italy, Germany, Italy, France, Italy, Italy, Italy, Slovenia, Switzerland, Netherlands, Netherlands, Italy, Germany, Italy, Netherlands, Italy, Italy, Spain, India, IndiaPublisher:Elsevier BV Pasquale Borrelli; Pasquale Borrelli; Pasquale Borrelli; Artemi Cerdà; Amelie Jeanneau; Paulo Tarso Sanches de Oliveira; Jae E. Yang; Giovanni Francesco Ricci; Edouard Patault; Raquel de Castro Portes; Konstantinos Kaffas; Calogero Schillaci; Jesús Rodrigo-Comino; Marcella Biddoccu; Christine Alewell; Michele Freppaz; Shuiqing Yin; Nejc Bezak; Francis Matthews; Anna Maria De Girolamo; Diogo Noses Spinola; Francesco Gentile; Konstantinos Vantas; Diana Vieira; Ivan Lizaga Villuendas; Manuel Esteban Lucas-Borja; Nazzareno Diodato; Resham Thapa; Vasileios Syrris; Mark A. Nearing; Jamil Alexandre Ayach Anache; Gizaw Desta Gessesse; Matjaž Mikoš; Mahboobeh Kiani-Harchegani; Nigussie Haregeweyn; Laura Poggio; Dinesh Panday; Aliakbar Nazari Samani; Victoria Naipal; Hyuck Soo Kim; Cristian Valeriu Patriche; Chiyuan Miao; Markus Möller; Nikolaos Efthimiou; Andreas Gericke; Bifeng Hu; Demetrio Antonio Zema; Luigi Lombardo; Detlef Deumlich; Hongfen Teng; Laura Quijano; Peter Fiener; Changjia Li; Panos Panagos; Gunay Erpul; Jantiene Baartman; Sergio Saia; Sirio Modugno; Songchao Chen; Stephen Owusu; Mohammad Reza Rahdari; Walter W. Chen; Guangju Zhao; Cristiano Ballabio; Devraj Chalise; Mohammed Renima; Pablo Alvarez; Manuel López-Vicente; Michael Märker;doi: 10.1016/j.scitotenv.2021.146494 , 10.60692/b0wdh-tp130 , 10.5445/ir/1000131052 , 10.60692/0amdv-w9z03
pmid: 33773346
pmc: PMC8140410
handle: 20.500.14243/402430 , 10261/244934 , 2434/895913 , 20.500.12556/RUL-127272 , 11590/416222 , 11568/1115150 , 2318/2033719 , 11586/408115 , 11571/1509070
doi: 10.1016/j.scitotenv.2021.146494 , 10.60692/b0wdh-tp130 , 10.5445/ir/1000131052 , 10.60692/0amdv-w9z03
pmid: 33773346
pmc: PMC8140410
handle: 20.500.14243/402430 , 10261/244934 , 2434/895913 , 20.500.12556/RUL-127272 , 11590/416222 , 11568/1115150 , 2318/2033719 , 11586/408115 , 11571/1509070
Pour mieux comprendre l'application mondiale des modèles de prédiction de l'érosion des sols, nous avons examiné de manière approfondie la littérature de recherche pertinente évaluée par des pairs sur la modélisation de l'érosion des sols publiée entre 1994 et 2017. Nous avons cherché à identifier (i) les processus et les modèles les plus fréquemment abordés dans la littérature, (ii) les régions dans lesquelles les modèles sont principalement appliqués, (iii) les régions qui restent non traitées et pourquoi, et (iv) la fréquence des études menées pour valider/évaluer les résultats des modèles par rapport aux données mesurées. Pour mener à bien cette tâche, nous avons combiné les connaissances collectives de 67 scientifiques spécialistes de l'érosion des sols de 25 pays. La base de données résultante, intitulée « Global Applications of Soil Erosion Modelling Tracker (GASEMT) », comprend 3030 enregistrements de modélisation individuels provenant de 126 pays, englobant tous les continents (à l'exception de l'Antarctique). Sur les 8471 articles identifiés comme potentiellement pertinents, nous avons examiné 1697 articles appropriés et systématiquement évalué et transféré 42 attributs pertinents dans la base de données. Cette base de données GASEMT fournit des informations complètes sur l'état de l'art des modèles d'érosion des sols et des applications de modèles dans le monde entier. Cette base de données vise à soutenir la prochaine évaluation mondiale de l'érosion des sols par les Nations Unies basée sur les pays, en plus d'aider à éclairer les priorités de recherche sur l'érosion des sols en construisant une base pour de futures analyses ciblées et approfondies. GASEMT est une base de données open-source à la disposition de l'ensemble de la communauté des utilisateurs pour développer la recherche, corriger les erreurs et faire des extensions futures. Para comprender mejor la aplicación global de los modelos de predicción de la erosión del suelo, revisamos exhaustivamente la literatura de investigación relevante revisada por pares sobre modelos de erosión del suelo publicada entre 1994 y 2017. Nuestro objetivo fue identificar (i) los procesos y modelos abordados con mayor frecuencia en la literatura, (ii) las regiones dentro de las cuales se aplican principalmente los modelos, (iii) las regiones que permanecen sin abordar y por qué, y (iv) con qué frecuencia se realizan estudios para validar/evaluar los resultados del modelo en relación con los datos medidos. Para realizar esta tarea, combinamos el conocimiento colectivo de 67 científicos de erosión de suelos de 25 países. La base de datos resultante, denominada 'Global Applications of Soil Erosion Modelling Tracker (GASEMT)', incluye 3030 registros de modelado individuales de 126 países, que abarcan todos los continentes (excepto la Antártida). De los 8471 artículos identificados como potencialmente relevantes, revisamos 1697 artículos apropiados y evaluamos y transferimos sistemáticamente 42 atributos relevantes a la base de datos. Esta base de datos GASEMT proporciona información integral sobre el estado del arte de los modelos de erosión del suelo y las aplicaciones de modelos en todo el mundo. Esta base de datos tiene la intención de apoyar la próxima evaluación mundial de la erosión del suelo de las Naciones Unidas basada en los países, además de ayudar a informar las prioridades de investigación de la erosión del suelo mediante la creación de una base para futuros análisis específicos y en profundidad. GASEMT es una base de datos de código abierto disponible para toda la comunidad de usuarios para desarrollar investigaciones, rectificar errores y realizar futuras expansiones. To gain a better understanding of the global application of soil erosion prediction models, we comprehensively reviewed relevant peer-reviewed research literature on soil-erosion modelling published between 1994 and 2017. We aimed to identify (i) the processes and models most frequently addressed in the literature, (ii) the regions within which models are primarily applied, (iii) the regions which remain unaddressed and why, and (iv) how frequently studies are conducted to validate/evaluate model outcomes relative to measured data. To perform this task, we combined the collective knowledge of 67 soil-erosion scientists from 25 countries. The resulting database, named 'Global Applications of Soil Erosion Modelling Tracker (GASEMT)', includes 3030 individual modelling records from 126 countries, encompassing all continents (except Antarctica). Out of the 8471 articles identified as potentially relevant, we reviewed 1697 appropriate articles and systematically evaluated and transferred 42 relevant attributes into the database. This GASEMT database provides comprehensive insights into the state-of-the-art of soil- erosion models and model applications worldwide. This database intends to support the upcoming country-based United Nations global soil-erosion assessment in addition to helping to inform soil erosion research priorities by building a foundation for future targeted, in-depth analyses. GASEMT is an open-source database available to the entire user-community to develop research, rectify errors, and make future expansions. للحصول على فهم أفضل للتطبيق العالمي لنماذج التنبؤ بتآكل التربة، قمنا بمراجعة شاملة للأدبيات البحثية ذات الصلة التي استعرضها الأقران حول نمذجة تآكل التربة المنشورة بين عامي 1994 و 2017. كنا نهدف إلى تحديد (1) العمليات والنماذج التي يتم تناولها بشكل متكرر في الأدبيات، (2) المناطق التي يتم فيها تطبيق النماذج في المقام الأول، (3) المناطق التي لا تزال دون معالجة ولماذا، و (4) عدد المرات التي يتم فيها إجراء دراسات للتحقق من صحة/تقييم نتائج النموذج بالنسبة للبيانات المقاسة. لأداء هذه المهمة، جمعنا المعرفة الجماعية لـ 67 عالمًا في مجال تآكل التربة من 25 دولة. تتضمن قاعدة البيانات الناتجة، المسماة "التطبيقات العالمية لتتبع نمذجة تآكل التربة (GASEMT )"، 3030 سجل نمذجة فردي من 126 دولة، تشمل جميع القارات (باستثناء القارة القطبية الجنوبية). من بين 8471 مقالة تم تحديدها على أنها ذات صلة محتملة، قمنا بمراجعة 1697 مقالة مناسبة وقمنا بتقييم ونقل 42 سمة ذات صلة بشكل منهجي إلى قاعدة البيانات. توفر قاعدة بيانات GASEMT هذه رؤى شاملة حول أحدث نماذج تآكل التربة وتطبيقات النماذج في جميع أنحاء العالم. تهدف قاعدة البيانات هذه إلى دعم التقييم العالمي المقبل لتآكل التربة الذي تجريه الأمم المتحدة على المستوى القطري بالإضافة إلى المساعدة في توجيه أولويات أبحاث تآكل التربة من خلال بناء أساس للتحليلات المتعمقة المستهدفة في المستقبل. GASEMT هي قاعدة بيانات مفتوحة المصدر متاحة لمجتمع المستخدمين بأكمله لتطوير البحث وتصحيح الأخطاء وإجراء التوسعات المستقبلية.
IRIS Cnr arrow_drop_down Archivio della Ricerca - Università di PisaArticle . 2021License: CC BYData sources: Archivio della Ricerca - Università di PisaNormandie Université: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03481665Data sources: Bielefeld Academic Search Engine (BASE)Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2021Full-Text: https://hdl.handle.net/11586/408115Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.inrae.fr/hal-03481665Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAThe Science of The Total EnvironmentReview . 2021Data sources: University of Twente Research InformationRepositorio da Universidade da CoruñaArticle . 2021License: CC BYData sources: Repositorio da Universidade da CoruñaRepository of the University of LjubljanaArticle . 2021Data sources: Repository of the University of LjubljanaWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Archivio della Ricerca - Università degli Studi Roma TreArticle . 2021Data sources: Archivio della Ricerca - Università degli Studi Roma TreIRIS UNIPV (Università degli studi di Pavia)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.146494&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 445 citations 445 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
visibility 49visibility views 49 download downloads 126 Powered bymore_vert IRIS Cnr arrow_drop_down Archivio della Ricerca - Università di PisaArticle . 2021License: CC BYData sources: Archivio della Ricerca - Università di PisaNormandie Université: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03481665Data sources: Bielefeld Academic Search Engine (BASE)Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2021Full-Text: https://hdl.handle.net/11586/408115Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.inrae.fr/hal-03481665Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAThe Science of The Total EnvironmentReview . 2021Data sources: University of Twente Research InformationRepositorio da Universidade da CoruñaArticle . 2021License: CC BYData sources: Repositorio da Universidade da CoruñaRepository of the University of LjubljanaArticle . 2021Data sources: Repository of the University of LjubljanaWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Archivio della Ricerca - Università degli Studi Roma TreArticle . 2021Data sources: Archivio della Ricerca - Università degli Studi Roma TreIRIS UNIPV (Università degli studi di Pavia)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.146494&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2019Publisher:MDPI AG Authors: Andreas Gericke; Jens Kiesel; Detlef Deumlich; Markus Venohr;doi: 10.3390/w11050904
The universal soil loss equation (USLE) is widely used to identify areas of erosion risk at regional scales. In Brandenburg, USLE R factors are usually estimated from summer rainfall, based on a relationship from the 1990s. We compared estimated and calculated factors of 22 stations with 10-min rainfall data. To obtain more realistic estimations, we regressed the latter to three rainfall indices (total and heavy-rainfall sums). These models were applied to estimate future R factors of 188 climate stations. To assess uncertainties, we derived eight scenarios from 15 climate models and two representative concentration pathways (RCP), and compared the effects of index choice to the choices of climate model, RCP, and bias correction. The existing regression model underestimated the calculated R factors by 40%. Moreover, using heavy-rainfall sums instead of total sums explained the variability of current R factors better, increased their future changes, and reduced the model uncertainty. The impact of index choice on future R factors was similar to the other choices. Despite all uncertainties, the results indicate that average R factors will remain above past values. Instead, the extent of arable land experiencing excessive soil loss might double until the mid-century with RCP 8.5 and unchanged land management.
Water arrow_drop_down WaterOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2073-4441/11/5/904/pdfData sources: Multidisciplinary Digital Publishing InstituteFachrepositorium LebenswissenschaftenArticle . 2019License: CC BYData sources: Fachrepositorium Lebenswissenschaftenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w11050904&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Water arrow_drop_down WaterOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2073-4441/11/5/904/pdfData sources: Multidisciplinary Digital Publishing InstituteFachrepositorium LebenswissenschaftenArticle . 2019License: CC BYData sources: Fachrepositorium Lebenswissenschaftenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w11050904&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu