Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
4 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research

  • Authors: Frank Urban; Robert Fulton; Jason Wallace; Richard J Reynolds; +2 Authors

    These CLIM-MET stations are meteorological/geological stations that is designed to function in remote areas for long periods of time without human intervention. These stations measure meteorological and wind-erosion parameters under varying climatic and land-use conditions to detect and describe ongoing landscape changes. These data represent multiple years of local detailed landscape and environmental change observations. These data were collected at several discrete locations within southeastern California and in Mojave National Preserve, California, from 31 July 2016 to 23 March 2022. These data were collected by U.S. Geological Survey researchers utilizing site visits and automated data collection data loggers. These data can be used to inform studies of local and regional landscape change as well as to provide input into regional climatic models.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Grote, Edmund E.; Belnap, Jayne; Housman, David C.; Sparks, Jed P.;

    AbstractBiological soil crusts (biocrusts) are an integral part of the soil system in arid regions worldwide, stabilizing soil surfaces, aiding vascular plant establishment, and are significant sources of ecosystem nitrogen and carbon. Hydration and temperature primarily control ecosystem CO2 flux in these systems. Using constructed mesocosms for incubations under controlled laboratory conditions, we examined the effect of temperature (5–35 °C) and water content (WC, 20–100%) on CO2 exchange in light (cyanobacterially dominated) and dark (cyanobacteria/lichen and moss dominated) biocrusts of the cool Colorado Plateau Desert in Utah and the hot Chihuahuan Desert in New Mexico. In light crusts from both Utah and New Mexico, net photosynthesis was highest at temperatures >30 °C. Net photosynthesis in light crusts from Utah was relatively insensitive to changes in soil moisture. In contrast, light crusts from New Mexico tended to exhibit higher rates of net photosynthesis at higher soil moisture. Dark crusts originating from both sites exhibited the greatest net photosynthesis at intermediate soil water content (40–60%). Declines in net photosynthesis were observed in dark crusts with crusts from Utah showing declines at temperatures >25 °C and those originating from New Mexico showing declines at temperatures >35 °C. Maximum net photosynthesis in all crust types from all locations were strongly influenced by offsets in the optimal temperature and water content for gross photosynthesis compared with dark respiration. Gross photosynthesis tended to be maximized at some intermediate value of temperature and water content and dark respiration tended to increase linearly. The results of this study suggest biocrusts are capable of CO2 exchange under a wide range of conditions. However, significant changes in the magnitude of this exchange should be expected for the temperature and precipitation changes suggested by current climate models.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Global Change Biolog...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Global Change Biology
    Article . 2010 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    174
    citations174
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Global Change Biolog...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Global Change Biology
      Article . 2010 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Rebecca A Finger-Higgens; Anna C Knight; David Hoover; Ed Grote; +1 Authors

    These data were compiled for a study that investigated the effects of drought seasonality and plant community composition in a dryland ecosystem. In 2015 U.S. Geological Survey ecologists recorded vegetation and soil moisture data in 36 experimental plots which manipulated precipitation in two plant community types. The experiment consisted of three precipitation treatments: control (ambient precipitation), cool-season drought (-66% ambient precipitation November-April), and warm-season drought (-66% ambient precipitation May-October), applied in two plant communities (perennial grasses with or without a large shrub, Ephedra viridis) over a three-year period. These data were collected from 2015 to 2022 near Canyonlands National Park, UT. These data represent precipitation, soil moisture, percent cover estimates, soil biogeochemistry data (carbon, nitrogen, and phosphorus concentrations) and biomass from experimental treatments. The datasets includes data on when treatments were imposed, ambient precipitation, soil moisture measured at two depths, plant cover and plant biomass measured in the spring and fall from 2015-2019. Additionally, soil cores were collected in the fall 2018 and spring 2019 to measure biogeochemical cycling concentrations for available carbon, nitrogen, phosphorus, and microbial biomass. Standing grass biomass and Ephedra viridis biomass are done through allometric relationships based on a combination of point-frame green hits, leaf lengths, and leaf numbers, combined with double sampling. The biomass data provide an estimate of how treatments are impacting overall grass and shrub species productivity. These data can be used to compare the effects of drought seasonality on shrub and grass communities and biogeochemistry dynamics.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Ed Grote; Frank Urban; Richard L Reynolds; Michael C Duniway;

    These CLIM-MET stations are meteorological/geological stations that is designed to function in remote areas for long periods of time without human intervention. These stations measure meteorological and wind-erosion parameters under varying climatic and land-use conditions to detect and describe ongoing landscape changes. These data represent multiple years of local detailed landscape and environmental change observations. These data were collected in and close to Canyonlands National Park, Utah from 1 August 2016 to 31 December 2022. These data were collected by U.S. Geological Survey researchers utilizing site visits and automated data collection data loggers. These data can be used to inform studies of local and regional landscape change as well as to provide input into regional climatic models.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
4 Research products
  • Authors: Frank Urban; Robert Fulton; Jason Wallace; Richard J Reynolds; +2 Authors

    These CLIM-MET stations are meteorological/geological stations that is designed to function in remote areas for long periods of time without human intervention. These stations measure meteorological and wind-erosion parameters under varying climatic and land-use conditions to detect and describe ongoing landscape changes. These data represent multiple years of local detailed landscape and environmental change observations. These data were collected at several discrete locations within southeastern California and in Mojave National Preserve, California, from 31 July 2016 to 23 March 2022. These data were collected by U.S. Geological Survey researchers utilizing site visits and automated data collection data loggers. These data can be used to inform studies of local and regional landscape change as well as to provide input into regional climatic models.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Grote, Edmund E.; Belnap, Jayne; Housman, David C.; Sparks, Jed P.;

    AbstractBiological soil crusts (biocrusts) are an integral part of the soil system in arid regions worldwide, stabilizing soil surfaces, aiding vascular plant establishment, and are significant sources of ecosystem nitrogen and carbon. Hydration and temperature primarily control ecosystem CO2 flux in these systems. Using constructed mesocosms for incubations under controlled laboratory conditions, we examined the effect of temperature (5–35 °C) and water content (WC, 20–100%) on CO2 exchange in light (cyanobacterially dominated) and dark (cyanobacteria/lichen and moss dominated) biocrusts of the cool Colorado Plateau Desert in Utah and the hot Chihuahuan Desert in New Mexico. In light crusts from both Utah and New Mexico, net photosynthesis was highest at temperatures >30 °C. Net photosynthesis in light crusts from Utah was relatively insensitive to changes in soil moisture. In contrast, light crusts from New Mexico tended to exhibit higher rates of net photosynthesis at higher soil moisture. Dark crusts originating from both sites exhibited the greatest net photosynthesis at intermediate soil water content (40–60%). Declines in net photosynthesis were observed in dark crusts with crusts from Utah showing declines at temperatures >25 °C and those originating from New Mexico showing declines at temperatures >35 °C. Maximum net photosynthesis in all crust types from all locations were strongly influenced by offsets in the optimal temperature and water content for gross photosynthesis compared with dark respiration. Gross photosynthesis tended to be maximized at some intermediate value of temperature and water content and dark respiration tended to increase linearly. The results of this study suggest biocrusts are capable of CO2 exchange under a wide range of conditions. However, significant changes in the magnitude of this exchange should be expected for the temperature and precipitation changes suggested by current climate models.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Global Change Biolog...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Global Change Biology
    Article . 2010 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    174
    citations174
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Global Change Biolog...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Global Change Biology
      Article . 2010 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Rebecca A Finger-Higgens; Anna C Knight; David Hoover; Ed Grote; +1 Authors

    These data were compiled for a study that investigated the effects of drought seasonality and plant community composition in a dryland ecosystem. In 2015 U.S. Geological Survey ecologists recorded vegetation and soil moisture data in 36 experimental plots which manipulated precipitation in two plant community types. The experiment consisted of three precipitation treatments: control (ambient precipitation), cool-season drought (-66% ambient precipitation November-April), and warm-season drought (-66% ambient precipitation May-October), applied in two plant communities (perennial grasses with or without a large shrub, Ephedra viridis) over a three-year period. These data were collected from 2015 to 2022 near Canyonlands National Park, UT. These data represent precipitation, soil moisture, percent cover estimates, soil biogeochemistry data (carbon, nitrogen, and phosphorus concentrations) and biomass from experimental treatments. The datasets includes data on when treatments were imposed, ambient precipitation, soil moisture measured at two depths, plant cover and plant biomass measured in the spring and fall from 2015-2019. Additionally, soil cores were collected in the fall 2018 and spring 2019 to measure biogeochemical cycling concentrations for available carbon, nitrogen, phosphorus, and microbial biomass. Standing grass biomass and Ephedra viridis biomass are done through allometric relationships based on a combination of point-frame green hits, leaf lengths, and leaf numbers, combined with double sampling. The biomass data provide an estimate of how treatments are impacting overall grass and shrub species productivity. These data can be used to compare the effects of drought seasonality on shrub and grass communities and biogeochemistry dynamics.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Ed Grote; Frank Urban; Richard L Reynolds; Michael C Duniway;

    These CLIM-MET stations are meteorological/geological stations that is designed to function in remote areas for long periods of time without human intervention. These stations measure meteorological and wind-erosion parameters under varying climatic and land-use conditions to detect and describe ongoing landscape changes. These data represent multiple years of local detailed landscape and environmental change observations. These data were collected in and close to Canyonlands National Park, Utah from 1 August 2016 to 31 December 2022. These data were collected by U.S. Geological Survey researchers utilizing site visits and automated data collection data loggers. These data can be used to inform studies of local and regional landscape change as well as to provide input into regional climatic models.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph