- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2025 PortugalPublisher:MDPI AG Funded by:FCT | PD/BD/114175/2016FCT| PD/BD/114175/2016Authors: Gaspar, Suelen S.; Alves Ferreira Caturra, Júnia Aparecida; Moniz, Patricia; Silva-Fernandes, Talita; +6 AuthorsGaspar, Suelen S.; Alves Ferreira Caturra, Júnia Aparecida; Moniz, Patricia; Silva-Fernandes, Talita; Silvestre, Adriana I. R; Torrado, Ivone; Pesce, Gaetano R.; Carvalheiro, Florbela; Duarte, Luís; Fernandes, Maria da Conceição;Concerns over fossil fuels are of increasing interest in biorefineries that utilize lignocellulosic residues. Besides sugars, inhibitors are formed during biomass pretreatment, including acetic acid (AI) and formic acid (FI), which can hinder microbial fermentation. The TG1 and Tuner strains of Escherichia coli were subjected to various acid concentrations. Samples were taken during fermentation to monitor growth, sugar consumption, biomass yield, and product yield. With increasing AI, the TG1 strain maintained stable growth (0.102 1/h), while xylose consumption decreased, and product formation improved, making it better suited for high-acetic-acid industrial applications. In contrast, the Tuner strain performed better under low-inhibitor conditions but suffered metabolic inhibition at high AI levels, compensating by increasing lactic acid production—an adaptation absent in TG1. However, Tuner showed greater resistance to formic acid stress, sustaining higher growth and ethanol production, whereas TG1 experienced a greater metabolic decline but maintained stable acetic acid output. Both strains experienced inhibition in formic acid metabolism, but TG1 had a higher yield despite its lower overall robustness in formic acid conditions. The use of TG1 for value-added compounds such as ethanol or formic acid may help to avoid the use of chemicals that eliminate acetic acid. Tuner could be used for lactic acid production, especially in hydrolysates with under moderate concentration.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/microorganisms13030605&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/microorganisms13030605&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 PortugalPublisher:Springer Science and Business Media LLC Funded by:FCT | PD/BD/114175/2016FCT| PD/BD/114175/2016Authors: Ivone Torrado; Beatriz Guapo Neves; Maria da Conceição Fernandes; Florbela Carvalheiro; +2 AuthorsIvone Torrado; Beatriz Guapo Neves; Maria da Conceição Fernandes; Florbela Carvalheiro; Helena Pereira; Luís C. Duarte;AbstractPine nut shells, a biomass residue from the Mediterranean Pinus pinea pine nut industrial processing, were treated by microwave-assisted autohydrolysis to produce xylo-oligosaccharides. Microwave-assisted processes provide alternative heating that may reduce energy input and increase overall process efficiency. The autohydrolysis treatments were performed under isothermal and non-isothermal operations within a wide range of operational conditions (temperature/reaction times) covering several severity regimes (as measured by the log R0 severity factor). The composition of the autohydrolysis liquors was determined in terms of oligo- and monosaccharides, aliphatic acids and degradation compounds. The process was highly selective towards hemicelluloses hydrolysis and liquid streams containing a mixture of oligomeric compounds (mainly xylo-oligosaccharides) could be obtained under relatively mild operation conditions (190 °C, 30 min) with a maximal oligosaccharides’ concentration of 18.48 g/L. The average polymerization degree of the obtained oligosaccharides was characterised by HPLC, showing that for the optimal conditions a mixture of oligomers with DPs from 2 to 6.
Biomass Conversion a... arrow_drop_down Biomass Conversion and BiorefineryArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefUniversidade de Lisboa: Repositório.ULArticle . 2024License: CC BYData sources: Universidade de Lisboa: Repositório.ULadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13399-023-05244-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Biomass Conversion a... arrow_drop_down Biomass Conversion and BiorefineryArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefUniversidade de Lisboa: Repositório.ULArticle . 2024License: CC BYData sources: Universidade de Lisboa: Repositório.ULadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13399-023-05244-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 PortugalPublisher:Springer Science and Business Media LLC Funded by:FCT | PD/BD/114175/2016FCT| PD/BD/114175/2016Ivone Torrado; Ana Dionísio; Maria C. Fernandes; Luísa Bivar Roseiro; Florbela Carvalheiro; Helena Pereira; Luís C. Duarte;AbstractPinus pinea nuts are commercial relevant Mediterranean edible forest nuts, with an increasing production and market value, whose industrial processing yields a lignocellulosic by-product, the pine nut shells, currently only used for combustion. Little research has been done on pine nut shells that could support a value-added application for this residue. This work studies for the first time the production of oligosaccharides by autohydrosis, and aims at an integrated upgrade within the biorefinery framework. Autohydrolysis was explored in the temperature range between 150 and 230 °C (corresponding to severity factors 2.13–4.63). Oligosaccharides, mainly xylo-oligosaccharides (95% of the total), were the key soluble products, reaching 28.7 g/100 g of xylan of the feedstock at the optimal conditions (log R0 4.01). Other products were monosaccharides and phenolic compounds that reached 7.8 and 4.7 g/L, respectively, under the most severe conditions. The stability of the oligosaccharides at different temperatures (room, 37 °C and 100 °C) and pH (between 1 and 11) grant them significant market potential in the food and pharma sectors. The pre-treated pine nut shells by autohydrolysis presented an improved, although low, enzymatic digestibility (14%), and an improved high-heating value, therefore advising their further valorization by thermochemical pathways.
BioEnergy Research arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefUniversidade de Lisboa: Repositório.ULArticle . 2023License: CC BYData sources: Universidade de Lisboa: Repositório.ULadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12155-023-10585-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert BioEnergy Research arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefUniversidade de Lisboa: Repositório.ULArticle . 2023License: CC BYData sources: Universidade de Lisboa: Repositório.ULadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12155-023-10585-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2025 PortugalPublisher:MDPI AG Funded by:FCT | PD/BD/114175/2016FCT| PD/BD/114175/2016Authors: Gaspar, Suelen S.; Alves Ferreira Caturra, Júnia Aparecida; Moniz, Patricia; Silva-Fernandes, Talita; +6 AuthorsGaspar, Suelen S.; Alves Ferreira Caturra, Júnia Aparecida; Moniz, Patricia; Silva-Fernandes, Talita; Silvestre, Adriana I. R; Torrado, Ivone; Pesce, Gaetano R.; Carvalheiro, Florbela; Duarte, Luís; Fernandes, Maria da Conceição;Concerns over fossil fuels are of increasing interest in biorefineries that utilize lignocellulosic residues. Besides sugars, inhibitors are formed during biomass pretreatment, including acetic acid (AI) and formic acid (FI), which can hinder microbial fermentation. The TG1 and Tuner strains of Escherichia coli were subjected to various acid concentrations. Samples were taken during fermentation to monitor growth, sugar consumption, biomass yield, and product yield. With increasing AI, the TG1 strain maintained stable growth (0.102 1/h), while xylose consumption decreased, and product formation improved, making it better suited for high-acetic-acid industrial applications. In contrast, the Tuner strain performed better under low-inhibitor conditions but suffered metabolic inhibition at high AI levels, compensating by increasing lactic acid production—an adaptation absent in TG1. However, Tuner showed greater resistance to formic acid stress, sustaining higher growth and ethanol production, whereas TG1 experienced a greater metabolic decline but maintained stable acetic acid output. Both strains experienced inhibition in formic acid metabolism, but TG1 had a higher yield despite its lower overall robustness in formic acid conditions. The use of TG1 for value-added compounds such as ethanol or formic acid may help to avoid the use of chemicals that eliminate acetic acid. Tuner could be used for lactic acid production, especially in hydrolysates with under moderate concentration.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/microorganisms13030605&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/microorganisms13030605&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 PortugalPublisher:Springer Science and Business Media LLC Funded by:FCT | PD/BD/114175/2016FCT| PD/BD/114175/2016Authors: Ivone Torrado; Beatriz Guapo Neves; Maria da Conceição Fernandes; Florbela Carvalheiro; +2 AuthorsIvone Torrado; Beatriz Guapo Neves; Maria da Conceição Fernandes; Florbela Carvalheiro; Helena Pereira; Luís C. Duarte;AbstractPine nut shells, a biomass residue from the Mediterranean Pinus pinea pine nut industrial processing, were treated by microwave-assisted autohydrolysis to produce xylo-oligosaccharides. Microwave-assisted processes provide alternative heating that may reduce energy input and increase overall process efficiency. The autohydrolysis treatments were performed under isothermal and non-isothermal operations within a wide range of operational conditions (temperature/reaction times) covering several severity regimes (as measured by the log R0 severity factor). The composition of the autohydrolysis liquors was determined in terms of oligo- and monosaccharides, aliphatic acids and degradation compounds. The process was highly selective towards hemicelluloses hydrolysis and liquid streams containing a mixture of oligomeric compounds (mainly xylo-oligosaccharides) could be obtained under relatively mild operation conditions (190 °C, 30 min) with a maximal oligosaccharides’ concentration of 18.48 g/L. The average polymerization degree of the obtained oligosaccharides was characterised by HPLC, showing that for the optimal conditions a mixture of oligomers with DPs from 2 to 6.
Biomass Conversion a... arrow_drop_down Biomass Conversion and BiorefineryArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefUniversidade de Lisboa: Repositório.ULArticle . 2024License: CC BYData sources: Universidade de Lisboa: Repositório.ULadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13399-023-05244-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Biomass Conversion a... arrow_drop_down Biomass Conversion and BiorefineryArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefUniversidade de Lisboa: Repositório.ULArticle . 2024License: CC BYData sources: Universidade de Lisboa: Repositório.ULadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13399-023-05244-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 PortugalPublisher:Springer Science and Business Media LLC Funded by:FCT | PD/BD/114175/2016FCT| PD/BD/114175/2016Ivone Torrado; Ana Dionísio; Maria C. Fernandes; Luísa Bivar Roseiro; Florbela Carvalheiro; Helena Pereira; Luís C. Duarte;AbstractPinus pinea nuts are commercial relevant Mediterranean edible forest nuts, with an increasing production and market value, whose industrial processing yields a lignocellulosic by-product, the pine nut shells, currently only used for combustion. Little research has been done on pine nut shells that could support a value-added application for this residue. This work studies for the first time the production of oligosaccharides by autohydrosis, and aims at an integrated upgrade within the biorefinery framework. Autohydrolysis was explored in the temperature range between 150 and 230 °C (corresponding to severity factors 2.13–4.63). Oligosaccharides, mainly xylo-oligosaccharides (95% of the total), were the key soluble products, reaching 28.7 g/100 g of xylan of the feedstock at the optimal conditions (log R0 4.01). Other products were monosaccharides and phenolic compounds that reached 7.8 and 4.7 g/L, respectively, under the most severe conditions. The stability of the oligosaccharides at different temperatures (room, 37 °C and 100 °C) and pH (between 1 and 11) grant them significant market potential in the food and pharma sectors. The pre-treated pine nut shells by autohydrolysis presented an improved, although low, enzymatic digestibility (14%), and an improved high-heating value, therefore advising their further valorization by thermochemical pathways.
BioEnergy Research arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefUniversidade de Lisboa: Repositório.ULArticle . 2023License: CC BYData sources: Universidade de Lisboa: Repositório.ULadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12155-023-10585-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert BioEnergy Research arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefUniversidade de Lisboa: Repositório.ULArticle . 2023License: CC BYData sources: Universidade de Lisboa: Repositório.ULadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12155-023-10585-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu