- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2021 France, Germany, Finland, France, France, France, BelgiumPublisher:Wiley Publicly fundedFunded by:NSF | LTER: Multi-decadal resp..., AKA | Biotic modulators of plan..., ANR | ANAEE-FR +4 projectsNSF| LTER: Multi-decadal responses of prairie, savanna, and forest ecosystems to interacting environmental changes: insights from experiments, observations, and models ,AKA| Biotic modulators of plant community resistance and resilience to multiple global changes ,ANR| ANAEE-FR ,AKA| Global change and low-productivity ecosystems: interactions between biotic ecosystem components and changing abiotic environment ,ANR| PSL ,NSF| RCN: Coordination of the Nutrient Network (NutNet), global manipulations of nutrients and consumers ,NSF| LTER: Biodiversity, Multiple Drivers of Environmental Change and Ecosystem Functioning at the Prairie Forest BorderMax A. Schuchardt; Carla Nogueira; Julia Siebert; Anita C. Risch; Xavier Raynaud; Sylvia Haider; Alain Finn; Kevin Van Sundert; Siddharth Bharath; Charles A. Nock; Charles A. Nock; Peter A. Wilfahrt; Peter A. Wilfahrt; Anu Eskelinen; Anu Eskelinen; Maria C. Caldeira; Dajana Radujković; Christiane Roscher; Marie Spohn; Tobias Gebauer; Michael Scherer-Lorenzen; Anita Porath‐Krause; Risto Virtanen; Amandine Hansart; Sara Vicca; Ian Donohue; Martin Schütz; Anne Ebeling; Nico Eisenhauer; Angelika Kübert; Christiane Werner; Ivan Nijs; Yvonne M. Buckley; Judith Sitters; Mohammed Abu Sayed Arfin Khan; Mohammed Abu Sayed Arfin Khan; Anke Jentsch; Maren Dubbert; Maren Dubbert;AbstractDroughts can strongly affect grassland productivity and biodiversity, but responses differ widely. Nutrient availability may be a critical factor explaining this variation, but is often ignored in analyses of drought responses. Here, we used a standardized nutrient addition experiment covering 10 European grasslands to test if full‐factorial nitrogen, phosphorus, and potassium addition affected plant community responses to inter‐annual variation in drought stress and to the extreme summer drought of 2018 in Europe. We found that nutrient addition amplified detrimental drought effects on community aboveground biomass production. Drought effects also differed between functional groups, with a negative effect on graminoid but not forb biomass production. Our results imply that eutrophication in grasslands, which promotes dominance of drought‐sensitive graminoids over forbs, amplifies detrimental drought effects. In terms of climate change adaptation, agricultural management would benefit from taking into account differential drought impacts on fertilized versus unfertilized grasslands, which differ in ecosystem services they provide to society.
HAL UPEC arrow_drop_down Institutional Repository Universiteit AntwerpenArticle . 2021Data sources: Institutional Repository Universiteit AntwerpenUniversity of Oulu Repository - JultikaArticle . 2021Data sources: University of Oulu Repository - JultikaInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15583&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 64 citations 64 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert HAL UPEC arrow_drop_down Institutional Repository Universiteit AntwerpenArticle . 2021Data sources: Institutional Repository Universiteit AntwerpenUniversity of Oulu Repository - JultikaArticle . 2021Data sources: University of Oulu Repository - JultikaInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15583&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 United KingdomPublisher:Springer Science and Business Media LLC Funded by:NSF | LTER: Biodiversity, Multi..., NSF | LTER: Multi-decadal resp..., NSF | RCN: Coordination of the ... +3 projectsNSF| LTER: Biodiversity, Multiple Drivers of Environmental Change and Ecosystem Functioning at the Prairie Forest Border ,NSF| LTER: Multi-decadal responses of prairie, savanna, and forest ecosystems to interacting environmental changes: insights from experiments, observations, and models ,NSF| RCN: Coordination of the Nutrient Network (NutNet), global manipulations of nutrients and consumers ,FCT| LA 1 ,NSF| Collaborative Research: Within-host Microbial Communities: Experimentally Scaling Interaction Dynamics Across Sites, Regions, and Continents ,NSF| Biodiversity, Environmental Change and Ecosystem Functioning at the Prairie-Forest BoarderEric W. Seabloom; Maria C. Caldeira; Kendi F. Davies; Linda L. Kinkel; Johannes M. H. Knops; Kimberly J. La Pierre; Andrew S. MacDougall; Georgiana May; Michael D. Millican; Joslin L. Moore; Luis I. Pérez; Anita Porath‐Krause; Sally A. Power; Suzanne M. Prober; Anita C. Risch; Carly J. Stevens; Elizabeth T. Borer;AbstractAll multicellular organisms host a diverse microbiome composed of microbial pathogens, mutualists, and commensals, and changes in microbiome diversity or composition can alter host fitness and function. Nonetheless, we lack a general understanding of the drivers of microbiome diversity, in part because it is regulated by concurrent processes spanning scales from global to local. Global-scale environmental gradients can determine variation in microbiome diversity among sites, however an individual host’s microbiome also may reflect its local micro-environment. We fill this knowledge gap by experimentally manipulating two potential mediators of plant microbiome diversity (soil nutrient supply and herbivore density) at 23 grassland sites spanning global-scale gradients in soil nutrients, climate, and plant biomass. Here we show that leaf-scale microbiome diversity in unmanipulated plots depended on the total microbiome diversity at each site, which was highest at sites with high soil nutrients and plant biomass. We also found that experimentally adding soil nutrients and excluding herbivores produced concordant results across sites, increasing microbiome diversity by increasing plant biomass, which created a shaded microclimate. This demonstration of consistent responses of microbiome diversity across a wide range of host species and environmental conditions suggests the possibility of a general, predictive understanding of microbiome diversity.
Nature Communication... arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-39179-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Nature Communication... arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-39179-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021 France, Germany, Finland, France, France, France, BelgiumPublisher:Wiley Publicly fundedFunded by:NSF | LTER: Multi-decadal resp..., AKA | Biotic modulators of plan..., ANR | ANAEE-FR +4 projectsNSF| LTER: Multi-decadal responses of prairie, savanna, and forest ecosystems to interacting environmental changes: insights from experiments, observations, and models ,AKA| Biotic modulators of plant community resistance and resilience to multiple global changes ,ANR| ANAEE-FR ,AKA| Global change and low-productivity ecosystems: interactions between biotic ecosystem components and changing abiotic environment ,ANR| PSL ,NSF| RCN: Coordination of the Nutrient Network (NutNet), global manipulations of nutrients and consumers ,NSF| LTER: Biodiversity, Multiple Drivers of Environmental Change and Ecosystem Functioning at the Prairie Forest BorderMax A. Schuchardt; Carla Nogueira; Julia Siebert; Anita C. Risch; Xavier Raynaud; Sylvia Haider; Alain Finn; Kevin Van Sundert; Siddharth Bharath; Charles A. Nock; Charles A. Nock; Peter A. Wilfahrt; Peter A. Wilfahrt; Anu Eskelinen; Anu Eskelinen; Maria C. Caldeira; Dajana Radujković; Christiane Roscher; Marie Spohn; Tobias Gebauer; Michael Scherer-Lorenzen; Anita Porath‐Krause; Risto Virtanen; Amandine Hansart; Sara Vicca; Ian Donohue; Martin Schütz; Anne Ebeling; Nico Eisenhauer; Angelika Kübert; Christiane Werner; Ivan Nijs; Yvonne M. Buckley; Judith Sitters; Mohammed Abu Sayed Arfin Khan; Mohammed Abu Sayed Arfin Khan; Anke Jentsch; Maren Dubbert; Maren Dubbert;AbstractDroughts can strongly affect grassland productivity and biodiversity, but responses differ widely. Nutrient availability may be a critical factor explaining this variation, but is often ignored in analyses of drought responses. Here, we used a standardized nutrient addition experiment covering 10 European grasslands to test if full‐factorial nitrogen, phosphorus, and potassium addition affected plant community responses to inter‐annual variation in drought stress and to the extreme summer drought of 2018 in Europe. We found that nutrient addition amplified detrimental drought effects on community aboveground biomass production. Drought effects also differed between functional groups, with a negative effect on graminoid but not forb biomass production. Our results imply that eutrophication in grasslands, which promotes dominance of drought‐sensitive graminoids over forbs, amplifies detrimental drought effects. In terms of climate change adaptation, agricultural management would benefit from taking into account differential drought impacts on fertilized versus unfertilized grasslands, which differ in ecosystem services they provide to society.
HAL UPEC arrow_drop_down Institutional Repository Universiteit AntwerpenArticle . 2021Data sources: Institutional Repository Universiteit AntwerpenUniversity of Oulu Repository - JultikaArticle . 2021Data sources: University of Oulu Repository - JultikaInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15583&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 64 citations 64 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert HAL UPEC arrow_drop_down Institutional Repository Universiteit AntwerpenArticle . 2021Data sources: Institutional Repository Universiteit AntwerpenUniversity of Oulu Repository - JultikaArticle . 2021Data sources: University of Oulu Repository - JultikaInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15583&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 United KingdomPublisher:Springer Science and Business Media LLC Funded by:NSF | LTER: Biodiversity, Multi..., NSF | LTER: Multi-decadal resp..., NSF | RCN: Coordination of the ... +3 projectsNSF| LTER: Biodiversity, Multiple Drivers of Environmental Change and Ecosystem Functioning at the Prairie Forest Border ,NSF| LTER: Multi-decadal responses of prairie, savanna, and forest ecosystems to interacting environmental changes: insights from experiments, observations, and models ,NSF| RCN: Coordination of the Nutrient Network (NutNet), global manipulations of nutrients and consumers ,FCT| LA 1 ,NSF| Collaborative Research: Within-host Microbial Communities: Experimentally Scaling Interaction Dynamics Across Sites, Regions, and Continents ,NSF| Biodiversity, Environmental Change and Ecosystem Functioning at the Prairie-Forest BoarderEric W. Seabloom; Maria C. Caldeira; Kendi F. Davies; Linda L. Kinkel; Johannes M. H. Knops; Kimberly J. La Pierre; Andrew S. MacDougall; Georgiana May; Michael D. Millican; Joslin L. Moore; Luis I. Pérez; Anita Porath‐Krause; Sally A. Power; Suzanne M. Prober; Anita C. Risch; Carly J. Stevens; Elizabeth T. Borer;AbstractAll multicellular organisms host a diverse microbiome composed of microbial pathogens, mutualists, and commensals, and changes in microbiome diversity or composition can alter host fitness and function. Nonetheless, we lack a general understanding of the drivers of microbiome diversity, in part because it is regulated by concurrent processes spanning scales from global to local. Global-scale environmental gradients can determine variation in microbiome diversity among sites, however an individual host’s microbiome also may reflect its local micro-environment. We fill this knowledge gap by experimentally manipulating two potential mediators of plant microbiome diversity (soil nutrient supply and herbivore density) at 23 grassland sites spanning global-scale gradients in soil nutrients, climate, and plant biomass. Here we show that leaf-scale microbiome diversity in unmanipulated plots depended on the total microbiome diversity at each site, which was highest at sites with high soil nutrients and plant biomass. We also found that experimentally adding soil nutrients and excluding herbivores produced concordant results across sites, increasing microbiome diversity by increasing plant biomass, which created a shaded microclimate. This demonstration of consistent responses of microbiome diversity across a wide range of host species and environmental conditions suggests the possibility of a general, predictive understanding of microbiome diversity.
Nature Communication... arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-39179-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Nature Communication... arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-39179-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu