- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2015 United Kingdom, United StatesPublisher:The Royal Society Funded by:NSERCNSERCAtwood, T. B.; Hammill, Edd; Kratina, P.; Greig, H. S.; Shurin, J. B.; Richardson, J. S.;Evidence shows the important role biota play in the carbon cycle, and strategic management of plant and animal populations could enhance CO 2 uptake in aquatic ecosystems. However, it is currently unknown how management-driven changes to community structure may interact with climate warming and other anthropogenic perturbations to alter CO 2 fluxes. Here we showed that under ambient water temperatures, predators (three-spined stickleback) and nutrient enrichment synergistically increased primary producer biomass, resulting in increased CO 2 uptake by mesocosms in early dawn. However, a 3°C increase in water temperatures counteracted positive effects of predators and nutrients, leading to reduced primary producer biomass and a switch from CO 2 influx to efflux. This confounding effect of temperature demonstrates that climate scenarios must be accounted for when undertaking ecosystem management actions to increase biosequestration.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/8j90m3rkData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of CaliforniaBiology LettersArticle . 2015 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefeScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of CaliforniaQueen Mary University of London: Queen Mary Research Online (QMRO)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)Utah State University: DigitalCommons@USUArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsbl.2015.0785&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 12 citations 12 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/8j90m3rkData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of CaliforniaBiology LettersArticle . 2015 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefeScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of CaliforniaQueen Mary University of London: Queen Mary Research Online (QMRO)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)Utah State University: DigitalCommons@USUArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsbl.2015.0785&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 France, Croatia, United Kingdom, CroatiaPublisher:Wiley Funded by:UKRI | Biodiversity, ecosystem f..., EC | LIFEPLANUKRI| Biodiversity, ecosystem functions and policy across a tropical forest modification gradient ,EC| LIFEPLANAuthors: Romero, Gustavo Q.; Gonçalves‐Souza, Thiago; Roslin, Tomas; Marquis, Robert J.; +49 AuthorsRomero, Gustavo Q.; Gonçalves‐Souza, Thiago; Roslin, Tomas; Marquis, Robert J.; Marino, Nicholas A.C.; Novotny, Vojtech; Cornelissen, Tatiana; Orivel, Jerome; Sui, Shen; Aires, Gustavo; Antoniazzi, Reuber; Dáttilo, Wesley; Breviglieri, Crasso P. B.; Busse, Annika; Gibb, Heloise; Izzo, Thiago J.; Kadlec, Tomas; Kemp, Victoria; Kersch‐Becker, Monica; Knapp, Michal; Kratina, Pavel; Luke, Rebecca; Majnarić, Stefan; Maritz, Robin; Mateus Martins, Paulo; Mendesil, Esayas; Michalko, Jaroslav; Mrazova, Anna; Novais, Samuel; Pereira, Cássio C.; Perić, Mirela S.; Petermann, Jana S.; Ribeiro, Sérvio P.; Sam, Katerina; Trzcinski, M. Kurtis; Vieira, Camila; Westwood, Natalie; Bernaschini, Maria L.; Carvajal, Valentina; González, Ezequiel; Jausoro, Mariana; Kaensin, Stanis; Ospina, Fabiola; Cristóbal‐Pérez, E. Jacob; Quesada, Mauricio; Rogy, Pierre; Srivastava, Diane S.; Szpryngiel, Scarlett; Tack, Ayco J.M.; Teder, Tiit; Videla, Martin; Viljur, Mari‐Liis; Koricheva, Julia;doi: 10.1111/gcb.16150
pmid: 35243726
AbstractCurrent climate change is disrupting biotic interactions and eroding biodiversity worldwide. However, species sensitive to aridity, high temperatures, and climate variability might find shelter in microclimatic refuges, such as leaf rolls built by arthropods. To explore how the importance of leaf shelters for terrestrial arthropods changes with latitude, elevation, and climate, we conducted a distributed experiment comparing arthropods in leaf rolls versus control leaves across 52 sites along an 11,790 km latitudinal gradient. We then probed the impact of short‐ versus long‐term climatic impacts on roll use, by comparing the relative impact of conditions during the experiment versus average, baseline conditions at the site. Leaf shelters supported larger organisms and higher arthropod biomass and species diversity than non‐rolled control leaves. However, the magnitude of the leaf rolls’ effect differed between long‐ and short‐term climate conditions, metrics (species richness, biomass, and body size), and trophic groups (predators vs. herbivores). The effect of leaf rolls on predator richness was influenced only by baseline climate, increasing in magnitude in regions experiencing increased long‐term aridity, regardless of latitude, elevation, and weather during the experiment. This suggests that shelter use by predators may be innate, and thus, driven by natural selection. In contrast, the effect of leaf rolls on predator biomass and predator body size decreased with increasing temperature, and increased with increasing precipitation, respectively, during the experiment. The magnitude of shelter usage by herbivores increased with the abundance of predators and decreased with increasing temperature during the experiment. Taken together, these results highlight that leaf roll use may have both proximal and ultimate causes. Projected increases in climate variability and aridity are, therefore, likely to increase the importance of biotic refugia in mitigating the effects of climate change on species persistence.
HAL INRAE arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefCroatian Scientific Bibliography - CROSBIArticle . 2022Data sources: Croatian Scientific Bibliography - CROSBIQueen Mary University of London: Queen Mary Research Online (QMRO)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16150&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert HAL INRAE arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefCroatian Scientific Bibliography - CROSBIArticle . 2022Data sources: Croatian Scientific Bibliography - CROSBIQueen Mary University of London: Queen Mary Research Online (QMRO)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16150&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Wiley Patrick L. Thompson; Patrick L. Thompson; Hamish S. Greig; Jonathan B. Shurin; Jonathan B. Shurin; Pavel Kratina; Ticiana S. A. Carvalho-Pereira; Ticiana S. A. Carvalho-Pereira;doi: 10.1890/11-1595.1
pmid: 22834382
Climate warming is occurring in concert with other anthropogenic changes to ecosystems. However, it is unknown whether and how warming alters the importance of top‐down vs. bottom‐up control over community productivity and variability. We performed a 16‐month factorial experimental manipulation of warming, nutrient enrichment, and predator presence in replicated freshwater pond mesocosms to test their independent and interactive impacts. Warming strengthened trophic cascades from fish to primary producers, and it decreased the impact of eutrophication on the mean and temporal variation of phytoplankton biomass. These impacts varied seasonally, with higher temperatures leading to stronger trophic cascades in winter and weaker algae blooms under eutrophication in summer. Our results suggest that higher temperatures may shift the control of primary production in freshwater ponds toward stronger top‐down and weaker bottom‐up effects. The dampened temporal variability of algal biomass under eutrophication at higher temperatures suggests that warming may stabilize some ecosystem processes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/11-1595.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 236 citations 236 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/11-1595.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Wiley Tauany Rodrigues; Pavel Kratina; Rayanne B. Setubal; Joseph L. S. Ferro; Douglas Hideki Abe; Luiza O. Costa; Clarice Casa Nova; Vinicius F. Farjalla; Aliny P. F. Pires;doi: 10.1111/gcb.17540
pmid: 39435550
ABSTRACTClimate change often facilitates biological invasions, leading to potential interactive impacts of these global drivers on freshwater ecosystems. Although climatic mitigation efforts may reduce the magnitude of these interactive impacts, we are still missing experimental evidence for such effects under multiple climate change scenarios within a multi‐trophic framework. To address this knowledge gap, we experimentally compared the independent and interactive effects of two climate change scenarios (mitigation and business‐as‐usual) and biological invasion on the biomass of major freshwater trophic groups (phytoplankton, zooplankton, periphyton, macroinvertebrates, and a native macrophyte) and the decomposition rate of allochthonous material. Among the independent effects, we found that the business‐as‐usual climate treatment resulted in lower native macrophyte biomass and higher periphyton biomass compared to the climatic baseline and mitigation treatments. This indicates the potential of climate change to alter the relative dominance of different freshwater producers and demonstrates that climate mitigation efforts can counteract these effects. Biological invasion alone increased the biomass of chironomids, a dominant macroinvertebrate group in tropical freshwater ecosystems, demonstrating a compensatory effect on climate change. Climate change and biological invasion interactively reduced the decomposition rate of allochthonous detritus, likely mediated by the feeding preference of abundant chironomids for periphytic algae associated with the presence of non‐native macrophytes. We concluded that (i) climatic mitigation can maintain climate baseline conditions in freshwater ecosystems, and (ii) the interactive effects between future climate scenarios and biological invasion are related to complex cascading interactions among trophic groups on ecosystem processes.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17540&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17540&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United KingdomPublisher:Wiley Funded by:AKA | Global taxonomic, functio...AKA| Global taxonomic, functional and phylogenetic diversity of stream macroinvertebrate communities: unravelling spatial trends, ecological determinants and anthropogenic threats (GloBioTrends)Dieison A. Moi; Margenny Barrios; Giancarlo Tesitore; Maite Burwood; Gustavo Q. Romero; Roger P. Mormul; Pavel Kratina; Leandro Juen; Thaísa S. Michelan; Luciano F. A. Montag; Gabriel M. Cruz; Jorge García‐Girón; Jani Heino; Robert M. Hughes; Bruno R. S. Figueiredo; Franco Teixeira de Mello;pmid: 36994670
Abstract Human land‐use change is a major threat to natural ecosystems worldwide. Nonetheless, the effects of human land‐uses on the structure of plant and animal assemblages and their functional characteristics need to be better understood. Furthermore, the pathways by which human land uses affect ecosystem functions, such as biomass production, still need to be clarified. We compiled a unique dataset of fish, arthropod and macrophyte assemblages from 61 stream ecosystems in two Neotropical biomes: Amazonian rainforest and Uruguayan grasslands. We then tested how the cover of agriculture, pasture, urbanization and afforestation affected the taxonomic richness and functional diversity of those three species assemblages, and the consequences of these effects for animal biomass production. Single trait categories and functional diversity were evaluated, combining recruitment and life‐history, resource and habitat‐use, and body size. The effects of intensive human land‐uses on taxonomic and functional diversities were as strong as other drivers known to affect biodiversity, such as local climate and environmental factors. In both biomes, the taxonomic richness and functional diversity of animal and macrophyte assemblages decreased with increasing cover of agriculture, pasture, and urbanization. Human land‐uses were associated with functional homogenization of both animal and macrophyte assemblages. Human land‐uses reduced animal biomass through direct and indirect pathways mediated by declines in taxonomic and functional diversities. Our findings indicate that converting natural ecosystems to supply human demands results in species loss and trait homogenization across multiple biotic assemblages, ultimately reducing animal biomass production in streams.
Journal of Animal Ec... arrow_drop_down Journal of Animal EcologyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefQueen Mary University of London: Queen Mary Research Online (QMRO)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2656.13924&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Animal Ec... arrow_drop_down Journal of Animal EcologyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefQueen Mary University of London: Queen Mary Research Online (QMRO)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2656.13924&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 United KingdomPublisher:Wiley Dieison A. Moi; Gustavo Q. Romero; Erik Jeppesen; Pavel Kratina; Diego C. Alves; Pablo A. P. Antiqueira; Franco Teixeira de Mello; Bruno R. S. Figueiredo; Claudia C. Bonecker; Aliny P. F. Pires; Louizi S. M. Braghin; Roger P. Mormul;pmid: 34954827
Abstract Under increasing nutrient loading, shallow lakes may shift from a state of clear water dominated by submerged macrophytes to a turbid state dominated by phytoplankton or a shaded state dominated by floating macrophytes. How such regime shifts mediate the relationship between taxonomic and functional diversities (FD) and lake multifunctionality is poorly understood. We employed a detailed database describing a shallow lake over a 12‐year period during which the lake has displayed all the three states (clear, turbid and shaded) to investigate how species richness, FD of fish and zooplankton, ecosystem multifunctionality and five individual ecosystem functions (nitrogen and phosphorus concentrations, standing fish biomass, algae production and light availability) differ among states. We also evaluated how the relationship between biodiversity (species richness and FD) and multifunctionality is affected by regime shifts. We showed that species richness and the FD of fish and zooplankton were highest during the clear state. The clear state also maintained the highest values of multifunctionality as well as standing fish biomass production, algae biomass and light availability, whereas the turbid and shaded states had higher nutrient concentrations. Functional diversity was the best predictor of multifunctionality. The relationship between FD and multifunctionality was strongly positive during the clear state, but such relationship became flatter after the shift to the turbid or shaded state. Our findings illustrate that focusing on functional traits may provide a more mechanistic understanding of how regime shifts affect biodiversity and the consequences for ecosystem functioning. Regime shifts towards a turbid or shaded state negatively affect the taxonomic diversity and FD of fish and zooplankton, which in turn impairs the multifunctionality of shallow lakes.
Aperta - TÜBİTAK Açı... arrow_drop_down Aperta - TÜBİTAK Açık ArşiviOther literature type . 2022License: CC BYData sources: Aperta - TÜBİTAK Açık ArşiviJournal of Animal EcologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefQueen Mary University of London: Queen Mary Research Online (QMRO)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2656.13658&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Aperta - TÜBİTAK Açı... arrow_drop_down Aperta - TÜBİTAK Açık ArşiviOther literature type . 2022License: CC BYData sources: Aperta - TÜBİTAK Açık ArşiviJournal of Animal EcologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefQueen Mary University of London: Queen Mary Research Online (QMRO)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2656.13658&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Embargo end date: 25 Jul 2024 Australia, United Kingdom, Australia, Switzerland, NetherlandsPublisher:Springer Science and Business Media LLC Funded by:UKRI | Biodiversity, ecosystem f..., EC | TERRAGEN, UKRI | Environment East (EnvEast... +6 projectsUKRI| Biodiversity, ecosystem functions and policy across a tropical forest modification gradient ,EC| TERRAGEN ,UKRI| Environment East (EnvEast) Doctoral Training Partnership ,UKRI| Biodiversity, Ecosystem Functions and Policy Across a Tropical Forest Modification Gradient ,UKRI| Science and Solutions for a Changing Planet ,ARC| Discovery Projects - Grant ID: DP140101541 ,UKRI| How important is the ant-termite interaction in African rain forests? ,UKRI| El Nino x forest resilience ,UKRI| BIODIVERSITY AND LAND-USE IMPACTS ON TROPICAL ECOSYSTEM FUNCTION (BALI)Robert M. Ewers; C. David L. Orme; William D. Pearse; Nursyamin Zulkifli; Genevieve Yvon-Durocher; Kalsum M. Yusah; Natalie Yoh; Darren C. J. Yeo; Anna Wong; Joseph Williamson; Clare L. Wilkinson; Fabienne Wiederkehr; Bruce L. Webber; Oliver R. Wearn; Leona Wai; Maisie Vollans; Joshua P. Twining; Edgar C. Turner; Joseph A. Tobias; Jack Thorley; Elizabeth M. Telford; Yit Arn Teh; Heok Hui Tan; Tom Swinfield; Martin Svátek; Matthew Struebig; Nigel Stork; Jani Sleutel; Eleanor M. Slade; Adam Sharp; Adi Shabrani; Sarab S. Sethi; Dave J. I. Seaman; Anati Sawang; Gabrielle Briana Roxby; J. Marcus Rowcliffe; Stephen J. Rossiter; Terhi Riutta; Homathevi Rahman; Lan Qie; Elizabeth Psomas; Aaron Prairie; Frederica Poznansky; Rajeev Pillay; Lorenzo Picinali; Annabel Pianzin; Marion Pfeifer; Jonathan M. Parrett; Ciar D. Noble; Reuben Nilus; Nazirah Mustaffa; Katherine E. Mullin; Simon Mitchell; Amelia R. Mckinlay; Sarah Maunsell; Radim Matula; Michael Massam; Stephanie Martin; Yadvinder Malhi; Noreen Majalap; Catherine S. Maclean; Emma Mackintosh; Sarah H. Luke; Owen T. Lewis; Harry J. Layfield; Isolde Lane-Shaw; Boon Hee Kueh; Pavel Kratina; Oliver Konopik; Roger Kitching; Lois Kinneen; Victoria A. Kemp; Palasiah Jotan; Nick Jones; Evyen W. Jebrail; Michal Hroneš; Sui Peng Heon; David R. Hemprich-Bennett; Jessica K. Haysom; Martina F. Harianja; Jane Hardwick; Nichar Gregory; Ryan Gray; Ross E. J. Gray; Natasha Granville; Richard Gill; Adam Fraser; William A. Foster; Hollie Folkard-Tapp; Robert J. Fletcher; Arman Hadi Fikri; Tom M. Fayle; Aisyah Faruk; Paul Eggleton; David P. Edwards; Rosie Drinkwater; Rory A. Dow; Timm F. Döbert; Raphael K. Didham; Katharine J. M. Dickinson; Nicolas J. Deere; Tijmen de Lorm; Mahadimenakbar M. Dawood; Charles W. Davison; Zoe G. Davies; Richard G. Davies; Martin Dančák; Jeremy Cusack; Elizabeth L. Clare; Arthur Chung; Vun Khen Chey; Philip M. Chapman; Lauren Cator; Daniel Carpenter; Chris Carbone; Kerry Calloway; Emma R. Bush; David F. R. P. Burslem; Keiron D. Brown; Stephen J. Brooks; Ella Brasington; Hayley Brant; Michael J. W. Boyle; Sabine Both; Joshua Blackman; Tom R. Bishop; Jake E. Bicknell; Henry Bernard; Saloni Basrur; Maxwell V. L. Barclay; Holly Barclay; Georgina Atton; Marc Ancrenaz; David C. Aldridge; Olivia Z. Daniel; Glen Reynolds; Cristina Banks-Leite;AbstractLogged and disturbed forests are often viewed as degraded and depauperate environments compared with primary forest. However, they are dynamic ecosystems1 that provide refugia for large amounts of biodiversity2,3, so we cannot afford to underestimate their conservation value4. Here we present empirically defined thresholds for categorizing the conservation value of logged forests, using one of the most comprehensive assessments of taxon responses to habitat degradation in any tropical forest environment. We analysed the impact of logging intensity on the individual occurrence patterns of 1,681 taxa belonging to 86 taxonomic orders and 126 functional groups in Sabah, Malaysia. Our results demonstrate the existence of two conservation-relevant thresholds. First, lightly logged forests (<29% biomass removal) retain high conservation value and a largely intact functional composition, and are therefore likely to recover their pre-logging values if allowed to undergo natural regeneration. Second, the most extreme impacts occur in heavily degraded forests with more than two-thirds (>68%) of their biomass removed, and these are likely to require more expensive measures to recover their biodiversity value. Overall, our data confirm that primary forests are irreplaceable5, but they also reinforce the message that logged forests retain considerable conservation value that should not be overlooked.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2024 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryGriffith University: Griffith Research OnlineArticle . 2024License: CC BYFull-Text: https://hdl.handle.net/10072/431830Data sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Newcastle University Library ePrints ServiceArticle . 2024License: CC BYFull-Text: https://eprints.ncl.ac.uk/300198Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2024License: CC BYFull-Text: http://hdl.handle.net/10044/1/115376Data sources: Bielefeld Academic Search Engine (BASE)Oxford University Research ArchiveArticle . 2024License: CC BYData sources: Oxford University Research ArchiveOxford University Research ArchiveArticle . 2024License: CC BYData sources: Oxford University Research ArchiveAberdeen University Research Archive (AURA)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)Naturalis Institutional RepositoryArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-024-07657-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 9 citations 9 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2024 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryGriffith University: Griffith Research OnlineArticle . 2024License: CC BYFull-Text: https://hdl.handle.net/10072/431830Data sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Newcastle University Library ePrints ServiceArticle . 2024License: CC BYFull-Text: https://eprints.ncl.ac.uk/300198Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2024License: CC BYFull-Text: http://hdl.handle.net/10044/1/115376Data sources: Bielefeld Academic Search Engine (BASE)Oxford University Research ArchiveArticle . 2024License: CC BYData sources: Oxford University Research ArchiveOxford University Research ArchiveArticle . 2024License: CC BYData sources: Oxford University Research ArchiveAberdeen University Research Archive (AURA)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)Naturalis Institutional RepositoryArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-024-07657-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Croatia, United KingdomPublisher:Wiley Authors: Elliott L. Price; Mirela Sertić Perić; Gustavo Q. Romero; Pavel Kratina;pmid: 30712255
Abstract The changes to physical and chemical ecosystem characteristics as a response to pervasive and intensifying land use have the potential to alter the consumer–resource interactions and to rewire the flow of energy through entire food webs. We investigated these structural and functional properties of food webs in stream ecosystems distributed across woodland, agricultural and urban areas in the Zagreb region of Croatia. We compared resource availability and consumer diet composition using stable isotope mixing models and tested how the isotopic variance of basal resources, primary consumers, macroinvertebrate predators and other food web characteristics change with different land‐use types. Combination of increased loading and altered composition of nutrients, lower water discharge and higher light availability at urban sites likely promoted the contribution of aquatic macrophytes to diets of primary consumers. Macroinvertebrate predators shifted their diet, relying more on active filterers at urban sites relative to woodland and agricultural sites. Urban food webs also had lower trophic redundancy (i.e. fewer species at each trophic level) and a more homogenized energy flow from lower to higher trophic levels. There was no effect of land use on isotopic variation of basal resources, primary consumers or macroinvertebrate predators, but all these trophic groups at urban and agricultural sites were 15N‐enriched relative to their counterparts in woodland stream food webs. The physical and chemical ecosystem characteristics associated with intensive land use altered the resource availability, trophic redundancy and the flow of energy to other trophic levels, with potentially negative consequences for community dynamics and ecosystem functioning. These empirical findings indicate that reducing nutrient pollution, agricultural runoffs and maintaining riparian vegetation can mitigate the impacts of land use on structure and function of stream ecosystems.
Journal of Animal Ec... arrow_drop_down Journal of Animal EcologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefCroatian Scientific Bibliography - CROSBIArticle . 2019Data sources: Croatian Scientific Bibliography - CROSBIQueen Mary University of London: Queen Mary Research Online (QMRO)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2656.12955&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 52 citations 52 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Animal Ec... arrow_drop_down Journal of Animal EcologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefCroatian Scientific Bibliography - CROSBIArticle . 2019Data sources: Croatian Scientific Bibliography - CROSBIQueen Mary University of London: Queen Mary Research Online (QMRO)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2656.12955&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United Kingdom, Netherlands, SpainPublisher:Elsevier BV Ignacio Peralta-Maraver; Rachel Stubbington; Shai Arnon; Pavel Kratina; Stefan Krause; Vivian de Mello Cionek; Nei Kavaguichi Leite; Aurea Luiza Lemes da Silva; Sidinei Magela Thomaz; Malte Posselt; Victoria Susan Milner; Andrea Momblanch; Marcelo S. Moretti; Rodolfo L.B. Nóbrega; Daniel M. Perkins; Mauricio M. Petrucio; Isabel Reche; Victor Saito; Hugo Sarmento; Emily Strange; Ricardo Hideo Taniwaki; James White; Gustavo Henrique Zaia Alves; Anne L. Robertson;Riverine ecosystems can be conceptualized as 'bioreactors' (the riverine bioreactor) which retain and decompose a wide range of organic substrates. The metabolic performance of the riverine bioreactor is linked to their community structure, the efficiency of energy transfer along food chains, and complex interactions among biotic and abiotic environmental factors. However, our understanding of the mechanistic functioning and capacity of the riverine bioreactor remains limited. We review the state of knowledge and outline major gaps in the understanding of biotic drivers of organic matter decomposition processes that occur in riverine ecosystems, across habitats, temporal dimensions, and latitudes influenced by climate change. We propose a novel, integrative analytical perspective to assess and predict decomposition processes in riverine ecosystems. We then use this model to analyse data to demonstrate that the size-spectra of a community can be used to predict decomposition rates by analysing an illustrative dataset. This modelling methodology allows comparison of the riverine bioreactor's performance across habitats and at a global scale. Our integrative analytical approach can be applied to advance understanding of the functioning and efficiency of the riverine bioreactor as hotspots of metabolic activity. Application of insights gained from such analyses could inform the development of strategies that promote the functioning of the riverine bioreactor across global ecosystems.
CORE arrow_drop_down Brunel University London: Brunel University Research Archive (BURA)Article . 2021License: CC BY NC NDFull-Text: https://bura.brunel.ac.uk/handle/2438/29809Data sources: Bielefeld Academic Search Engine (BASE)Cranfield University: Collection of E-Research - CERESArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Leiden University Scholarly Publications RepositoryArticle . 2021Data sources: Leiden University Scholarly Publications RepositoryBrunel University Research ArchiveArticle . 2021License: CC BY NC NDData sources: Brunel University Research ArchiveThe Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Bristol: Bristol ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Repositorio Institucional Universidad de GranadaArticle . 2025License: CC BY NC NDData sources: Repositorio Institucional Universidad de GranadaQueen Mary University of London: Queen Mary Research Online (QMRO)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.145494&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down Brunel University London: Brunel University Research Archive (BURA)Article . 2021License: CC BY NC NDFull-Text: https://bura.brunel.ac.uk/handle/2438/29809Data sources: Bielefeld Academic Search Engine (BASE)Cranfield University: Collection of E-Research - CERESArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Leiden University Scholarly Publications RepositoryArticle . 2021Data sources: Leiden University Scholarly Publications RepositoryBrunel University Research ArchiveArticle . 2021License: CC BY NC NDData sources: Brunel University Research ArchiveThe Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Bristol: Bristol ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Repositorio Institucional Universidad de GranadaArticle . 2025License: CC BY NC NDData sources: Repositorio Institucional Universidad de GranadaQueen Mary University of London: Queen Mary Research Online (QMRO)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.145494&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United KingdomPublisher:Wiley Funded by:EC | AQUACOSM-plus, DFG, EC | AQUACOSMEC| AQUACOSM-plus ,DFG ,EC| AQUACOSMVad, Csaba F.; Hanny‐Endrédi, Anett; Kratina, Pavel; Abonyi, András; Mironova, Ekaterina; Murray, David S.; Samchyshyna, Larysa; Tsakalakis, Ioannis; Smeti, Evangelia; Spatharis, Sofie; Tan, Hanrong; Preiler, Christian; Petrusek, Adam; Bengtsson, Mia M.; Ptacnik, Robert;doi: 10.1111/gcb.16692
pmid: 36946870
AbstractClimate change‐related heatwaves are major threats to biodiversity and ecosystem functioning. However, our current understanding of the mechanisms governing community resistance to and recovery from extreme temperature events is still rudimentary. The spatial insurance hypothesis postulates that diverse regional species pools can buffer ecosystem functioning against local disturbances through the immigration of better‐adapted taxa. Yet, experimental evidence for such predictions from multi‐trophic communities and pulse‐type disturbances, like heatwaves, is largely missing. We performed an experimental mesocosm study to test whether species dispersal from natural lakes prior to a simulated heatwave could increase the resistance and recovery of plankton communities. As the buffering effect of dispersal may differ among trophic groups, we independently manipulated the dispersal of organisms from lower (phytoplankton) and higher (zooplankton) trophic levels. The experimental heatwave suppressed total community biomass by having a strong negative effect on zooplankton biomass, probably due to a heat‐induced increase in metabolic costs, resulting in weaker top‐down control on phytoplankton. While zooplankton dispersal did not alleviate the negative heatwave effects on zooplankton biomass, phytoplankton dispersal enhanced biomass recovery at the level of primary producers, providing partial evidence for spatial insurance. The differential responses to dispersal may be linked to the much larger regional species pool of phytoplankton than of zooplankton. Our results suggest high recovery capacity of community biomass independent of dispersal. However, community composition and trophic structure remained altered due to the heatwave, implying longer‐lasting changes in ecosystem functioning.
Global Change Biolog... arrow_drop_down Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16692&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16692&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2015 United Kingdom, United StatesPublisher:The Royal Society Funded by:NSERCNSERCAtwood, T. B.; Hammill, Edd; Kratina, P.; Greig, H. S.; Shurin, J. B.; Richardson, J. S.;Evidence shows the important role biota play in the carbon cycle, and strategic management of plant and animal populations could enhance CO 2 uptake in aquatic ecosystems. However, it is currently unknown how management-driven changes to community structure may interact with climate warming and other anthropogenic perturbations to alter CO 2 fluxes. Here we showed that under ambient water temperatures, predators (three-spined stickleback) and nutrient enrichment synergistically increased primary producer biomass, resulting in increased CO 2 uptake by mesocosms in early dawn. However, a 3°C increase in water temperatures counteracted positive effects of predators and nutrients, leading to reduced primary producer biomass and a switch from CO 2 influx to efflux. This confounding effect of temperature demonstrates that climate scenarios must be accounted for when undertaking ecosystem management actions to increase biosequestration.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/8j90m3rkData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of CaliforniaBiology LettersArticle . 2015 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefeScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of CaliforniaQueen Mary University of London: Queen Mary Research Online (QMRO)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)Utah State University: DigitalCommons@USUArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsbl.2015.0785&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 12 citations 12 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/8j90m3rkData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of CaliforniaBiology LettersArticle . 2015 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefeScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of CaliforniaQueen Mary University of London: Queen Mary Research Online (QMRO)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)Utah State University: DigitalCommons@USUArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsbl.2015.0785&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 France, Croatia, United Kingdom, CroatiaPublisher:Wiley Funded by:UKRI | Biodiversity, ecosystem f..., EC | LIFEPLANUKRI| Biodiversity, ecosystem functions and policy across a tropical forest modification gradient ,EC| LIFEPLANAuthors: Romero, Gustavo Q.; Gonçalves‐Souza, Thiago; Roslin, Tomas; Marquis, Robert J.; +49 AuthorsRomero, Gustavo Q.; Gonçalves‐Souza, Thiago; Roslin, Tomas; Marquis, Robert J.; Marino, Nicholas A.C.; Novotny, Vojtech; Cornelissen, Tatiana; Orivel, Jerome; Sui, Shen; Aires, Gustavo; Antoniazzi, Reuber; Dáttilo, Wesley; Breviglieri, Crasso P. B.; Busse, Annika; Gibb, Heloise; Izzo, Thiago J.; Kadlec, Tomas; Kemp, Victoria; Kersch‐Becker, Monica; Knapp, Michal; Kratina, Pavel; Luke, Rebecca; Majnarić, Stefan; Maritz, Robin; Mateus Martins, Paulo; Mendesil, Esayas; Michalko, Jaroslav; Mrazova, Anna; Novais, Samuel; Pereira, Cássio C.; Perić, Mirela S.; Petermann, Jana S.; Ribeiro, Sérvio P.; Sam, Katerina; Trzcinski, M. Kurtis; Vieira, Camila; Westwood, Natalie; Bernaschini, Maria L.; Carvajal, Valentina; González, Ezequiel; Jausoro, Mariana; Kaensin, Stanis; Ospina, Fabiola; Cristóbal‐Pérez, E. Jacob; Quesada, Mauricio; Rogy, Pierre; Srivastava, Diane S.; Szpryngiel, Scarlett; Tack, Ayco J.M.; Teder, Tiit; Videla, Martin; Viljur, Mari‐Liis; Koricheva, Julia;doi: 10.1111/gcb.16150
pmid: 35243726
AbstractCurrent climate change is disrupting biotic interactions and eroding biodiversity worldwide. However, species sensitive to aridity, high temperatures, and climate variability might find shelter in microclimatic refuges, such as leaf rolls built by arthropods. To explore how the importance of leaf shelters for terrestrial arthropods changes with latitude, elevation, and climate, we conducted a distributed experiment comparing arthropods in leaf rolls versus control leaves across 52 sites along an 11,790 km latitudinal gradient. We then probed the impact of short‐ versus long‐term climatic impacts on roll use, by comparing the relative impact of conditions during the experiment versus average, baseline conditions at the site. Leaf shelters supported larger organisms and higher arthropod biomass and species diversity than non‐rolled control leaves. However, the magnitude of the leaf rolls’ effect differed between long‐ and short‐term climate conditions, metrics (species richness, biomass, and body size), and trophic groups (predators vs. herbivores). The effect of leaf rolls on predator richness was influenced only by baseline climate, increasing in magnitude in regions experiencing increased long‐term aridity, regardless of latitude, elevation, and weather during the experiment. This suggests that shelter use by predators may be innate, and thus, driven by natural selection. In contrast, the effect of leaf rolls on predator biomass and predator body size decreased with increasing temperature, and increased with increasing precipitation, respectively, during the experiment. The magnitude of shelter usage by herbivores increased with the abundance of predators and decreased with increasing temperature during the experiment. Taken together, these results highlight that leaf roll use may have both proximal and ultimate causes. Projected increases in climate variability and aridity are, therefore, likely to increase the importance of biotic refugia in mitigating the effects of climate change on species persistence.
HAL INRAE arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefCroatian Scientific Bibliography - CROSBIArticle . 2022Data sources: Croatian Scientific Bibliography - CROSBIQueen Mary University of London: Queen Mary Research Online (QMRO)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16150&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert HAL INRAE arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefCroatian Scientific Bibliography - CROSBIArticle . 2022Data sources: Croatian Scientific Bibliography - CROSBIQueen Mary University of London: Queen Mary Research Online (QMRO)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16150&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Wiley Patrick L. Thompson; Patrick L. Thompson; Hamish S. Greig; Jonathan B. Shurin; Jonathan B. Shurin; Pavel Kratina; Ticiana S. A. Carvalho-Pereira; Ticiana S. A. Carvalho-Pereira;doi: 10.1890/11-1595.1
pmid: 22834382
Climate warming is occurring in concert with other anthropogenic changes to ecosystems. However, it is unknown whether and how warming alters the importance of top‐down vs. bottom‐up control over community productivity and variability. We performed a 16‐month factorial experimental manipulation of warming, nutrient enrichment, and predator presence in replicated freshwater pond mesocosms to test their independent and interactive impacts. Warming strengthened trophic cascades from fish to primary producers, and it decreased the impact of eutrophication on the mean and temporal variation of phytoplankton biomass. These impacts varied seasonally, with higher temperatures leading to stronger trophic cascades in winter and weaker algae blooms under eutrophication in summer. Our results suggest that higher temperatures may shift the control of primary production in freshwater ponds toward stronger top‐down and weaker bottom‐up effects. The dampened temporal variability of algal biomass under eutrophication at higher temperatures suggests that warming may stabilize some ecosystem processes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/11-1595.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 236 citations 236 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/11-1595.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Wiley Tauany Rodrigues; Pavel Kratina; Rayanne B. Setubal; Joseph L. S. Ferro; Douglas Hideki Abe; Luiza O. Costa; Clarice Casa Nova; Vinicius F. Farjalla; Aliny P. F. Pires;doi: 10.1111/gcb.17540
pmid: 39435550
ABSTRACTClimate change often facilitates biological invasions, leading to potential interactive impacts of these global drivers on freshwater ecosystems. Although climatic mitigation efforts may reduce the magnitude of these interactive impacts, we are still missing experimental evidence for such effects under multiple climate change scenarios within a multi‐trophic framework. To address this knowledge gap, we experimentally compared the independent and interactive effects of two climate change scenarios (mitigation and business‐as‐usual) and biological invasion on the biomass of major freshwater trophic groups (phytoplankton, zooplankton, periphyton, macroinvertebrates, and a native macrophyte) and the decomposition rate of allochthonous material. Among the independent effects, we found that the business‐as‐usual climate treatment resulted in lower native macrophyte biomass and higher periphyton biomass compared to the climatic baseline and mitigation treatments. This indicates the potential of climate change to alter the relative dominance of different freshwater producers and demonstrates that climate mitigation efforts can counteract these effects. Biological invasion alone increased the biomass of chironomids, a dominant macroinvertebrate group in tropical freshwater ecosystems, demonstrating a compensatory effect on climate change. Climate change and biological invasion interactively reduced the decomposition rate of allochthonous detritus, likely mediated by the feeding preference of abundant chironomids for periphytic algae associated with the presence of non‐native macrophytes. We concluded that (i) climatic mitigation can maintain climate baseline conditions in freshwater ecosystems, and (ii) the interactive effects between future climate scenarios and biological invasion are related to complex cascading interactions among trophic groups on ecosystem processes.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17540&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17540&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United KingdomPublisher:Wiley Funded by:AKA | Global taxonomic, functio...AKA| Global taxonomic, functional and phylogenetic diversity of stream macroinvertebrate communities: unravelling spatial trends, ecological determinants and anthropogenic threats (GloBioTrends)Dieison A. Moi; Margenny Barrios; Giancarlo Tesitore; Maite Burwood; Gustavo Q. Romero; Roger P. Mormul; Pavel Kratina; Leandro Juen; Thaísa S. Michelan; Luciano F. A. Montag; Gabriel M. Cruz; Jorge García‐Girón; Jani Heino; Robert M. Hughes; Bruno R. S. Figueiredo; Franco Teixeira de Mello;pmid: 36994670
Abstract Human land‐use change is a major threat to natural ecosystems worldwide. Nonetheless, the effects of human land‐uses on the structure of plant and animal assemblages and their functional characteristics need to be better understood. Furthermore, the pathways by which human land uses affect ecosystem functions, such as biomass production, still need to be clarified. We compiled a unique dataset of fish, arthropod and macrophyte assemblages from 61 stream ecosystems in two Neotropical biomes: Amazonian rainforest and Uruguayan grasslands. We then tested how the cover of agriculture, pasture, urbanization and afforestation affected the taxonomic richness and functional diversity of those three species assemblages, and the consequences of these effects for animal biomass production. Single trait categories and functional diversity were evaluated, combining recruitment and life‐history, resource and habitat‐use, and body size. The effects of intensive human land‐uses on taxonomic and functional diversities were as strong as other drivers known to affect biodiversity, such as local climate and environmental factors. In both biomes, the taxonomic richness and functional diversity of animal and macrophyte assemblages decreased with increasing cover of agriculture, pasture, and urbanization. Human land‐uses were associated with functional homogenization of both animal and macrophyte assemblages. Human land‐uses reduced animal biomass through direct and indirect pathways mediated by declines in taxonomic and functional diversities. Our findings indicate that converting natural ecosystems to supply human demands results in species loss and trait homogenization across multiple biotic assemblages, ultimately reducing animal biomass production in streams.
Journal of Animal Ec... arrow_drop_down Journal of Animal EcologyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefQueen Mary University of London: Queen Mary Research Online (QMRO)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2656.13924&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Animal Ec... arrow_drop_down Journal of Animal EcologyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefQueen Mary University of London: Queen Mary Research Online (QMRO)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2656.13924&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 United KingdomPublisher:Wiley Dieison A. Moi; Gustavo Q. Romero; Erik Jeppesen; Pavel Kratina; Diego C. Alves; Pablo A. P. Antiqueira; Franco Teixeira de Mello; Bruno R. S. Figueiredo; Claudia C. Bonecker; Aliny P. F. Pires; Louizi S. M. Braghin; Roger P. Mormul;pmid: 34954827
Abstract Under increasing nutrient loading, shallow lakes may shift from a state of clear water dominated by submerged macrophytes to a turbid state dominated by phytoplankton or a shaded state dominated by floating macrophytes. How such regime shifts mediate the relationship between taxonomic and functional diversities (FD) and lake multifunctionality is poorly understood. We employed a detailed database describing a shallow lake over a 12‐year period during which the lake has displayed all the three states (clear, turbid and shaded) to investigate how species richness, FD of fish and zooplankton, ecosystem multifunctionality and five individual ecosystem functions (nitrogen and phosphorus concentrations, standing fish biomass, algae production and light availability) differ among states. We also evaluated how the relationship between biodiversity (species richness and FD) and multifunctionality is affected by regime shifts. We showed that species richness and the FD of fish and zooplankton were highest during the clear state. The clear state also maintained the highest values of multifunctionality as well as standing fish biomass production, algae biomass and light availability, whereas the turbid and shaded states had higher nutrient concentrations. Functional diversity was the best predictor of multifunctionality. The relationship between FD and multifunctionality was strongly positive during the clear state, but such relationship became flatter after the shift to the turbid or shaded state. Our findings illustrate that focusing on functional traits may provide a more mechanistic understanding of how regime shifts affect biodiversity and the consequences for ecosystem functioning. Regime shifts towards a turbid or shaded state negatively affect the taxonomic diversity and FD of fish and zooplankton, which in turn impairs the multifunctionality of shallow lakes.
Aperta - TÜBİTAK Açı... arrow_drop_down Aperta - TÜBİTAK Açık ArşiviOther literature type . 2022License: CC BYData sources: Aperta - TÜBİTAK Açık ArşiviJournal of Animal EcologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefQueen Mary University of London: Queen Mary Research Online (QMRO)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2656.13658&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Aperta - TÜBİTAK Açı... arrow_drop_down Aperta - TÜBİTAK Açık ArşiviOther literature type . 2022License: CC BYData sources: Aperta - TÜBİTAK Açık ArşiviJournal of Animal EcologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefQueen Mary University of London: Queen Mary Research Online (QMRO)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2656.13658&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Embargo end date: 25 Jul 2024 Australia, United Kingdom, Australia, Switzerland, NetherlandsPublisher:Springer Science and Business Media LLC Funded by:UKRI | Biodiversity, ecosystem f..., EC | TERRAGEN, UKRI | Environment East (EnvEast... +6 projectsUKRI| Biodiversity, ecosystem functions and policy across a tropical forest modification gradient ,EC| TERRAGEN ,UKRI| Environment East (EnvEast) Doctoral Training Partnership ,UKRI| Biodiversity, Ecosystem Functions and Policy Across a Tropical Forest Modification Gradient ,UKRI| Science and Solutions for a Changing Planet ,ARC| Discovery Projects - Grant ID: DP140101541 ,UKRI| How important is the ant-termite interaction in African rain forests? ,UKRI| El Nino x forest resilience ,UKRI| BIODIVERSITY AND LAND-USE IMPACTS ON TROPICAL ECOSYSTEM FUNCTION (BALI)Robert M. Ewers; C. David L. Orme; William D. Pearse; Nursyamin Zulkifli; Genevieve Yvon-Durocher; Kalsum M. Yusah; Natalie Yoh; Darren C. J. Yeo; Anna Wong; Joseph Williamson; Clare L. Wilkinson; Fabienne Wiederkehr; Bruce L. Webber; Oliver R. Wearn; Leona Wai; Maisie Vollans; Joshua P. Twining; Edgar C. Turner; Joseph A. Tobias; Jack Thorley; Elizabeth M. Telford; Yit Arn Teh; Heok Hui Tan; Tom Swinfield; Martin Svátek; Matthew Struebig; Nigel Stork; Jani Sleutel; Eleanor M. Slade; Adam Sharp; Adi Shabrani; Sarab S. Sethi; Dave J. I. Seaman; Anati Sawang; Gabrielle Briana Roxby; J. Marcus Rowcliffe; Stephen J. Rossiter; Terhi Riutta; Homathevi Rahman; Lan Qie; Elizabeth Psomas; Aaron Prairie; Frederica Poznansky; Rajeev Pillay; Lorenzo Picinali; Annabel Pianzin; Marion Pfeifer; Jonathan M. Parrett; Ciar D. Noble; Reuben Nilus; Nazirah Mustaffa; Katherine E. Mullin; Simon Mitchell; Amelia R. Mckinlay; Sarah Maunsell; Radim Matula; Michael Massam; Stephanie Martin; Yadvinder Malhi; Noreen Majalap; Catherine S. Maclean; Emma Mackintosh; Sarah H. Luke; Owen T. Lewis; Harry J. Layfield; Isolde Lane-Shaw; Boon Hee Kueh; Pavel Kratina; Oliver Konopik; Roger Kitching; Lois Kinneen; Victoria A. Kemp; Palasiah Jotan; Nick Jones; Evyen W. Jebrail; Michal Hroneš; Sui Peng Heon; David R. Hemprich-Bennett; Jessica K. Haysom; Martina F. Harianja; Jane Hardwick; Nichar Gregory; Ryan Gray; Ross E. J. Gray; Natasha Granville; Richard Gill; Adam Fraser; William A. Foster; Hollie Folkard-Tapp; Robert J. Fletcher; Arman Hadi Fikri; Tom M. Fayle; Aisyah Faruk; Paul Eggleton; David P. Edwards; Rosie Drinkwater; Rory A. Dow; Timm F. Döbert; Raphael K. Didham; Katharine J. M. Dickinson; Nicolas J. Deere; Tijmen de Lorm; Mahadimenakbar M. Dawood; Charles W. Davison; Zoe G. Davies; Richard G. Davies; Martin Dančák; Jeremy Cusack; Elizabeth L. Clare; Arthur Chung; Vun Khen Chey; Philip M. Chapman; Lauren Cator; Daniel Carpenter; Chris Carbone; Kerry Calloway; Emma R. Bush; David F. R. P. Burslem; Keiron D. Brown; Stephen J. Brooks; Ella Brasington; Hayley Brant; Michael J. W. Boyle; Sabine Both; Joshua Blackman; Tom R. Bishop; Jake E. Bicknell; Henry Bernard; Saloni Basrur; Maxwell V. L. Barclay; Holly Barclay; Georgina Atton; Marc Ancrenaz; David C. Aldridge; Olivia Z. Daniel; Glen Reynolds; Cristina Banks-Leite;AbstractLogged and disturbed forests are often viewed as degraded and depauperate environments compared with primary forest. However, they are dynamic ecosystems1 that provide refugia for large amounts of biodiversity2,3, so we cannot afford to underestimate their conservation value4. Here we present empirically defined thresholds for categorizing the conservation value of logged forests, using one of the most comprehensive assessments of taxon responses to habitat degradation in any tropical forest environment. We analysed the impact of logging intensity on the individual occurrence patterns of 1,681 taxa belonging to 86 taxonomic orders and 126 functional groups in Sabah, Malaysia. Our results demonstrate the existence of two conservation-relevant thresholds. First, lightly logged forests (<29% biomass removal) retain high conservation value and a largely intact functional composition, and are therefore likely to recover their pre-logging values if allowed to undergo natural regeneration. Second, the most extreme impacts occur in heavily degraded forests with more than two-thirds (>68%) of their biomass removed, and these are likely to require more expensive measures to recover their biodiversity value. Overall, our data confirm that primary forests are irreplaceable5, but they also reinforce the message that logged forests retain considerable conservation value that should not be overlooked.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2024 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryGriffith University: Griffith Research OnlineArticle . 2024License: CC BYFull-Text: https://hdl.handle.net/10072/431830Data sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Newcastle University Library ePrints ServiceArticle . 2024License: CC BYFull-Text: https://eprints.ncl.ac.uk/300198Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2024License: CC BYFull-Text: http://hdl.handle.net/10044/1/115376Data sources: Bielefeld Academic Search Engine (BASE)Oxford University Research ArchiveArticle . 2024License: CC BYData sources: Oxford University Research ArchiveOxford University Research ArchiveArticle . 2024License: CC BYData sources: Oxford University Research ArchiveAberdeen University Research Archive (AURA)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)Naturalis Institutional RepositoryArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-024-07657-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 9 citations 9 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2024 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryGriffith University: Griffith Research OnlineArticle . 2024License: CC BYFull-Text: https://hdl.handle.net/10072/431830Data sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Newcastle University Library ePrints ServiceArticle . 2024License: CC BYFull-Text: https://eprints.ncl.ac.uk/300198Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2024License: CC BYFull-Text: http://hdl.handle.net/10044/1/115376Data sources: Bielefeld Academic Search Engine (BASE)Oxford University Research ArchiveArticle . 2024License: CC BYData sources: Oxford University Research ArchiveOxford University Research ArchiveArticle . 2024License: CC BYData sources: Oxford University Research ArchiveAberdeen University Research Archive (AURA)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)Naturalis Institutional RepositoryArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-024-07657-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Croatia, United KingdomPublisher:Wiley Authors: Elliott L. Price; Mirela Sertić Perić; Gustavo Q. Romero; Pavel Kratina;pmid: 30712255
Abstract The changes to physical and chemical ecosystem characteristics as a response to pervasive and intensifying land use have the potential to alter the consumer–resource interactions and to rewire the flow of energy through entire food webs. We investigated these structural and functional properties of food webs in stream ecosystems distributed across woodland, agricultural and urban areas in the Zagreb region of Croatia. We compared resource availability and consumer diet composition using stable isotope mixing models and tested how the isotopic variance of basal resources, primary consumers, macroinvertebrate predators and other food web characteristics change with different land‐use types. Combination of increased loading and altered composition of nutrients, lower water discharge and higher light availability at urban sites likely promoted the contribution of aquatic macrophytes to diets of primary consumers. Macroinvertebrate predators shifted their diet, relying more on active filterers at urban sites relative to woodland and agricultural sites. Urban food webs also had lower trophic redundancy (i.e. fewer species at each trophic level) and a more homogenized energy flow from lower to higher trophic levels. There was no effect of land use on isotopic variation of basal resources, primary consumers or macroinvertebrate predators, but all these trophic groups at urban and agricultural sites were 15N‐enriched relative to their counterparts in woodland stream food webs. The physical and chemical ecosystem characteristics associated with intensive land use altered the resource availability, trophic redundancy and the flow of energy to other trophic levels, with potentially negative consequences for community dynamics and ecosystem functioning. These empirical findings indicate that reducing nutrient pollution, agricultural runoffs and maintaining riparian vegetation can mitigate the impacts of land use on structure and function of stream ecosystems.
Journal of Animal Ec... arrow_drop_down Journal of Animal EcologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefCroatian Scientific Bibliography - CROSBIArticle . 2019Data sources: Croatian Scientific Bibliography - CROSBIQueen Mary University of London: Queen Mary Research Online (QMRO)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2656.12955&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 52 citations 52 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Animal Ec... arrow_drop_down Journal of Animal EcologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefCroatian Scientific Bibliography - CROSBIArticle . 2019Data sources: Croatian Scientific Bibliography - CROSBIQueen Mary University of London: Queen Mary Research Online (QMRO)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2656.12955&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United Kingdom, Netherlands, SpainPublisher:Elsevier BV Ignacio Peralta-Maraver; Rachel Stubbington; Shai Arnon; Pavel Kratina; Stefan Krause; Vivian de Mello Cionek; Nei Kavaguichi Leite; Aurea Luiza Lemes da Silva; Sidinei Magela Thomaz; Malte Posselt; Victoria Susan Milner; Andrea Momblanch; Marcelo S. Moretti; Rodolfo L.B. Nóbrega; Daniel M. Perkins; Mauricio M. Petrucio; Isabel Reche; Victor Saito; Hugo Sarmento; Emily Strange; Ricardo Hideo Taniwaki; James White; Gustavo Henrique Zaia Alves; Anne L. Robertson;Riverine ecosystems can be conceptualized as 'bioreactors' (the riverine bioreactor) which retain and decompose a wide range of organic substrates. The metabolic performance of the riverine bioreactor is linked to their community structure, the efficiency of energy transfer along food chains, and complex interactions among biotic and abiotic environmental factors. However, our understanding of the mechanistic functioning and capacity of the riverine bioreactor remains limited. We review the state of knowledge and outline major gaps in the understanding of biotic drivers of organic matter decomposition processes that occur in riverine ecosystems, across habitats, temporal dimensions, and latitudes influenced by climate change. We propose a novel, integrative analytical perspective to assess and predict decomposition processes in riverine ecosystems. We then use this model to analyse data to demonstrate that the size-spectra of a community can be used to predict decomposition rates by analysing an illustrative dataset. This modelling methodology allows comparison of the riverine bioreactor's performance across habitats and at a global scale. Our integrative analytical approach can be applied to advance understanding of the functioning and efficiency of the riverine bioreactor as hotspots of metabolic activity. Application of insights gained from such analyses could inform the development of strategies that promote the functioning of the riverine bioreactor across global ecosystems.
CORE arrow_drop_down Brunel University London: Brunel University Research Archive (BURA)Article . 2021License: CC BY NC NDFull-Text: https://bura.brunel.ac.uk/handle/2438/29809Data sources: Bielefeld Academic Search Engine (BASE)Cranfield University: Collection of E-Research - CERESArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Leiden University Scholarly Publications RepositoryArticle . 2021Data sources: Leiden University Scholarly Publications RepositoryBrunel University Research ArchiveArticle . 2021License: CC BY NC NDData sources: Brunel University Research ArchiveThe Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Bristol: Bristol ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Repositorio Institucional Universidad de GranadaArticle . 2025License: CC BY NC NDData sources: Repositorio Institucional Universidad de GranadaQueen Mary University of London: Queen Mary Research Online (QMRO)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.145494&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down Brunel University London: Brunel University Research Archive (BURA)Article . 2021License: CC BY NC NDFull-Text: https://bura.brunel.ac.uk/handle/2438/29809Data sources: Bielefeld Academic Search Engine (BASE)Cranfield University: Collection of E-Research - CERESArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Leiden University Scholarly Publications RepositoryArticle . 2021Data sources: Leiden University Scholarly Publications RepositoryBrunel University Research ArchiveArticle . 2021License: CC BY NC NDData sources: Brunel University Research ArchiveThe Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Bristol: Bristol ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Repositorio Institucional Universidad de GranadaArticle . 2025License: CC BY NC NDData sources: Repositorio Institucional Universidad de GranadaQueen Mary University of London: Queen Mary Research Online (QMRO)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.145494&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United KingdomPublisher:Wiley Funded by:EC | AQUACOSM-plus, DFG, EC | AQUACOSMEC| AQUACOSM-plus ,DFG ,EC| AQUACOSMVad, Csaba F.; Hanny‐Endrédi, Anett; Kratina, Pavel; Abonyi, András; Mironova, Ekaterina; Murray, David S.; Samchyshyna, Larysa; Tsakalakis, Ioannis; Smeti, Evangelia; Spatharis, Sofie; Tan, Hanrong; Preiler, Christian; Petrusek, Adam; Bengtsson, Mia M.; Ptacnik, Robert;doi: 10.1111/gcb.16692
pmid: 36946870
AbstractClimate change‐related heatwaves are major threats to biodiversity and ecosystem functioning. However, our current understanding of the mechanisms governing community resistance to and recovery from extreme temperature events is still rudimentary. The spatial insurance hypothesis postulates that diverse regional species pools can buffer ecosystem functioning against local disturbances through the immigration of better‐adapted taxa. Yet, experimental evidence for such predictions from multi‐trophic communities and pulse‐type disturbances, like heatwaves, is largely missing. We performed an experimental mesocosm study to test whether species dispersal from natural lakes prior to a simulated heatwave could increase the resistance and recovery of plankton communities. As the buffering effect of dispersal may differ among trophic groups, we independently manipulated the dispersal of organisms from lower (phytoplankton) and higher (zooplankton) trophic levels. The experimental heatwave suppressed total community biomass by having a strong negative effect on zooplankton biomass, probably due to a heat‐induced increase in metabolic costs, resulting in weaker top‐down control on phytoplankton. While zooplankton dispersal did not alleviate the negative heatwave effects on zooplankton biomass, phytoplankton dispersal enhanced biomass recovery at the level of primary producers, providing partial evidence for spatial insurance. The differential responses to dispersal may be linked to the much larger regional species pool of phytoplankton than of zooplankton. Our results suggest high recovery capacity of community biomass independent of dispersal. However, community composition and trophic structure remained altered due to the heatwave, implying longer‐lasting changes in ecosystem functioning.
Global Change Biolog... arrow_drop_down Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16692&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16692&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu