- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Funded by:FCT | Institute Dom LuizFCT| Institute Dom LuizPedro M. M. Soares; Alvaro Semedo; Alvaro Semedo; Daniela C. A. Lima; Rita M. Cardoso; Manuel L. Nascimento;Abstract Climate change is a major challenge for the energy sector, particularly for wind energy onshore and offshore. Climate models are the only tool which is able to produce physical-based projections of future changes in response to increasing greenhouse gas emissions. In the present study, the Western Iberian offshore wind resource is analysed for present and future climates, using a set of regional climate models (RCMs) simulations produced in the framework of the CORDEX experiment at 0.11° resolution (∼12 km), and a regional climate simulation produced with the WRF model at higher resolution (9 km). All these simulations are firstly, evaluated against wind buoy measurements and Cross-Calibrated Multi-Platform (CCMP) wind data, and used to generate two high quality multi-model ensembles based on the individual model’s performance. The results of the WRF simulation and of the two multi-model ensembles are then used to describe the wind resource both for the present and future climates, according to the RCP4.5 and RCP8.5 emission scenarios. This allows the assessment of the climate change signal on the offshore wind and to provide an uncertainty measure of these projections. The vast majority of climate models project reductions of wind speed and wind power for all seasons, with the exception of summer. For the RCP8.5 emission scenario the multi-model ensembles project reductions in power density of around 7% for winter, 4% for spring and 12% for autumn, and increases of 5% for summer. In the latter, and increase up to 20% in power density is forecasted for the Iberian northwest coast. This is sufficient to offset the yearly balance, in as much as no change is expected at a yearly scale for this area. For the remaining west Iberian coast, a yearly reduction of less than 5% is estimated. These results are shared by the two multi-model ensembles and by WRF higher resolution simulation (9 km). The projected changes have the consequence of reducing the annual cycle of power density availability and of its yearly mean values. Finally, for the less aggressive scenario, RCP4.5, the changes have the same signal but with smaller values.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.06.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu64 citations 64 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.06.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Germany, Croatia, Germany, GermanyPublisher:Springer Science and Business Media LLC Funded by:EC | EUCPEC| EUCPAuthors: Jesus Vergara-Temprado; Emanuela Pichelli; Geert Lenderink; Pedro M. M. Soares; +23 AuthorsJesus Vergara-Temprado; Emanuela Pichelli; Geert Lenderink; Pedro M. M. Soares; Stefan Sobolowski; Klaus Keuler; Torge Lorenz; Hylke de Vries; Ole Bøssing Christensen; Danijel Belušić; Heimo Truhetz; Andreas Dobler; Paolo Stocchi; Aditya N. Mishra; Erika Coppola; Christoph Schär; Elizabeth J. Kendon; Rita M. Cardoso; Nikolina Ban; Steven Chan; Steven Chan; Hans-Juergen Panitz; Antoinette Alias; Ségolène Berthou; Cécile Caillaud; Klaus Goergen; Filippo Giorgi;This paper presents the first multi-model ensemble of 10-year, “convection-permitting” kilometer- scale regional climate model (RCM) scenario simulations downscaled from selected CMIP5 GCM projections for historical and end of century time slices. The technique is to first downscale the CMIP5 GCM projections to an intermediate 12–15 km resolution grid using RCMs, and then use these fields to downscale further to the kilometer scale. The aim of the paper is to provide an overview of the representation of the precipitation characteristics and their projected changes over the greater Alpine domain within a Coordinated Regional Climate Downscaling Experiment Flagship Pilot Study and the European Climate Prediction system project, tasked with investigating convective processes at the kilometer scale. An ensemble of 12 simulations performed by different research groups around Europe is analyzed. The simulations are evaluated through comparison with high resolution observations while the complementary ensemble of 12 km resolution driving models is used as a benchmark to evaluate the added value of the convection-permitting ensemble. The results show that the kilometer-scale ensemble is able to improve the representation of fine scale details of mean daily, wet-day/hour frequency, wet- day/hour intensity and heavy precipitation on a seasonal scale, reducing uncertainty over some regions. It also improves the representation of the summer diurnal cycle, showing more realistic onset and peak of convection. The kilometer-scale ensemble refines and enhances the projected patterns of change from the coarser resolution simulations and even modifies the sign of the precipitation intensity change and heavy precipitation over some regions. The convection permitting simulations also show larger changes for all indices over the diurnal cycle, also suggesting a change in the duration of convection over some regions. A larger positive change of frequency of heavy to severe precipitation is found. The results are encouraging towards the use of convection-permitting model ensembles to produce robust assessments of the local impacts of future climate change.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Digitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2021 . Peer-reviewedCroatian Scientific Bibliography - CROSBIArticle . 2021Data sources: Croatian Scientific Bibliography - CROSBIadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00382-021-05657-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 127 citations 127 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Digitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2021 . Peer-reviewedCroatian Scientific Bibliography - CROSBIArticle . 2021Data sources: Croatian Scientific Bibliography - CROSBIadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00382-021-05657-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Embargo end date: 09 Oct 2024 France, Belgium, Spain, Switzerland, Spain, Germany, Ireland, Belgium, Spain, Spain, Croatia, Denmark, Spain, Germany, Germany, Italy, Croatia, SpainPublisher:Springer Science and Business Media LLC Publicly fundedFunded by:HRZZ | Climate of the Adriatic R...HRZZ| Climate of the Adriatic REgion in its global contextJacob, Daniela; Teichmann, Claas; Sobolowski, Stefan; Katragkou, Eleni; Anders, Ivonne; Belda, Michal; Benestad, Rasmus; Boberg, Fredrik; Buonomo, Erasmo; Cardoso, Rita M.; Casanueva, Ana; Christensen, Ole B.; Christensen, Jens Hesselbjerg; Coppola, Erika; De Cruz, Lesley; Davin, Edouard L.; Dobler, Andreas; Domínguez, Marta; Fealy, Rowan; Fernandez, Jesus; Gaertner, Miguel Angel; García-Díez, Markel; Giorgi, Filippo; Gobiet, Andreas; Goergen, Klaus; Gómez-Navarro, Juan José; Alemán, Juan Jesús González; Gutiérrez, Claudia; Gutiérrez, José M.; Güttler, Ivan; Haensler, Andreas; Halenka, Tomáš; Jerez, Sonia; Jiménez-Guerrero, Pedro; Jones, Richard G.; Keuler, Klaus; Kjellström, Erik; Knist, Sebastian; Kotlarski, Sven; Maraun, Douglas; van Meijgaard, Erik; Mercogliano, Paola; Montávez, Juan Pedro; Navarra, Antonio; Nikulin, Grigory; de Noblet-Ducoudré, Nathalie; Panitz, Hans-Juergen; Pfeifer, Susanne; Piazza, Marie; Pichelli, Emanuela; Pietikäinen, Joni-Pekka; Prein, Andreas F.; Preuschmann, Swantje; Rechid, Diana; Rockel, Burkhardt; Romera, Raquel; Sánchez, Enrique; Sieck, Kevin; Soares, Pedro M. M.; Somot, Samuel; Srnec, Lidija; Sørland, Silje Lund; Termonia, Piet; Truhetz, Heimo; Vautard, Robert; Warrach-Sagi, Kirsten; Wulfmeyer, Volker; Jacob, Daniela; Climate Service Center Germany (GERICS), Helmholtz-Zentrum Geesthacht, Hamburg, Germany; Teichmann, Claas; Climate Service Center Germany (GERICS), Helmholtz-Zentrum Geesthacht, Hamburg, Germany; Sobolowski, Stefan; NORCE Norwegian Research Centre, The Bjerknes Centre for Climate Research, Bergen, Norway; Katragkou, Eleni; Department of Meteorology and Climatology, School of Geology, Aristotle University of Thessaloniki, Thessaloniki, Greece; Anders, Ivonne; Central Institute for Meteorology and Geodynamics (ZAMG), Vienna, Austria; Belda, Michal; Department of Atmospheric Physics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic; Benestad, Rasmus; The Norwegian Meteorological Institute, Oslo, Norway; Boberg, Fredrik; Danish Meteorological Institute (DMI), Copenhagen, Denmark; Buonomo, Erasmo; School of Geography and the Environment, University of Oxford, Oxford, UK; Cardoso, Rita M.; Instituto Dom Luiz (IDL), Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal; Casanueva, Ana; Meteorology Group, Department of Applied Mathematics and Computer Science, Universidad de Cantabria, Santander, Spain; Christensen, Ole B.; Danish Meteorological Institute (DMI), Copenhagen, Denmark; Christensen, Jens Hesselbjerg; Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark; Coppola, Erika; International Centre for Theoretical Physics (ICTP), Trieste, Italy; De Cruz, Lesley; Royal Meteorological Institute of Belgium (RMIB), Brussels, Belgium; Davin, Edouard L.; Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland; Dobler, Andreas; The Norwegian Meteorological Institute, Oslo, Norway; Domínguez, Marta; Agencia Estatal de Meteorología, Madrid, Spain; Fealy, Rowan; ICARUS, Department of Geography, Maynooth University, Maynooth, Ireland; Fernandez, Jesus; Meteorology Group, Department of Applied Mathematics and Computer Science, Universidad de Cantabria, Santander, Spain; Gaertner, Miguel Angel; University of Castilla-La Mancha, Toledo, Spain; García-Díez, Markel; Meteorology Group, Department of Applied Mathematics and Computer Science, Universidad de Cantabria, Santander, Spain; Giorgi, Filippo; International Centre for Theoretical Physics (ICTP), Trieste, Italy; Gobiet, Andreas; Central Institute for Meteorology and Geodynamics (ZAMG), Vienna, Austria; Goergen, Klaus; Centre for High-Performance Scientific Computing in Terrestrial Systems, Geoverbund ABC/J, Jülich, Germany; Gómez-Navarro, Juan José; Regional Atmospheric Modeling Group, Department of Physics, University of Murcia, Murcia, Spain; Alemán, Juan Jesús González; University of Castilla-La Mancha, Toledo, Spain; Gutiérrez, Claudia; University of Castilla-La Mancha, Toledo, Spain; Gutiérrez, José M.; Meteorology Group, Instituto de Física de Cantabria (CSIC-Universidad de Cantabria), Santander, Spain; Güttler, Ivan; Croatian Meteorological and Hydrological Service, Zagreb, Croatia; Haensler, Andreas; Climate Service Center Germany (GERICS), Helmholtz-Zentrum Geesthacht, Hamburg, Germany; Halenka, Tomáš; Department of Atmospheric Physics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic; Jerez, Sonia; Regional Atmospheric Modeling Group, Department of Physics, University of Murcia, Murcia, Spain; Jiménez-Guerrero, Pedro; Regional Atmospheric Modeling Group, Department of Physics, University of Murcia, Murcia, Spain; Jones, Richard G.; Met Office Hadley Centre, Exeter, UK; Keuler, Klaus; Chair of Atmospheric Processes, Brandenburg University of Technology Cottbus - Senftenberg, Cottbus, Germany; Kjellström, Erik; Swedish Meteorological and Hydrological Institute, Norrköping, Sweden; Knist, Sebastian; Meteorological Institute, University of Bonn, Bonn, Germany; Kotlarski, Sven; Federal Office of Meteorology and Climatology MeteoSwiss, Zurich-Airport, Switzerland; Maraun, Douglas; Wegener Center for Climate and Global Change, University of Graz, Graz, Austria; van Meijgaard, Erik; Royal Netherlands Meteorological Institute (KNMI), De Bilt, The Netherlands; Mercogliano, Paola; C.I.R.A., Capua, Italy; Montávez, Juan Pedro; Regional Atmospheric Modeling Group, Department of Physics, University of Murcia, Murcia, Spain; Navarra, Antonio; Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), Lecce, Italy; Nikulin, Grigory; Swedish Meteorological and Hydrological Institute, Norrköping, Sweden; de Noblet-Ducoudré, Nathalie; Laboratoire des Sciences du Climat et de l’Environnement, IPSL, Unité Mixte CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette cédex, France; Panitz, Hans-Juergen; Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany; Pfeifer, Susanne; Climate Service Center Germany (GERICS), Helmholtz-Zentrum Geesthacht, Hamburg, Germany; Piazza, Marie; Wegener Center for Climate and Global Change, University of Graz, Graz, Austria; Pichelli, Emanuela; International Centre for Theoretical Physics (ICTP), Trieste, Italy; Pietikäinen, Joni-Pekka; Finnish Meteorological Institute (FMI), Helsinki, Finland; Prein, Andreas F.; National Center for Atmospheric Research, Boulder, USA; Preuschmann, Swantje; Climate Service Center Germany (GERICS), Helmholtz-Zentrum Geesthacht, Hamburg, Germany; Rechid, Diana; Climate Service Center Germany (GERICS), Helmholtz-Zentrum Geesthacht, Hamburg, Germany; Rockel, Burkhardt; Helmholtz-Zentrum Geesthacht, Geesthacht, Germany; Romera, Raquel; ICARUS, Department of Geography, Maynooth University, Maynooth, Ireland; Sánchez, Enrique; ICARUS, Department of Geography, Maynooth University, Maynooth, Ireland; Sieck, Kevin; Climate Service Center Germany (GERICS), Helmholtz-Zentrum Geesthacht, Hamburg, Germany; Soares, Pedro M. M.; Instituto Dom Luiz (IDL), Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal; Somot, Samuel; CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France; Srnec, Lidija; Croatian Meteorological and Hydrological Service, Zagreb, Croatia; Sørland, Silje Lund; Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland; Termonia, Piet; Department of Physics and Astronomy, Ghent University, Ghent, Belgium; Truhetz, Heimo; Wegener Center for Climate and Global Change, University of Graz, Graz, Austria; Vautard, Robert; Laboratoire des Sciences du Climat et de l’Environnement, IPSL, Unité Mixte CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette cédex, France; Warrach-Sagi, Kirsten; Institute of Physics and Meteorology, University of Hohenheim, Stuttgart, Germany; Wulfmeyer, Volker; Institute of Physics and Meteorology, University of Hohenheim, Stuttgart, Germany;AbstractThe European CORDEX (EURO-CORDEX) initiative is a large voluntary effort that seeks to advance regional climate and Earth system science in Europe. As part of the World Climate Research Programme (WCRP) - Coordinated Regional Downscaling Experiment (CORDEX), it shares the broader goals of providing a model evaluation and climate projection framework and improving communication with both the General Circulation Model (GCM) and climate data user communities. EURO-CORDEX oversees the design and coordination of ongoing ensembles of regional climate projections of unprecedented size and resolution (0.11° EUR-11 and 0.44° EUR-44 domains). Additionally, the inclusion of empirical-statistical downscaling allows investigation of much larger multi-model ensembles. These complementary approaches provide a foundation for scientific studies within the climate research community and others. The value of the EURO-CORDEX ensemble is shown via numerous peer-reviewed studies and its use in the development of climate services. Evaluations of the EUR-44 and EUR-11 ensembles also show the benefits of higher resolution. However, significant challenges remain. To further advance scientific understanding, two flagship pilot studies (FPS) were initiated. The first investigates local-regional phenomena at convection-permitting scales over central Europe and the Mediterranean in collaboration with the Med-CORDEX community. The second investigates the impacts of land cover changes on European climate across spatial and temporal scales. Over the coming years, the EURO-CORDEX community looks forward to closer collaboration with other communities, new advances, supporting international initiatives such as the IPCC reports, and continuing to provide the basis for research on regional climate impacts and adaptation in Europe.
Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2020 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)MURAL - Maynooth University Research Archive LibraryArticle . 2020 . Peer-reviewedLicense: CC BY NC SAData sources: MURAL - Maynooth University Research Archive LibraryUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://hal.science/hal-04233066Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-04233066Data sources: Bielefeld Academic Search Engine (BASE)Croatian Scientific Bibliography - CROSBIArticle . 2020Data sources: Croatian Scientific Bibliography - CROSBIRecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTACopenhagen University Research Information SystemArticle . 2020Data sources: Copenhagen University Research Information SystemVrije Universiteit Brussel Research PortalArticle . 2020Data sources: Vrije Universiteit Brussel Research PortalDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedUniversity of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10113-020-01606-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 287 citations 287 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 573visibility views 573 download downloads 627 Powered bymore_vert Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2020 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)MURAL - Maynooth University Research Archive LibraryArticle . 2020 . Peer-reviewedLicense: CC BY NC SAData sources: MURAL - Maynooth University Research Archive LibraryUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://hal.science/hal-04233066Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-04233066Data sources: Bielefeld Academic Search Engine (BASE)Croatian Scientific Bibliography - CROSBIArticle . 2020Data sources: Croatian Scientific Bibliography - CROSBIRecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTACopenhagen University Research Information SystemArticle . 2020Data sources: Copenhagen University Research Information SystemVrije Universiteit Brussel Research PortalArticle . 2020Data sources: Vrije Universiteit Brussel Research PortalDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedUniversity of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10113-020-01606-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 SwitzerlandPublisher:Elsevier BV Authors: Campaniço, Hugo; Hollmuller, Pierre; Soares, Pedro M.M.;Abstract The objective of this article is to develop and test a simplified method to compute the savings in building cooling demand by use of passive cooling systems based on ventilation (direct night ventilation, air–soil heat exchangers, controlled thermal phase-shifting, evaporative cooling, as well as possible combinations thereof). The systems are characterized in terms of a climatic cooling potential, independently of any building, which is then compared to the cooling load of a particular building. The method is tested against an extensive numerical simulation campaign, combining diverse passive cooling systems and sizes with diverse constructive and operational modes for an administrative building situated in Geneva. The key point of the simplified method is to choose an appropriate time resolution, for taking into account the building thermal inertia. Although best results are obtained with a daily resolution, good results are also obtained with monthly data, where an overestimation of the passive cooling fraction remains less than 20% in half of the cases. This opens way for using the method for first assessing the potential of these passive cooling techniques on a large spatiotemporal scale, for which integrated building and system simulation becomes prohibitive.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.08.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 49 citations 49 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.08.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 PortugalPublisher:Springer Science and Business Media LLC Joana R. Araújo; Alexandre M. Ramos; Pedro M. M. Soares; Raquel Melo; Sérgio C. Oliveira; Ricardo M. Trigo;AbstractRainfall is considered the most important physical process for landslide triggering in Portugal. It is expected that changes in the precipitation regimes in the region, as a direct consequence of climate change, will have influence in the occurrence of extreme rainfall events that will be more frequently, throughout the century. The aim of this study relied on the assessment of the projected future changes in the extreme precipitation over Portugal mainland and quantifying the correlation between extreme rainfall events and landslide events through Rainfall Triggering Thresholds (RTTs). This methodology was applied for two specific locations within two Portuguese areas of great geomorphological interest. To analyze the past frequency of landslide events, we resorted to the DISASTER database. To evaluate the possible projected changes in the extreme precipitation, we used the Iberia02 dataset and the EURO-CORDEX models’ runs at a 0.11° spatial resolution. It was analyzed the models’ performance to simulate extreme values in the precipitation series. The simulated precipitation relied on RCM-GCM models’ runs, from EURO-CORDEX, and a multimodel ensemble mean. The extreme precipitation assessment relied on the values associated to the highest percentiles, and to the values associated to the RTTs’ percentiles. To evaluate the possible future changes of the precipitation series, both at the most representative percentiles and RTTs’ percentiles, a comparison was made between the simulated values from EURO-CORDEX historical runs (1971–2000) and the simulated values from EURO-CORDEX future runs (2071–2100), considering two concentration scenarios: RCP 4.5 and RCP 8.5. In the models’ performance, the multimodel ensemble mean appeared to be within the best representing models. As for the projected changes in the extreme precipitation for the end of the century, when following the RCP 4.5 scenario, most models projected an increase in the extreme values, whereas, when following the RCP 8.5 scenario, most models projected a decrease in the extreme values.
Landslides arrow_drop_down Universidade de Lisboa: Repositório.ULArticle . 2022License: CC BYData sources: Universidade de Lisboa: Repositório.ULadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10346-022-01895-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 35 citations 35 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Landslides arrow_drop_down Universidade de Lisboa: Repositório.ULArticle . 2022License: CC BYData sources: Universidade de Lisboa: Repositório.ULadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10346-022-01895-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Pedro M. M. Soares; Antonio G. Goulart; Gervásio Annes Degrazia; C.J. Kipper; Marco Tulio de Vilhena;AbstractThe derivation of a theoretical model for the decaying convective turbulence in a shear-buoyancy planetary boundary layer is considered. The model is based on the dynamical equation for the energy density spectrum in which the buoyancy, mechanical and inertial transfer terms are retained. The parameterization for the buoyancy and mechanical terms is provided by the flux Richardson number. Regarding the inertial term an approach employing Heisenberg’s spectral transfer theory is used to describe the turbulence friction, caused by small eddies, responsible for the energy dissipation of the large eddies. Therefore, a novelty in this study is to utilize the Adomian decomposition method to solve directly without linearization the energy density spectrum equation, with this the nonlinear nature of the problem is preserved. Therefore, the errors found are only due to the parameterization used. Comparison of the theoretical model is performed against large-eddy simulation data for a decaying convective turbulence in a shear-buoyancy planetary boundary layer. The results show that the existence of a mechanical turbulent driving mechanism reduces in an accentuated way the energy density spectrum and turbulent kinetic energy decay generated by the decaying convective production in a shear-buoyancy planetary boundary layer.
Physica A Statistica... arrow_drop_down Physica A Statistical Mechanics and its ApplicationsArticleLicense: implied-oaData sources: UnpayWallPhysica A Statistical Mechanics and its ApplicationsArticle . 2011License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)Physica A Statistical Mechanics and its ApplicationsArticle . 2011 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.physa.2011.04.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Physica A Statistica... arrow_drop_down Physica A Statistical Mechanics and its ApplicationsArticleLicense: implied-oaData sources: UnpayWallPhysica A Statistical Mechanics and its ApplicationsArticle . 2011License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)Physica A Statistical Mechanics and its ApplicationsArticle . 2011 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.physa.2011.04.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Springer Science and Business Media LLC Funded by:FCT | Institute Dom LuizFCT| Institute Dom LuizAuthors: Miguel Nogueira; Pedro M. M. Soares; Ricardo Tomé; Rita M. Cardoso;We present a detailed evaluation of wind energy density (WED) over Portugal, based on the EURO-CORDEX database of high-resolution regional climate model (RCM) simulations. Most RCMs showed reasonable accuracy in reproducing the observed near-surface wind speed. The climatological patterns of WED displayed large sub-regional heterogeneity, with higher values over coastal regions and steep orography. Subsequently, we investigated the future changes of WED throughout the twenty-first century, considering mid- and end-century periods, and two emission scenarios (RCP4.5 and RCP8.5). On the yearly average, the multi-model ensemble WED changes were below 10% (15%) under RCP4.5 (RCP8.5). However, the projected WED anomalies displayed strong seasonality, dominated by low positive values in summer (< 10% for both scenarios), negative values in winter and spring (up to − 10% (− 20%) under RCP4.5 (RCP8.5)), and stronger negative anomalies in autumn (up to − 25% (− 35%) under RCP4.5 (RCP8.5)). These projected WED anomalies displayed large sub-regional variability. The largest reductions (and lowest increases) are linked to the northern and central-eastern elevated terrain, and the southwestern coast. In contrast, the largest increases (and lowest reductions) are linked to the central-western orographic features of moderate elevation. The projections also showed changes in inter-annual variability of WED, with small increases for annual averages, but with distinct behavior when considering year-to-year variability over a specific season: small increases in winter, larger increases in summer, slight decrease in autumn, and no relevant change in spring. The changes in inter-annual variability also displayed strong dependence on the underlying terrain. Finally, we found significant model spread in the magnitude of projected WED anomalies and inter-annual variability, affecting even the signal of the changes.
Theoretical and Appl... arrow_drop_down Theoretical and Applied ClimatologyArticle . 2018 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00704-018-2495-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Theoretical and Appl... arrow_drop_down Theoretical and Applied ClimatologyArticle . 2018 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00704-018-2495-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Wiley María Ofelia Molina; Joao Careto; Claudia Gutiérrez; Enrique Sánchez; Pedro Soares;AbstractIn the context of the CORDEX project, an ensemble of regional climate simulations (RCMs) of high resolution on a 0.11° grid has been generated for Europe with the objective of improving the representation of regional to local‐scale atmospheric phenomena. However, such simulations are computationally expensive and do not always reveal added value. Here, a recently proposed metric (the distribution added value [DAV]) is used to determine the added value of all available EURO‐CORDEX high‐resolution simulations at 0.11° for daily mean wind speed compared to their respective coarser‐gridded 0.44° counterparts and their driving fields, hindcast and historical experiments. The analysis consists in comparing the degree of similarity between normalized wind probability density function (PDF) of simulations and observations. In addition, the use of a normalized PDF allows for a direct spatial comparison among the different regions and time periods. Results show that RCMs add value to their reanalysis or forcing global model, but the nature and magnitude of the improvement on the representation of wind speed may vary depending on the model, region and season. We found most RCMS at 0.11° to outperform models at the 0.44° resolution in terms of their quality in capturing the measured wind speed PDF. When looking at the upper tail of the wind speed PDF, the benefits of downscaling are generally larger. At the regional scale, added value is obtained for 0.11° with respect to 0.44° resolution for all subdomains studied, particularly over the Mediterranean, the Iberian Peninsula and the Alps. When analysing the added value dependence on altitude, runs at 0.11° models represent better the locations below 50 m and above 350 m of altitude, and the 0.44° increasingly under‐perform for higher altitudes. Overall, DAV are larger at 0.11° than at 0.44° resolution, due to a better performance of local‐scale feedbacks at high resolution.
International Journa... arrow_drop_down International Journal of ClimatologyArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/joc.7877&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of ClimatologyArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/joc.7877&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Funded by:FCT | PD/BD/114487/2016FCT| PD/BD/114487/2016Authors: Pedro M. M. Soares; Guilherme Carrilho da Graça; João Bravo Dias;Abstract In the last decade, building energy simulation (BES) became a central component in building energy systems’ design and optimization. For each building location, BES requires one year of hourly weather data. Most buildings are designed to last 50+ years, consequently, the building design phase should include BES with future weather files considering climate change. This paper presents a comparative study of two methods to produce future climate hourly data files for BES: Morphing and typical meteorological year of future climate (F-TMY). The study uses data from a high-resolution (9 km) regional climate atmospheric model simulation of Iberia, spanning 10 years of historical and future hourly data. This study compares both methods by analyzing anomalies in air temperature, and the impact in BES predictions of annual and peak energy consumption for space heating, cooling and ventilation in 4 buildings. Additionally, this study performs a sensitivity analysis of morphing method. The analysis shows that F-TMY is representative of the multi-year simulation for BES applications. A high-quality Morphed TMY weather file has a similar performance compared to F-TMY (average difference: 8% versus 7%). Morphing based on different baseline climates, low-grid resolution and/or outdated climate projections leads to BES average differences of 16%-20%.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2019.109556&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2019.109556&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Daniela C.A. Lima; Virgílio A. Bento; Gil Lemos; Miguel Nogueira; Pedro M.M. Soares;Climate indices are developed to determine climate impacts on different socioeconomic sectors, providing a comprehensive communication of complex information arising from climate change assessments. These may be used by decision-makers to properly and timely implement climate change adaptation measures in different sectors of human activity, such as agriculture and crop selection, forest, and coastal management, among others. Here, we present a comprehensive analysis of climate indices estimated for Portugal, known to be in a climate change hotspot. A multi-variable 13-member ensemble of EURO-CORDEX Regional Climate Model simulations is used to assess future climate change projections of climate indices, exploring three future scenarios until 2100, and considering three different emission scenarios, namely the RCP2.6, RCP4.5 and RCP8.5. Aligned with warming and drying projected conditions, an increase in the number of summer days to very hot days is expected to become more frequent and intense, with more impact over interior regions. Tropical nights are projected to become more common, affecting the thermal comfort conditions and threatening future human health. Although the future projections show an overall reduction in the number of wet days, the amount of precipitation during short-time wet periods will increase leading to an intensification of moderate/heavy rainfall. These results corroborate that Portugal is in a climate change hotspot, calling for efficient policymaking by the relevant authorities. Indeed, such projections call for an urgent planning and development of adaptation measures to safeguard critical sectors of the Portuguese society, such as agriculture, forests, coastal management, among others.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cliser.2023.100377&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cliser.2023.100377&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Funded by:FCT | Institute Dom LuizFCT| Institute Dom LuizPedro M. M. Soares; Alvaro Semedo; Alvaro Semedo; Daniela C. A. Lima; Rita M. Cardoso; Manuel L. Nascimento;Abstract Climate change is a major challenge for the energy sector, particularly for wind energy onshore and offshore. Climate models are the only tool which is able to produce physical-based projections of future changes in response to increasing greenhouse gas emissions. In the present study, the Western Iberian offshore wind resource is analysed for present and future climates, using a set of regional climate models (RCMs) simulations produced in the framework of the CORDEX experiment at 0.11° resolution (∼12 km), and a regional climate simulation produced with the WRF model at higher resolution (9 km). All these simulations are firstly, evaluated against wind buoy measurements and Cross-Calibrated Multi-Platform (CCMP) wind data, and used to generate two high quality multi-model ensembles based on the individual model’s performance. The results of the WRF simulation and of the two multi-model ensembles are then used to describe the wind resource both for the present and future climates, according to the RCP4.5 and RCP8.5 emission scenarios. This allows the assessment of the climate change signal on the offshore wind and to provide an uncertainty measure of these projections. The vast majority of climate models project reductions of wind speed and wind power for all seasons, with the exception of summer. For the RCP8.5 emission scenario the multi-model ensembles project reductions in power density of around 7% for winter, 4% for spring and 12% for autumn, and increases of 5% for summer. In the latter, and increase up to 20% in power density is forecasted for the Iberian northwest coast. This is sufficient to offset the yearly balance, in as much as no change is expected at a yearly scale for this area. For the remaining west Iberian coast, a yearly reduction of less than 5% is estimated. These results are shared by the two multi-model ensembles and by WRF higher resolution simulation (9 km). The projected changes have the consequence of reducing the annual cycle of power density availability and of its yearly mean values. Finally, for the less aggressive scenario, RCP4.5, the changes have the same signal but with smaller values.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.06.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu64 citations 64 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.06.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Germany, Croatia, Germany, GermanyPublisher:Springer Science and Business Media LLC Funded by:EC | EUCPEC| EUCPAuthors: Jesus Vergara-Temprado; Emanuela Pichelli; Geert Lenderink; Pedro M. M. Soares; +23 AuthorsJesus Vergara-Temprado; Emanuela Pichelli; Geert Lenderink; Pedro M. M. Soares; Stefan Sobolowski; Klaus Keuler; Torge Lorenz; Hylke de Vries; Ole Bøssing Christensen; Danijel Belušić; Heimo Truhetz; Andreas Dobler; Paolo Stocchi; Aditya N. Mishra; Erika Coppola; Christoph Schär; Elizabeth J. Kendon; Rita M. Cardoso; Nikolina Ban; Steven Chan; Steven Chan; Hans-Juergen Panitz; Antoinette Alias; Ségolène Berthou; Cécile Caillaud; Klaus Goergen; Filippo Giorgi;This paper presents the first multi-model ensemble of 10-year, “convection-permitting” kilometer- scale regional climate model (RCM) scenario simulations downscaled from selected CMIP5 GCM projections for historical and end of century time slices. The technique is to first downscale the CMIP5 GCM projections to an intermediate 12–15 km resolution grid using RCMs, and then use these fields to downscale further to the kilometer scale. The aim of the paper is to provide an overview of the representation of the precipitation characteristics and their projected changes over the greater Alpine domain within a Coordinated Regional Climate Downscaling Experiment Flagship Pilot Study and the European Climate Prediction system project, tasked with investigating convective processes at the kilometer scale. An ensemble of 12 simulations performed by different research groups around Europe is analyzed. The simulations are evaluated through comparison with high resolution observations while the complementary ensemble of 12 km resolution driving models is used as a benchmark to evaluate the added value of the convection-permitting ensemble. The results show that the kilometer-scale ensemble is able to improve the representation of fine scale details of mean daily, wet-day/hour frequency, wet- day/hour intensity and heavy precipitation on a seasonal scale, reducing uncertainty over some regions. It also improves the representation of the summer diurnal cycle, showing more realistic onset and peak of convection. The kilometer-scale ensemble refines and enhances the projected patterns of change from the coarser resolution simulations and even modifies the sign of the precipitation intensity change and heavy precipitation over some regions. The convection permitting simulations also show larger changes for all indices over the diurnal cycle, also suggesting a change in the duration of convection over some regions. A larger positive change of frequency of heavy to severe precipitation is found. The results are encouraging towards the use of convection-permitting model ensembles to produce robust assessments of the local impacts of future climate change.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Digitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2021 . Peer-reviewedCroatian Scientific Bibliography - CROSBIArticle . 2021Data sources: Croatian Scientific Bibliography - CROSBIadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00382-021-05657-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 127 citations 127 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Digitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2021 . Peer-reviewedCroatian Scientific Bibliography - CROSBIArticle . 2021Data sources: Croatian Scientific Bibliography - CROSBIadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00382-021-05657-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Embargo end date: 09 Oct 2024 France, Belgium, Spain, Switzerland, Spain, Germany, Ireland, Belgium, Spain, Spain, Croatia, Denmark, Spain, Germany, Germany, Italy, Croatia, SpainPublisher:Springer Science and Business Media LLC Publicly fundedFunded by:HRZZ | Climate of the Adriatic R...HRZZ| Climate of the Adriatic REgion in its global contextJacob, Daniela; Teichmann, Claas; Sobolowski, Stefan; Katragkou, Eleni; Anders, Ivonne; Belda, Michal; Benestad, Rasmus; Boberg, Fredrik; Buonomo, Erasmo; Cardoso, Rita M.; Casanueva, Ana; Christensen, Ole B.; Christensen, Jens Hesselbjerg; Coppola, Erika; De Cruz, Lesley; Davin, Edouard L.; Dobler, Andreas; Domínguez, Marta; Fealy, Rowan; Fernandez, Jesus; Gaertner, Miguel Angel; García-Díez, Markel; Giorgi, Filippo; Gobiet, Andreas; Goergen, Klaus; Gómez-Navarro, Juan José; Alemán, Juan Jesús González; Gutiérrez, Claudia; Gutiérrez, José M.; Güttler, Ivan; Haensler, Andreas; Halenka, Tomáš; Jerez, Sonia; Jiménez-Guerrero, Pedro; Jones, Richard G.; Keuler, Klaus; Kjellström, Erik; Knist, Sebastian; Kotlarski, Sven; Maraun, Douglas; van Meijgaard, Erik; Mercogliano, Paola; Montávez, Juan Pedro; Navarra, Antonio; Nikulin, Grigory; de Noblet-Ducoudré, Nathalie; Panitz, Hans-Juergen; Pfeifer, Susanne; Piazza, Marie; Pichelli, Emanuela; Pietikäinen, Joni-Pekka; Prein, Andreas F.; Preuschmann, Swantje; Rechid, Diana; Rockel, Burkhardt; Romera, Raquel; Sánchez, Enrique; Sieck, Kevin; Soares, Pedro M. M.; Somot, Samuel; Srnec, Lidija; Sørland, Silje Lund; Termonia, Piet; Truhetz, Heimo; Vautard, Robert; Warrach-Sagi, Kirsten; Wulfmeyer, Volker; Jacob, Daniela; Climate Service Center Germany (GERICS), Helmholtz-Zentrum Geesthacht, Hamburg, Germany; Teichmann, Claas; Climate Service Center Germany (GERICS), Helmholtz-Zentrum Geesthacht, Hamburg, Germany; Sobolowski, Stefan; NORCE Norwegian Research Centre, The Bjerknes Centre for Climate Research, Bergen, Norway; Katragkou, Eleni; Department of Meteorology and Climatology, School of Geology, Aristotle University of Thessaloniki, Thessaloniki, Greece; Anders, Ivonne; Central Institute for Meteorology and Geodynamics (ZAMG), Vienna, Austria; Belda, Michal; Department of Atmospheric Physics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic; Benestad, Rasmus; The Norwegian Meteorological Institute, Oslo, Norway; Boberg, Fredrik; Danish Meteorological Institute (DMI), Copenhagen, Denmark; Buonomo, Erasmo; School of Geography and the Environment, University of Oxford, Oxford, UK; Cardoso, Rita M.; Instituto Dom Luiz (IDL), Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal; Casanueva, Ana; Meteorology Group, Department of Applied Mathematics and Computer Science, Universidad de Cantabria, Santander, Spain; Christensen, Ole B.; Danish Meteorological Institute (DMI), Copenhagen, Denmark; Christensen, Jens Hesselbjerg; Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark; Coppola, Erika; International Centre for Theoretical Physics (ICTP), Trieste, Italy; De Cruz, Lesley; Royal Meteorological Institute of Belgium (RMIB), Brussels, Belgium; Davin, Edouard L.; Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland; Dobler, Andreas; The Norwegian Meteorological Institute, Oslo, Norway; Domínguez, Marta; Agencia Estatal de Meteorología, Madrid, Spain; Fealy, Rowan; ICARUS, Department of Geography, Maynooth University, Maynooth, Ireland; Fernandez, Jesus; Meteorology Group, Department of Applied Mathematics and Computer Science, Universidad de Cantabria, Santander, Spain; Gaertner, Miguel Angel; University of Castilla-La Mancha, Toledo, Spain; García-Díez, Markel; Meteorology Group, Department of Applied Mathematics and Computer Science, Universidad de Cantabria, Santander, Spain; Giorgi, Filippo; International Centre for Theoretical Physics (ICTP), Trieste, Italy; Gobiet, Andreas; Central Institute for Meteorology and Geodynamics (ZAMG), Vienna, Austria; Goergen, Klaus; Centre for High-Performance Scientific Computing in Terrestrial Systems, Geoverbund ABC/J, Jülich, Germany; Gómez-Navarro, Juan José; Regional Atmospheric Modeling Group, Department of Physics, University of Murcia, Murcia, Spain; Alemán, Juan Jesús González; University of Castilla-La Mancha, Toledo, Spain; Gutiérrez, Claudia; University of Castilla-La Mancha, Toledo, Spain; Gutiérrez, José M.; Meteorology Group, Instituto de Física de Cantabria (CSIC-Universidad de Cantabria), Santander, Spain; Güttler, Ivan; Croatian Meteorological and Hydrological Service, Zagreb, Croatia; Haensler, Andreas; Climate Service Center Germany (GERICS), Helmholtz-Zentrum Geesthacht, Hamburg, Germany; Halenka, Tomáš; Department of Atmospheric Physics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic; Jerez, Sonia; Regional Atmospheric Modeling Group, Department of Physics, University of Murcia, Murcia, Spain; Jiménez-Guerrero, Pedro; Regional Atmospheric Modeling Group, Department of Physics, University of Murcia, Murcia, Spain; Jones, Richard G.; Met Office Hadley Centre, Exeter, UK; Keuler, Klaus; Chair of Atmospheric Processes, Brandenburg University of Technology Cottbus - Senftenberg, Cottbus, Germany; Kjellström, Erik; Swedish Meteorological and Hydrological Institute, Norrköping, Sweden; Knist, Sebastian; Meteorological Institute, University of Bonn, Bonn, Germany; Kotlarski, Sven; Federal Office of Meteorology and Climatology MeteoSwiss, Zurich-Airport, Switzerland; Maraun, Douglas; Wegener Center for Climate and Global Change, University of Graz, Graz, Austria; van Meijgaard, Erik; Royal Netherlands Meteorological Institute (KNMI), De Bilt, The Netherlands; Mercogliano, Paola; C.I.R.A., Capua, Italy; Montávez, Juan Pedro; Regional Atmospheric Modeling Group, Department of Physics, University of Murcia, Murcia, Spain; Navarra, Antonio; Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), Lecce, Italy; Nikulin, Grigory; Swedish Meteorological and Hydrological Institute, Norrköping, Sweden; de Noblet-Ducoudré, Nathalie; Laboratoire des Sciences du Climat et de l’Environnement, IPSL, Unité Mixte CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette cédex, France; Panitz, Hans-Juergen; Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany; Pfeifer, Susanne; Climate Service Center Germany (GERICS), Helmholtz-Zentrum Geesthacht, Hamburg, Germany; Piazza, Marie; Wegener Center for Climate and Global Change, University of Graz, Graz, Austria; Pichelli, Emanuela; International Centre for Theoretical Physics (ICTP), Trieste, Italy; Pietikäinen, Joni-Pekka; Finnish Meteorological Institute (FMI), Helsinki, Finland; Prein, Andreas F.; National Center for Atmospheric Research, Boulder, USA; Preuschmann, Swantje; Climate Service Center Germany (GERICS), Helmholtz-Zentrum Geesthacht, Hamburg, Germany; Rechid, Diana; Climate Service Center Germany (GERICS), Helmholtz-Zentrum Geesthacht, Hamburg, Germany; Rockel, Burkhardt; Helmholtz-Zentrum Geesthacht, Geesthacht, Germany; Romera, Raquel; ICARUS, Department of Geography, Maynooth University, Maynooth, Ireland; Sánchez, Enrique; ICARUS, Department of Geography, Maynooth University, Maynooth, Ireland; Sieck, Kevin; Climate Service Center Germany (GERICS), Helmholtz-Zentrum Geesthacht, Hamburg, Germany; Soares, Pedro M. M.; Instituto Dom Luiz (IDL), Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal; Somot, Samuel; CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France; Srnec, Lidija; Croatian Meteorological and Hydrological Service, Zagreb, Croatia; Sørland, Silje Lund; Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland; Termonia, Piet; Department of Physics and Astronomy, Ghent University, Ghent, Belgium; Truhetz, Heimo; Wegener Center for Climate and Global Change, University of Graz, Graz, Austria; Vautard, Robert; Laboratoire des Sciences du Climat et de l’Environnement, IPSL, Unité Mixte CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette cédex, France; Warrach-Sagi, Kirsten; Institute of Physics and Meteorology, University of Hohenheim, Stuttgart, Germany; Wulfmeyer, Volker; Institute of Physics and Meteorology, University of Hohenheim, Stuttgart, Germany;AbstractThe European CORDEX (EURO-CORDEX) initiative is a large voluntary effort that seeks to advance regional climate and Earth system science in Europe. As part of the World Climate Research Programme (WCRP) - Coordinated Regional Downscaling Experiment (CORDEX), it shares the broader goals of providing a model evaluation and climate projection framework and improving communication with both the General Circulation Model (GCM) and climate data user communities. EURO-CORDEX oversees the design and coordination of ongoing ensembles of regional climate projections of unprecedented size and resolution (0.11° EUR-11 and 0.44° EUR-44 domains). Additionally, the inclusion of empirical-statistical downscaling allows investigation of much larger multi-model ensembles. These complementary approaches provide a foundation for scientific studies within the climate research community and others. The value of the EURO-CORDEX ensemble is shown via numerous peer-reviewed studies and its use in the development of climate services. Evaluations of the EUR-44 and EUR-11 ensembles also show the benefits of higher resolution. However, significant challenges remain. To further advance scientific understanding, two flagship pilot studies (FPS) were initiated. The first investigates local-regional phenomena at convection-permitting scales over central Europe and the Mediterranean in collaboration with the Med-CORDEX community. The second investigates the impacts of land cover changes on European climate across spatial and temporal scales. Over the coming years, the EURO-CORDEX community looks forward to closer collaboration with other communities, new advances, supporting international initiatives such as the IPCC reports, and continuing to provide the basis for research on regional climate impacts and adaptation in Europe.
Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2020 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)MURAL - Maynooth University Research Archive LibraryArticle . 2020 . Peer-reviewedLicense: CC BY NC SAData sources: MURAL - Maynooth University Research Archive LibraryUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://hal.science/hal-04233066Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-04233066Data sources: Bielefeld Academic Search Engine (BASE)Croatian Scientific Bibliography - CROSBIArticle . 2020Data sources: Croatian Scientific Bibliography - CROSBIRecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTACopenhagen University Research Information SystemArticle . 2020Data sources: Copenhagen University Research Information SystemVrije Universiteit Brussel Research PortalArticle . 2020Data sources: Vrije Universiteit Brussel Research PortalDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedUniversity of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10113-020-01606-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 287 citations 287 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 573visibility views 573 download downloads 627 Powered bymore_vert Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2020 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)MURAL - Maynooth University Research Archive LibraryArticle . 2020 . Peer-reviewedLicense: CC BY NC SAData sources: MURAL - Maynooth University Research Archive LibraryUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://hal.science/hal-04233066Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-04233066Data sources: Bielefeld Academic Search Engine (BASE)Croatian Scientific Bibliography - CROSBIArticle . 2020Data sources: Croatian Scientific Bibliography - CROSBIRecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTACopenhagen University Research Information SystemArticle . 2020Data sources: Copenhagen University Research Information SystemVrije Universiteit Brussel Research PortalArticle . 2020Data sources: Vrije Universiteit Brussel Research PortalDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedUniversity of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10113-020-01606-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 SwitzerlandPublisher:Elsevier BV Authors: Campaniço, Hugo; Hollmuller, Pierre; Soares, Pedro M.M.;Abstract The objective of this article is to develop and test a simplified method to compute the savings in building cooling demand by use of passive cooling systems based on ventilation (direct night ventilation, air–soil heat exchangers, controlled thermal phase-shifting, evaporative cooling, as well as possible combinations thereof). The systems are characterized in terms of a climatic cooling potential, independently of any building, which is then compared to the cooling load of a particular building. The method is tested against an extensive numerical simulation campaign, combining diverse passive cooling systems and sizes with diverse constructive and operational modes for an administrative building situated in Geneva. The key point of the simplified method is to choose an appropriate time resolution, for taking into account the building thermal inertia. Although best results are obtained with a daily resolution, good results are also obtained with monthly data, where an overestimation of the passive cooling fraction remains less than 20% in half of the cases. This opens way for using the method for first assessing the potential of these passive cooling techniques on a large spatiotemporal scale, for which integrated building and system simulation becomes prohibitive.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.08.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 49 citations 49 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.08.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 PortugalPublisher:Springer Science and Business Media LLC Joana R. Araújo; Alexandre M. Ramos; Pedro M. M. Soares; Raquel Melo; Sérgio C. Oliveira; Ricardo M. Trigo;AbstractRainfall is considered the most important physical process for landslide triggering in Portugal. It is expected that changes in the precipitation regimes in the region, as a direct consequence of climate change, will have influence in the occurrence of extreme rainfall events that will be more frequently, throughout the century. The aim of this study relied on the assessment of the projected future changes in the extreme precipitation over Portugal mainland and quantifying the correlation between extreme rainfall events and landslide events through Rainfall Triggering Thresholds (RTTs). This methodology was applied for two specific locations within two Portuguese areas of great geomorphological interest. To analyze the past frequency of landslide events, we resorted to the DISASTER database. To evaluate the possible projected changes in the extreme precipitation, we used the Iberia02 dataset and the EURO-CORDEX models’ runs at a 0.11° spatial resolution. It was analyzed the models’ performance to simulate extreme values in the precipitation series. The simulated precipitation relied on RCM-GCM models’ runs, from EURO-CORDEX, and a multimodel ensemble mean. The extreme precipitation assessment relied on the values associated to the highest percentiles, and to the values associated to the RTTs’ percentiles. To evaluate the possible future changes of the precipitation series, both at the most representative percentiles and RTTs’ percentiles, a comparison was made between the simulated values from EURO-CORDEX historical runs (1971–2000) and the simulated values from EURO-CORDEX future runs (2071–2100), considering two concentration scenarios: RCP 4.5 and RCP 8.5. In the models’ performance, the multimodel ensemble mean appeared to be within the best representing models. As for the projected changes in the extreme precipitation for the end of the century, when following the RCP 4.5 scenario, most models projected an increase in the extreme values, whereas, when following the RCP 8.5 scenario, most models projected a decrease in the extreme values.
Landslides arrow_drop_down Universidade de Lisboa: Repositório.ULArticle . 2022License: CC BYData sources: Universidade de Lisboa: Repositório.ULadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10346-022-01895-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 35 citations 35 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Landslides arrow_drop_down Universidade de Lisboa: Repositório.ULArticle . 2022License: CC BYData sources: Universidade de Lisboa: Repositório.ULadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10346-022-01895-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Pedro M. M. Soares; Antonio G. Goulart; Gervásio Annes Degrazia; C.J. Kipper; Marco Tulio de Vilhena;AbstractThe derivation of a theoretical model for the decaying convective turbulence in a shear-buoyancy planetary boundary layer is considered. The model is based on the dynamical equation for the energy density spectrum in which the buoyancy, mechanical and inertial transfer terms are retained. The parameterization for the buoyancy and mechanical terms is provided by the flux Richardson number. Regarding the inertial term an approach employing Heisenberg’s spectral transfer theory is used to describe the turbulence friction, caused by small eddies, responsible for the energy dissipation of the large eddies. Therefore, a novelty in this study is to utilize the Adomian decomposition method to solve directly without linearization the energy density spectrum equation, with this the nonlinear nature of the problem is preserved. Therefore, the errors found are only due to the parameterization used. Comparison of the theoretical model is performed against large-eddy simulation data for a decaying convective turbulence in a shear-buoyancy planetary boundary layer. The results show that the existence of a mechanical turbulent driving mechanism reduces in an accentuated way the energy density spectrum and turbulent kinetic energy decay generated by the decaying convective production in a shear-buoyancy planetary boundary layer.
Physica A Statistica... arrow_drop_down Physica A Statistical Mechanics and its ApplicationsArticleLicense: implied-oaData sources: UnpayWallPhysica A Statistical Mechanics and its ApplicationsArticle . 2011License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)Physica A Statistical Mechanics and its ApplicationsArticle . 2011 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.physa.2011.04.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Physica A Statistica... arrow_drop_down Physica A Statistical Mechanics and its ApplicationsArticleLicense: implied-oaData sources: UnpayWallPhysica A Statistical Mechanics and its ApplicationsArticle . 2011License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)Physica A Statistical Mechanics and its ApplicationsArticle . 2011 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.physa.2011.04.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Springer Science and Business Media LLC Funded by:FCT | Institute Dom LuizFCT| Institute Dom LuizAuthors: Miguel Nogueira; Pedro M. M. Soares; Ricardo Tomé; Rita M. Cardoso;We present a detailed evaluation of wind energy density (WED) over Portugal, based on the EURO-CORDEX database of high-resolution regional climate model (RCM) simulations. Most RCMs showed reasonable accuracy in reproducing the observed near-surface wind speed. The climatological patterns of WED displayed large sub-regional heterogeneity, with higher values over coastal regions and steep orography. Subsequently, we investigated the future changes of WED throughout the twenty-first century, considering mid- and end-century periods, and two emission scenarios (RCP4.5 and RCP8.5). On the yearly average, the multi-model ensemble WED changes were below 10% (15%) under RCP4.5 (RCP8.5). However, the projected WED anomalies displayed strong seasonality, dominated by low positive values in summer (< 10% for both scenarios), negative values in winter and spring (up to − 10% (− 20%) under RCP4.5 (RCP8.5)), and stronger negative anomalies in autumn (up to − 25% (− 35%) under RCP4.5 (RCP8.5)). These projected WED anomalies displayed large sub-regional variability. The largest reductions (and lowest increases) are linked to the northern and central-eastern elevated terrain, and the southwestern coast. In contrast, the largest increases (and lowest reductions) are linked to the central-western orographic features of moderate elevation. The projections also showed changes in inter-annual variability of WED, with small increases for annual averages, but with distinct behavior when considering year-to-year variability over a specific season: small increases in winter, larger increases in summer, slight decrease in autumn, and no relevant change in spring. The changes in inter-annual variability also displayed strong dependence on the underlying terrain. Finally, we found significant model spread in the magnitude of projected WED anomalies and inter-annual variability, affecting even the signal of the changes.
Theoretical and Appl... arrow_drop_down Theoretical and Applied ClimatologyArticle . 2018 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00704-018-2495-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Theoretical and Appl... arrow_drop_down Theoretical and Applied ClimatologyArticle . 2018 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00704-018-2495-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Wiley María Ofelia Molina; Joao Careto; Claudia Gutiérrez; Enrique Sánchez; Pedro Soares;AbstractIn the context of the CORDEX project, an ensemble of regional climate simulations (RCMs) of high resolution on a 0.11° grid has been generated for Europe with the objective of improving the representation of regional to local‐scale atmospheric phenomena. However, such simulations are computationally expensive and do not always reveal added value. Here, a recently proposed metric (the distribution added value [DAV]) is used to determine the added value of all available EURO‐CORDEX high‐resolution simulations at 0.11° for daily mean wind speed compared to their respective coarser‐gridded 0.44° counterparts and their driving fields, hindcast and historical experiments. The analysis consists in comparing the degree of similarity between normalized wind probability density function (PDF) of simulations and observations. In addition, the use of a normalized PDF allows for a direct spatial comparison among the different regions and time periods. Results show that RCMs add value to their reanalysis or forcing global model, but the nature and magnitude of the improvement on the representation of wind speed may vary depending on the model, region and season. We found most RCMS at 0.11° to outperform models at the 0.44° resolution in terms of their quality in capturing the measured wind speed PDF. When looking at the upper tail of the wind speed PDF, the benefits of downscaling are generally larger. At the regional scale, added value is obtained for 0.11° with respect to 0.44° resolution for all subdomains studied, particularly over the Mediterranean, the Iberian Peninsula and the Alps. When analysing the added value dependence on altitude, runs at 0.11° models represent better the locations below 50 m and above 350 m of altitude, and the 0.44° increasingly under‐perform for higher altitudes. Overall, DAV are larger at 0.11° than at 0.44° resolution, due to a better performance of local‐scale feedbacks at high resolution.
International Journa... arrow_drop_down International Journal of ClimatologyArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/joc.7877&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of ClimatologyArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/joc.7877&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Funded by:FCT | PD/BD/114487/2016FCT| PD/BD/114487/2016Authors: Pedro M. M. Soares; Guilherme Carrilho da Graça; João Bravo Dias;Abstract In the last decade, building energy simulation (BES) became a central component in building energy systems’ design and optimization. For each building location, BES requires one year of hourly weather data. Most buildings are designed to last 50+ years, consequently, the building design phase should include BES with future weather files considering climate change. This paper presents a comparative study of two methods to produce future climate hourly data files for BES: Morphing and typical meteorological year of future climate (F-TMY). The study uses data from a high-resolution (9 km) regional climate atmospheric model simulation of Iberia, spanning 10 years of historical and future hourly data. This study compares both methods by analyzing anomalies in air temperature, and the impact in BES predictions of annual and peak energy consumption for space heating, cooling and ventilation in 4 buildings. Additionally, this study performs a sensitivity analysis of morphing method. The analysis shows that F-TMY is representative of the multi-year simulation for BES applications. A high-quality Morphed TMY weather file has a similar performance compared to F-TMY (average difference: 8% versus 7%). Morphing based on different baseline climates, low-grid resolution and/or outdated climate projections leads to BES average differences of 16%-20%.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2019.109556&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2019.109556&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Daniela C.A. Lima; Virgílio A. Bento; Gil Lemos; Miguel Nogueira; Pedro M.M. Soares;Climate indices are developed to determine climate impacts on different socioeconomic sectors, providing a comprehensive communication of complex information arising from climate change assessments. These may be used by decision-makers to properly and timely implement climate change adaptation measures in different sectors of human activity, such as agriculture and crop selection, forest, and coastal management, among others. Here, we present a comprehensive analysis of climate indices estimated for Portugal, known to be in a climate change hotspot. A multi-variable 13-member ensemble of EURO-CORDEX Regional Climate Model simulations is used to assess future climate change projections of climate indices, exploring three future scenarios until 2100, and considering three different emission scenarios, namely the RCP2.6, RCP4.5 and RCP8.5. Aligned with warming and drying projected conditions, an increase in the number of summer days to very hot days is expected to become more frequent and intense, with more impact over interior regions. Tropical nights are projected to become more common, affecting the thermal comfort conditions and threatening future human health. Although the future projections show an overall reduction in the number of wet days, the amount of precipitation during short-time wet periods will increase leading to an intensification of moderate/heavy rainfall. These results corroborate that Portugal is in a climate change hotspot, calling for efficient policymaking by the relevant authorities. Indeed, such projections call for an urgent planning and development of adaptation measures to safeguard critical sectors of the Portuguese society, such as agriculture, forests, coastal management, among others.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cliser.2023.100377&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cliser.2023.100377&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu