- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Elsevier BV Ahmed Barifcani; Stefan Iglauer; Ahmed Al-Yaseri; Christopher Lagat; Hamid Roshan; Nilesh Kumar Jha; Nilesh Kumar Jha; Cut Aja Fauziah;Abstract CO2-rock wettability is a key factor which determines the fluid dynamics and CO2 geo-storage capacity. However, the full understanding of real reservoir CO2-wettability is yet to be gained. We thus systematically analysed the wettability of CO2/brine/South West Hub sandstones at various pressures (0.1 MPa, 5 MPa, 10 MPa, 15 MPa, and 20 MPa) at 334 K. A new procedure based on organic carbon isotope tracking (δ13Corg) was proposed to eliminate the effect of artificial organic matter introduced by drilling mud penetration. The results indicate that the advancing (θa) and receding (θr) water contact angles for the CO2/brine/South West Hub sandstone system increase with increase in pressure (ranging from 71° to 118° and 66° to 111°). It can thus be suggested that the system is weakly water-wet to intermediate-wet. When the samples were treated with dichloromethane, a slight decline in organic content was observed leading to slight decrease in water contact angles (i.e. TOC decreased from 0.019% to 0.003% for core C, and the corresponding θa and θr decreased from 118° and 111° to 110° and 104°, respectively, at 20 MPa and 334 K). This wettability analysis demonstrates that (a) of the contact angle is very sensitive to the amount of organic matter and therefore care should be taken to remove artificial organic matter from the sample, and that (b) this condition prevails in a real proposed CO2-storage site. This analysis thus has important implications for assessing the feasibility of long-term CO2 storage and enabling large-scale industrial carbon geological storage projects.
International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefEdith Cowan University (ECU, Australia): Research OnlineArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2020.103064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefEdith Cowan University (ECU, Australia): Research OnlineArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2020.103064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Elsevier BV Ahmed Barifcani; Stefan Iglauer; Ahmed Al-Yaseri; Christopher Lagat; Hamid Roshan; Nilesh Kumar Jha; Nilesh Kumar Jha; Cut Aja Fauziah;Abstract CO2-rock wettability is a key factor which determines the fluid dynamics and CO2 geo-storage capacity. However, the full understanding of real reservoir CO2-wettability is yet to be gained. We thus systematically analysed the wettability of CO2/brine/South West Hub sandstones at various pressures (0.1 MPa, 5 MPa, 10 MPa, 15 MPa, and 20 MPa) at 334 K. A new procedure based on organic carbon isotope tracking (δ13Corg) was proposed to eliminate the effect of artificial organic matter introduced by drilling mud penetration. The results indicate that the advancing (θa) and receding (θr) water contact angles for the CO2/brine/South West Hub sandstone system increase with increase in pressure (ranging from 71° to 118° and 66° to 111°). It can thus be suggested that the system is weakly water-wet to intermediate-wet. When the samples were treated with dichloromethane, a slight decline in organic content was observed leading to slight decrease in water contact angles (i.e. TOC decreased from 0.019% to 0.003% for core C, and the corresponding θa and θr decreased from 118° and 111° to 110° and 104°, respectively, at 20 MPa and 334 K). This wettability analysis demonstrates that (a) of the contact angle is very sensitive to the amount of organic matter and therefore care should be taken to remove artificial organic matter from the sample, and that (b) this condition prevails in a real proposed CO2-storage site. This analysis thus has important implications for assessing the feasibility of long-term CO2 storage and enabling large-scale industrial carbon geological storage projects.
International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefEdith Cowan University (ECU, Australia): Research OnlineArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2020.103064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefEdith Cowan University (ECU, Australia): Research OnlineArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2020.103064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Elsevier BV Ahmed Barifcani; Stefan Iglauer; Ahmed Al-Yaseri; Christopher Lagat; Hamid Roshan; Nilesh Kumar Jha; Nilesh Kumar Jha; Cut Aja Fauziah;Abstract CO2-rock wettability is a key factor which determines the fluid dynamics and CO2 geo-storage capacity. However, the full understanding of real reservoir CO2-wettability is yet to be gained. We thus systematically analysed the wettability of CO2/brine/South West Hub sandstones at various pressures (0.1 MPa, 5 MPa, 10 MPa, 15 MPa, and 20 MPa) at 334 K. A new procedure based on organic carbon isotope tracking (δ13Corg) was proposed to eliminate the effect of artificial organic matter introduced by drilling mud penetration. The results indicate that the advancing (θa) and receding (θr) water contact angles for the CO2/brine/South West Hub sandstone system increase with increase in pressure (ranging from 71° to 118° and 66° to 111°). It can thus be suggested that the system is weakly water-wet to intermediate-wet. When the samples were treated with dichloromethane, a slight decline in organic content was observed leading to slight decrease in water contact angles (i.e. TOC decreased from 0.019% to 0.003% for core C, and the corresponding θa and θr decreased from 118° and 111° to 110° and 104°, respectively, at 20 MPa and 334 K). This wettability analysis demonstrates that (a) of the contact angle is very sensitive to the amount of organic matter and therefore care should be taken to remove artificial organic matter from the sample, and that (b) this condition prevails in a real proposed CO2-storage site. This analysis thus has important implications for assessing the feasibility of long-term CO2 storage and enabling large-scale industrial carbon geological storage projects.
International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefEdith Cowan University (ECU, Australia): Research OnlineArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2020.103064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefEdith Cowan University (ECU, Australia): Research OnlineArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2020.103064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Elsevier BV Ahmed Barifcani; Stefan Iglauer; Ahmed Al-Yaseri; Christopher Lagat; Hamid Roshan; Nilesh Kumar Jha; Nilesh Kumar Jha; Cut Aja Fauziah;Abstract CO2-rock wettability is a key factor which determines the fluid dynamics and CO2 geo-storage capacity. However, the full understanding of real reservoir CO2-wettability is yet to be gained. We thus systematically analysed the wettability of CO2/brine/South West Hub sandstones at various pressures (0.1 MPa, 5 MPa, 10 MPa, 15 MPa, and 20 MPa) at 334 K. A new procedure based on organic carbon isotope tracking (δ13Corg) was proposed to eliminate the effect of artificial organic matter introduced by drilling mud penetration. The results indicate that the advancing (θa) and receding (θr) water contact angles for the CO2/brine/South West Hub sandstone system increase with increase in pressure (ranging from 71° to 118° and 66° to 111°). It can thus be suggested that the system is weakly water-wet to intermediate-wet. When the samples were treated with dichloromethane, a slight decline in organic content was observed leading to slight decrease in water contact angles (i.e. TOC decreased from 0.019% to 0.003% for core C, and the corresponding θa and θr decreased from 118° and 111° to 110° and 104°, respectively, at 20 MPa and 334 K). This wettability analysis demonstrates that (a) of the contact angle is very sensitive to the amount of organic matter and therefore care should be taken to remove artificial organic matter from the sample, and that (b) this condition prevails in a real proposed CO2-storage site. This analysis thus has important implications for assessing the feasibility of long-term CO2 storage and enabling large-scale industrial carbon geological storage projects.
International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefEdith Cowan University (ECU, Australia): Research OnlineArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2020.103064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefEdith Cowan University (ECU, Australia): Research OnlineArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2020.103064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu