- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Springer Science and Business Media LLC Yibing Ma; Yu-Rong Liu; Jun-Tao Wang; Ji-Zheng He; Ji-Zheng He; Hang-Wei Hu; Jing Li;pmid: 25728202
Nickel pollution imposes deleterious effects on soil ecosystem. The responses of soil microorganisms to long-term nickel pollution under field conditions remain largely unknown. Here, we used high-throughput sequencing to elucidate the impacts of long-term nickel pollution on soil bacterial communities in two contrasting agricultural soils. Our results found that the soil microbial biomass carbon consistently decreased along the nickel gradients in both soils. Nickel pollution selectively favored or impeded the prevalence of several dominant bacterial guilds, in particular, Actinobacteria showed tolerance, while Acidobacteria and Planctomycetes displayed sensitivity. Despite the apparent shifts in the bacterial community composition, no clear tendency in the bacterial diversity and abundance was identified along the nickel gradients in either soil. Collectively, we provide evidence that long-term nickel pollution shifted the soil bacterial communities, resulting in the decrease of microbial biomass although the bacterial diversity was not significantly changed.
Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2015 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-015-4232-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2015 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-015-4232-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Wei Zhang; Clayton Butterly; Bing Han; Ji-Zheng He; Deli Chen;pmid: 34571475
Modified lignite and black coal (BC) are potential amendments for animal bedding to abate ammonia (NH3) emissions due to their large adsorption capacities for ammoniacal nitrogen (N). However, the ability of modified lignite and BC in reducing NH3 volatilization from livestock manure and the underlying mechanisms remain unknown. The present study has investigated the effect of lignite, modified lignite, BC and modified BC on NH3 volatilization from cattle manure, biological immobilization of manure ammoniacal N and manure properties. Modified lignite and BC reduced the NH3 volatilization from manure by 44 and 36%, respectively, which were comparable with original lignite (43%). The biological immobilization of applied stable isotope labelled 15N in lignite, modified lignite, BC and modified BC amended manures was 15, 18, 11 and 16%, respectively, which were significantly higher than that in unamended manure (4%, P 8.2). Our results highlight that the adsorption and immobilization of manure ammoniacal N induced by amendments are the key drivers in reducing NH3 loss from manure, outweighing the pH effect. The findings of this study provide new insights into the mechanisms of coal amendments reducing NH3 loss from animal manure and their potential applications in intensive livestock systems.
Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2021.113807&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2021.113807&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Spain, France, Spain, Portugal, Germany, South Africa, United States, United States, Spain, Spain, Portugal, Spain, GermanyPublisher:American Association for the Advancement of Science (AAAS) Funded by:EC | eLTER PLUS, EC | BIODESERT, EC | AGREENSKILLSPLUS +2 projectsEC| eLTER PLUS ,EC| BIODESERT ,EC| AGREENSKILLSPLUS ,EC| DRYFUN ,EC| TUdiAuthors: Maestre, Fernando; Eldridge, David; Le Bagousse-Pinguet, Yoann; Delgado-Baquerizo, Manuel; +127 AuthorsMaestre, Fernando; Eldridge, David; Le Bagousse-Pinguet, Yoann; Delgado-Baquerizo, Manuel; Saiz, Hugo; Berdugo, Miguel; Gozalo, Beatriz; Ochoa, Victoria; Guirado, Emilio; García-Gómez, Miguel; Valencia, Enrique; Gaitán, Juan; Asensio, Sergio; Mendoza, Betty; Plaza, César; Díaz-Martínez, Paloma; Rey, Ana; Hu, Hang-Wei; He, Ji-Zheng; Wang, Jun-Tao; Lehmann, Anika; Rillig, Matthias; Cesarz, Simone; Eisenhauer, Nico; Martínez-Valderrama, Jaime; Moreno-Jiménez, Eduardo; Sala, Osvaldo; Abedi, Mehdi; Ahmadian, Negar; Alados, Concepción; Aramayo, Valeria; Amghar, Fateh; Arredondo, Tulio; Ahumada, Rodrigo; Bahalkeh, Khadijeh; Ben Salem, Farah; Blaum, Niels; Boldgiv, Bazartseren; Bowker, Matthew; Bran, Donaldo; Bu, Chongfeng; Canessa, Rafaella; Castillo-Monroy, Andrea; Castro, Helena; Castro, Ignacio; Castro-Quezada, Patricio; Chibani, Roukaya; Conceição, Abel; Currier, Courtney; Darrouzet-Nardi, Anthony; Deák, Balázs; Donoso, David; Dougill, Andrew; Durán, Jorge; Erdenetsetseg, Batdelger; Espinosa, Carlos; Fajardo, Alex; Farzam, Mohammad; Ferrante, Daniela; Frank, Anke; Fraser, Lauchlan; Gherardi, Laureano; Greenville, Aaron; Guerra, Carlos; Gusmán-Montalvan, Elizabeth; Hernández-Hernández, Rosa; Hölzel, Norbert; Huber-Sannwald, Elisabeth; Hughes, Frederic; Jadán-Maza, Oswaldo; Jeltsch, Florian; Jentsch, Anke; Kaseke, Kudzai; Köbel, Melanie; Koopman, Jessica; Leder, Cintia; Linstädter, Anja; Le Roux, Peter; Li, Xinkai; Liancourt, Pierre; Liu, Jushan; Louw, Michelle; Maggs-Kölling, Gillian; Makhalanyane, Thulani; Issa, Oumarou Malam; Manzaneda, Antonio; Marais, Eugene; Mora, Juan; Moreno, Gerardo; Munson, Seth; Nunes, Alice; Oliva, Gabriel; Oñatibia, Gastón; Peter, Guadalupe; Pivari, Marco; Pueyo, Yolanda; Quiroga, R. Emiliano; Rahmanian, Soroor; Reed, Sasha; Rey, Pedro; Richard, Benoit; Rodríguez, Alexandra; Rolo, Víctor; Rubalcaba, Juan; Ruppert, Jan; Salah, Ayman; Schuchardt, Max; Spann, Sedona; Stavi, Ilan; Stephens, Colton; Swemmer, Anthony; Teixido, Alberto; Thomas, Andrew; Throop, Heather; Tielbörger, Katja; Travers, Samantha; Val, James; Valkó, Orsolya; van den Brink, Liesbeth; Ayuso, Sergio Velasco; Velbert, Frederike; Wamiti, Wanyoike; Wang, Deli; Wang, Lixin; Wardle, Glenda; Yahdjian, Laura; Zaady, Eli; Zhang, Yuanming; Zhou, Xiaobing; Singh, Brajesh; Gross, Nicolas;pmid: 36423285
handle: 10486/716905 , 10261/284471 , 1805/37340 , 1959.7/uws:73863 , 2263/91312 , 10900/141400
pmid: 36423285
handle: 10486/716905 , 10261/284471 , 1805/37340 , 1959.7/uws:73863 , 2263/91312 , 10900/141400
Grazing represents the most extensive use of land worldwide. Yet its impacts on ecosystem services remain uncertain because pervasive interactions between grazing pressure, climate, soil properties, and biodiversity may occur but have never been addressed simultaneously. Using a standardized survey at 98 sites across six continents, we show that interactions between grazing pressure, climate, soil, and biodiversity are critical to explain the delivery of fundamental ecosystem services across drylands worldwide. Increasing grazing pressure reduced ecosystem service delivery in warmer and species-poor drylands, whereas positive effects of grazing were observed in colder and species-rich areas. Considering interactions between grazing and local abiotic and biotic factors is key for understanding the fate of dryland ecosystems under climate change and increasing human pressure.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Full-Text: https://doi.org/10.1126/science.abq4062Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of ZaragozaArticle . 2022Data sources: Digital Repository of University of ZaragozaUniversidade de Lisboa: Repositório.ULArticle . 2022License: CC BYData sources: Universidade de Lisboa: Repositório.ULRepositorio Institucional de la Universidad de AlicanteArticle . 2022Data sources: Repositorio Institucional de la Universidad de AlicantePublikationsserver der Universität PotsdamArticle . 2022Data sources: Publikationsserver der Universität PotsdamDigital Repository of University of Zaragoza (ZAGUAN)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Indiana University - Purdue University Indianapolis: IUPUI Scholar WorksArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.abq4062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 177 citations 177 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
visibility 267visibility views 267 download downloads 547 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Full-Text: https://doi.org/10.1126/science.abq4062Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of ZaragozaArticle . 2022Data sources: Digital Repository of University of ZaragozaUniversidade de Lisboa: Repositório.ULArticle . 2022License: CC BYData sources: Universidade de Lisboa: Repositório.ULRepositorio Institucional de la Universidad de AlicanteArticle . 2022Data sources: Repositorio Institucional de la Universidad de AlicantePublikationsserver der Universität PotsdamArticle . 2022Data sources: Publikationsserver der Universität PotsdamDigital Repository of University of Zaragoza (ZAGUAN)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Indiana University - Purdue University Indianapolis: IUPUI Scholar WorksArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.abq4062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017 AustraliaPublisher:Wiley Funded by:ARC | Discovery Projects - Gran..., ARC | Discovery Early Career Re...ARC| Discovery Projects - Grant ID: DP160101028 ,ARC| Discovery Early Career Researcher Award - Grant ID: DE150100870Authors: Hu, H-W; He, J-Z; Singh, BK;SummaryAchieving the Sustainable Development Goal of climate change mitigation within this century will require adoption of new innovative technologies to control emissions of nitrous oxide (N2O), an important greenhouse gas leading to global warming. This is particularly important in the face of growing fertilizer consumption and continuous land degradation. Currently used tools to mitigate N2O emissions are based on agrochemical inputs and agronomic practices. Emerging technologies include plant breeding approaches to manipulate microbiome activities in agro‐ecosystems, and microbial biotechnology approaches for in situ microbiome manipulation and engineering via use of biochemical, cellular and genome‐editing methods. This article assessed the likely contribution of microbial biotechnology to the mitigation of N2O emissions and discussed how to facilitate the development of environmental‐friendly microbiome‐based biotechnology for sustainable climate change mitigation.
University of Wester... arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/11343/259671Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1751-7915.12758&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert University of Wester... arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/11343/259671Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1751-7915.12758&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type 2022Publisher:OpenAlex Authors: Fernando T. Maestre; Yoann Le Bagousse‐Pinguet; Manuel Delgado‐Baquerizo; David J. Eldridge; +96 AuthorsFernando T. Maestre; Yoann Le Bagousse‐Pinguet; Manuel Delgado‐Baquerizo; David J. Eldridge; Hugo Sáiz; Miguel Berdugo; Beatriz Gozalo; Victoria Ochoa; Emilio Guirado; Miguel García‐Gómez; Enrique Valencia; Juan Gaitán; Sergio Asensio; Betty J. Mendoza; César Plaza; Paloma Díaz‐Martínez; Ana Rey; Hang‐Wei Hu; Ji‐Zheng He; Jun‐Tao Wang; Anika Lehmann; Matthias C. Rillig; Simone Cesarz; Nico Eisenhauer; Jaime Martínez‐Valderrama; Eduardo Moreno‐Jiménez; Osvaldo E. Sala; Mehdi Abedi; Negar Ahmadian; Concepción L. Alados; Valeria Aramayo; F. Amghar; Tulio Arredondo; Rodrigo J. Ahumada; Khadijeh Bahalkeh; Farah Ben Salem; Niels Blaum; Bazartseren Boldgiv; Matthew A. Bowker; Donaldo Bran; Chongfeng Bu; Rafaella Canessa; Andrea P. Castillo‐Monroy; Helena Castro; Ignacio Castro; Patricio Castro-Quezada; Roukaya Chibani; Abel Augusto Conceição; Courtney M. Currier; Anthony Darrouzet‐Nardi; Balázs Deák; David A. Donoso; Andrew J. Dougill; Jorge Durán; Erdenetsetseg Batdelger; Carlos I. Espinosa; Alex Fajardo; Mohammad Farzam; Daniela Ferrante; Anke S. K. Frank; Lauchlan H. Fraser; Laureano Gherardi; Aaron C. Greenville; Carlos A. Guerra; Elizabeth Gusmán; Rosa Mary Hernández; Norbert Hölzel; Elisabeth Huber‐Sannwald; Frederic Mendes Hughes; Oswaldo Jadán; Florian Jeltsch; Anke Jentsch; Kudzai Farai Kaseke; Melanie Köbel; Jessica E. Koopman; Cintia Vanesa Leder; Anja Linstädter; Peter C. le Roux; Xinkai Li; Pierre Liancourt; Jushan Liu; Michelle A. Louw; Gillian Maggs‐Kölling; Thulani P. Makhalanyane; Oumarou Malam Issa; Antonio J. Manzaneda; Eugène Marais; Juan Pablo Mora; Gerardo Moreno; Seth M. Munson; Alice Nunes; Gabriel Oliva; Gastón R. Oñatibia; Guadalupe Peter; Marco Otávio Dias Pivari; Yolanda Pueyo; R. Emiliano Quiroga; Soroor Rahmanian; Sasha C. Reed; Pedro J. Rey;Le pâturage représente l'utilisation la plus étendue des terres dans le monde. Pourtant, ses impacts sur les services écosystémiques restent incertains car des interactions omniprésentes entre la pression de pâturage, le climat, les propriétés des sols et la biodiversité peuvent se produire mais n'ont jamais été traitées simultanément. En utilisant une enquête standardisée sur 98 sites sur six continents, nous montrons que les interactions entre la pression du pâturage, le climat, le sol et la biodiversité sont essentielles pour expliquer la fourniture de services écosystémiques fondamentaux dans les zones arides du monde entier. L'augmentation de la pression de pâturage a réduit la prestation de services écosystémiques dans les zones arides plus chaudes et pauvres en espèces, tandis que les effets positifs du pâturage ont été observés dans les zones plus froides et riches en espèces. La prise en compte des interactions entre le pâturage et les facteurs abiotiques et biotiques locaux est essentielle pour comprendre le sort des écosystèmes des terres arides sous le changement climatique et l'augmentation de la pression humaine. El pastoreo representa el uso más extenso de la tierra en todo el mundo. Sin embargo, sus impactos en los servicios ecosistémicos siguen siendo inciertos porque las interacciones generalizadas entre la presión del pastoreo, el clima, las propiedades del suelo y la biodiversidad pueden ocurrir, pero nunca se han abordado simultáneamente. Utilizando una encuesta estandarizada en 98 sitios en seis continentes, mostramos que las interacciones entre la presión del pastoreo, el clima, el suelo y la biodiversidad son fundamentales para explicar la prestación de servicios ecosistémicos fundamentales en las tierras secas de todo el mundo. El aumento de la presión del pastoreo redujo la prestación de servicios ecosistémicos en las tierras secas más cálidas y pobres en especies, mientras que los efectos positivos del pastoreo se observaron en las zonas más frías y ricas en especies. Considerar las interacciones entre el pastoreo y los factores abióticos y bióticos locales es clave para comprender el destino de los ecosistemas de tierras secas bajo el cambio climático y el aumento de la presión humana. Grazing represents the most extensive use of land worldwide. Yet its impacts on ecosystem services remain uncertain because pervasive interactions between grazing pressure, climate, soil properties, and biodiversity may occur but have never been addressed simultaneously. Using a standardized survey at 98 sites across six continents, we show that interactions between grazing pressure, climate, soil, and biodiversity are critical to explain the delivery of fundamental ecosystem services across drylands worldwide. Increasing grazing pressure reduced ecosystem service delivery in warmer and species-poor drylands, whereas positive effects of grazing were observed in colder and species-rich areas. Considering interactions between grazing and local abiotic and biotic factors is key for understanding the fate of dryland ecosystems under climate change and increasing human pressure. يمثل الرعي الاستخدام الأوسع للأراضي في جميع أنحاء العالم. ومع ذلك، لا تزال آثاره على خدمات النظام الإيكولوجي غير مؤكدة لأن التفاعلات المنتشرة بين ضغط الرعي والمناخ وخصائص التربة والتنوع البيولوجي قد تحدث ولكن لم تتم معالجتها أبدًا في وقت واحد. باستخدام مسح موحد في 98 موقعًا في ست قارات، نوضح أن التفاعلات بين ضغط الرعي والمناخ والتربة والتنوع البيولوجي ضرورية لشرح تقديم خدمات النظام الإيكولوجي الأساسية عبر الأراضي الجافة في جميع أنحاء العالم. أدى الضغط المتزايد للرعي إلى تقليل تقديم خدمات النظام الإيكولوجي في الأراضي الجافة الأكثر دفئًا والفقيرة بالأنواع، في حين لوحظت آثار إيجابية للرعي في المناطق الأكثر برودة والغنية بالأنواع. يعتبر النظر في التفاعلات بين الرعي والعوامل المحلية اللاأحيائية والأحيائية أمرًا أساسيًا لفهم مصير النظم الإيكولوجية للأراضي الجافة في ظل تغير المناخ وزيادة الضغط البشري.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60692/dcqj0-ayy92&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60692/dcqj0-ayy92&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Embargo end date: 08 Feb 2024 Spain, Spain, Slovenia, Spain, South Africa, Slovenia, Spain, Germany, Australia, Portugal, France, Slovenia, SpainPublisher:Springer Science and Business Media LLC Funded by:EC | Gradual_Change, ARC | Discovery Projects - Gran...EC| Gradual_Change ,ARC| Discovery Projects - Grant ID: DP210100332Liu, Yu-Rong; van der Heijden, Marcel; Riedo, Judith; Sanz-Lazaro, Carlos; Eldridge, David; Bastida, Felipe; Moreno-Jiménez, Eduardo; Zhou, Xin-Quan; Hu, Hang-Wei; He, Ji-Zheng; Moreno, José; Abades, Sebastian; Alfaro, Fernando; Bamigboye, Adebola; Berdugo, Miguel; Blanco-Pastor, José; de los Ríos, Asunción; Duran, Jorge; Grebenc, Tine; Illán, Javier; Makhalanyane, Thulani; Molina-Montenegro, Marco; Nahberger, Tina; Peñaloza-Bojacá, Gabriel; Plaza, César; Rey, Ana; Rodríguez, Alexandra; Siebe, Christina; Teixido, Alberto; Casado-Coy, Nuria; Trivedi, Pankaj; Torres-Díaz, Cristian; Verma, Jay Prakash; Mukherjee, Arpan; Zeng, Xiao-Min; Wang, Ling; Wang, Jianyong; Zaady, Eli; Zhou, Xiaobing; Huang, Qiaoyun; Tan, Wenfeng; Zhu, Yong-Guan; Rillig, Matthias; Delgado-Baquerizo, Manuel;pmid: 36973286
pmc: PMC10042830
handle: 10261/305238 , 10316/111613 , 10486/707955 , 20.500.14352/89051 , 11343/331956 , 2263/94697 , 1959.7/uws:73920
pmid: 36973286
pmc: PMC10042830
handle: 10261/305238 , 10316/111613 , 10486/707955 , 20.500.14352/89051 , 11343/331956 , 2263/94697 , 1959.7/uws:73920
AbstractSoil contamination is one of the main threats to ecosystem health and sustainability. Yet little is known about the extent to which soil contaminants differ between urban greenspaces and natural ecosystems. Here we show that urban greenspaces and adjacent natural areas (i.e., natural/semi-natural ecosystems) shared similar levels of multiple soil contaminants (metal(loid)s, pesticides, microplastics, and antibiotic resistance genes) across the globe. We reveal that human influence explained many forms of soil contamination worldwide. Socio-economic factors were integral to explaining the occurrence of soil contaminants worldwide. We further show that increased levels of multiple soil contaminants were linked with changes in microbial traits including genes associated with environmental stress resistance, nutrient cycling, and pathogenesis. Taken together, our work demonstrates that human-driven soil contamination in nearby natural areas mirrors that in urban greenspaces globally, and highlights that soil contaminants have the potential to cause dire consequences for ecosystem sustainability and human wellbeing.
Nature Communication... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/11343/331956Data sources: Bielefeld Academic Search Engine (BASE)UP Research Data RepositoryArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/2263/94697Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2023Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAdCOBISS.SI Digital RepositoryArticle . 2023License: CC BYData sources: dCOBISS.SI Digital RepositoryDigital repository of Slovenian research organizationsArticle . 2023License: CC BYData sources: Digital repository of Slovenian research organizationsRefubium - Repositorium der Freien Universität BerlinArticle . 2023License: CC BYData sources: Refubium - Repositorium der Freien Universität BerlinRepositorio Institucional de la Universidad de AlicanteArticle . 2023Data sources: Repositorio Institucional de la Universidad de AlicanteUniversity of Western Sydney (UWS): Research DirectArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-37428-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 69 citations 69 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 117visibility views 117 download downloads 276 Powered bymore_vert Nature Communication... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/11343/331956Data sources: Bielefeld Academic Search Engine (BASE)UP Research Data RepositoryArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/2263/94697Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2023Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAdCOBISS.SI Digital RepositoryArticle . 2023License: CC BYData sources: dCOBISS.SI Digital RepositoryDigital repository of Slovenian research organizationsArticle . 2023License: CC BYData sources: Digital repository of Slovenian research organizationsRefubium - Repositorium der Freien Universität BerlinArticle . 2023License: CC BYData sources: Refubium - Repositorium der Freien Universität BerlinRepositorio Institucional de la Universidad de AlicanteArticle . 2023Data sources: Repositorio Institucional de la Universidad de AlicanteUniversity of Western Sydney (UWS): Research DirectArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-37428-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Ying Yong Sheng Tai Xue Bao Authors: Ju-Pei Shen; Cui Jing Zhang; Ji-Zheng He;pmid: 29732830
In recent decades, global climate change is one of the main concerns around the world. Land use change and the high demand for fossil fuel have caused severe consequences of climate change, such as elevated greenhouse gases, warming, and altering precipitation pattern. These combined factors have substantial impacts on ecosystem processes, especially carbon and nitrogen cycles in terrestrial ecosystems. Since the 1970s, a series of field manipulative experiments had been set up to stimulate the influences of monofactorial and/or multifactorial climate changes, improving our understanding of ecosystem response and feedback to global change. In this review, we summarized the development history of global change experiments, and discussed the main issues of using field manipulative experiments in simulating global change. The application of multifactorial experiments, such as CO2 enrichment, warming, precipitation and nitrogen deposition, were highlighted in the research of soil microbial ecology. Moreover, the response and feedback of soil biota as well as the biogeochemical processes that they mediated were further addressed. We also proposed the prospects of their application in global change research to explore the impact of global change on terrestrial ecosystems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.13287/j.1001-9332.201605.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.13287/j.1001-9332.201605.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 China (People's Republic of), AustraliaPublisher:Springer Science and Business Media LLC Cui-Jing Zhang; Li-Mei Zhang; Ju-Pei Shen; Ren Bai; Jun-Tao Wang; Jun Zeng; Ji-Zheng He; Ji-Zheng He; Hang-Wei Hu;Climate change is projected to have impacts on precipitation and temperature regimes in drylands of high elevation regions, with especially large effects in the Qinghai-Tibetan Plateau. However, there was limited information about how the projected climate change will impact on the soil microbial community and their activity in the region. Here, we present results from a study conducted across 72 soil samples from 24 different sites along a temperature and precipitation gradient (substituted by aridity index ranging from 0.079 to 0.89) of the Plateau, to assess how changes in aridity affect the abundance, community composition, and diversity of bacteria, ammonia-oxidizers, and denitrifers (nirK/S and nosZ genes-containing communities) as well as nitrogen (N) turnover enzyme activities. We found V-shaped or inverted V-shaped relationships between the aridity index (AI) and soil microbial parameters (gene abundance, community structures, microbial diversity, and N turnover enzyme activities) with a threshold at AI = 0.27. The increasing or decreasing rates of the microbial parameters were higher in areas with AI < 0.27 (alpine steppes) than in mesic areas with 0.27 < AI < 0.89 (alpine meadow and swamp meadow). The results indicated that the projected warming and wetting have a strong impact on soil microbial communities in the alpine steppes.
Microbial Ecology arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00248-017-1098-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Microbial Ecology arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00248-017-1098-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Springer Science and Business Media LLC Funded by:ARC | Discovery Projects - Gran..., EC | BIOCOM, EC | BIODESERT +2 projectsARC| Discovery Projects - Grant ID: DP170104634 ,EC| BIOCOM ,EC| BIODESERT ,NSF| Dimensions: Collaborative research: Community genomic drivers of moss microbiome assembly and function in rapidly changing Alaskan ecosystems ,EC| CLIMIFUNManuel Delgado-Baquerizo; Manuel Delgado-Baquerizo; Ji-Zheng He; Ji-Zheng He; Noah Fierer; Noah Fierer; Kelly Hamonts; Fernando T. Maestre; Andrew Bissett; David J. Eldridge; Jun-Tao Wang; Yu-Rong Liu; Brajesh K. Singh;pmid: 29046544
The legacy impacts of past climates on the current distribution of soil microbial communities are largely unknown. Here, we use data from more than 1,000 sites from five separate global and regional datasets to identify the importance of palaeoclimatic conditions (Last Glacial Maximum and mid-Holocene) in shaping the current structure of soil bacterial communities in natural and agricultural soils. We show that palaeoclimate explains more of the variation in the richness and composition of bacterial communities than current climate. Moreover, palaeoclimate accounts for a unique fraction of this variation that cannot be predicted from geographical location, current climate, soil properties or plant diversity. Climatic legacies (temperature and precipitation anomalies from the present to ~20 kyr ago) probably shape soil bacterial communities both directly and indirectly through shifts in soil properties and plant communities. The ability to predict the distribution of soil bacteria from either palaeoclimate or current climate declines greatly in agricultural soils, highlighting the fact that anthropogenic activities have a strong influence on soil bacterial diversity. We illustrate how climatic legacies can help to explain the current distribution of soil bacteria in natural ecosystems and advocate that climatic legacies should be considered when predicting microbial responses to climate change.
Nature Ecology & Evo... arrow_drop_down Nature Ecology & EvolutionArticle . 2017 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefNature Ecology & EvolutionArticle . 2017 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Western Sydney (UWS): Research DirectArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-017-0259-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 76 citations 76 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 3visibility views 3 download downloads 41 Powered bymore_vert Nature Ecology & Evo... arrow_drop_down Nature Ecology & EvolutionArticle . 2017 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefNature Ecology & EvolutionArticle . 2017 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Western Sydney (UWS): Research DirectArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-017-0259-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Springer Science and Business Media LLC Sardar Khan; Min Qiao; Abd El-Latif Hesham; Ji-Zheng He; Shafiq Ur Rehman;pmid: 19333640
Soil contamination with heavy metals occurs as a result of both anthropogenic and natural activities. Heavy metals could have long-term hazardous impacts on the health of soil ecosystems and adverse influences on soil biological processes. Soil enzymatic activities are recognized as sensors towards any natural and anthropogenic disturbance occurring in the soil ecosystem. Similarly, microbial biomass carbon (MBC) is also considered as one of the important soil biological activities frequently influenced by heavy metal contamination. The polymerase chain reaction-denaturing gradient gel electrophoresis (DGGE) has recently been used to investigate changes in soil microbial community composition in response to environmental stresses. Soil microbial community structure and activities are difficult to elucidate using single monitoring approach; therefore, for a better insight and complete depiction of the soil microbial situation, different approaches need to be used. This study was conducted in a greenhouse for a period of 12 weeks to evaluate the changes in indigenous microbial community structure and activities in the soil amended with different application rates of Cd, Pb, and Cd/Pb mix. In a field environment, soil is contaminated with single or mixed heavy metals; so that, in this research, we used the selected metals in both single and mixed forms at different application rates and investigated their toxic effects on microbial community structure and activities, using soil enzyme assays, plate counting, and advanced molecular DGGE technique. Soil microbial activities, including acid phosphatase (ACP), urease (URE), and MBC, and microbial community structure were studied.A soil sample (0-20 cm) with an unknown history of heavy metal contamination was collected and amended with Cd, Pb, and Cd/Pb mix using the CdSO(4) and Pb(NO(3))(2) solutions at different application rates. The amended soils were incubated in the greenhouse at 25 +/- 4 degrees C and 60% water-holding capacity for 12 weeks. During the incubation period, samples were collected from each pot at 0, 2, 9, and 12 weeks for enzyme assays, MBC, numeration of microbes, and DNA extraction. Fumigation-extraction method was used to measure the MBC, while plate counting techniques were used to numerate viable heterotrophic bacteria, fungi, and actinomycetes. Soil DNAs were extracted from the samples and used for DGGE analysis.ACP, URE, and MBC activities of microbial community were significantly lower (p < 0.05) in the metal-amended samples than those in the control. The enzyme inhibition extent was obvious between different incubation periods and varied as the incubation proceeded, and the highest rate was detected in the samples after 2 weeks. However, the lowest values of ACP and URE activities (35.6% and 36.6% of the control, respectively) were found in the Cd(3)/Pb(3)-treated sample after 2 weeks. Similarly, MBC was strongly decreased in both Cd/Pb-amended samples and highest reduction (52.4%) was detected for Cd(3)/Pb(3) treatment. The number of bacteria and actinomycetes were significantly decreased in the heavy metal-amended samples compared to the control, while fungal cells were not significantly different (from 2.3% to 23.87%). In this study, the DGGE profile indicated that the high dose of metal amendment caused a greater change in the number of bands. DGGE banding patterns confirmed that the addition of metals had a significant impact on microbial community structure.In soil ecosystem, heavy metals exhibit toxicological effects on soil microbes which may lead to the decrease of their numbers and activities. This study demonstrated that toxicological effects of heavy metals on soil microbial community structure and activities depend largely on the type and concentration of metal and incubation time. The inhibition extent varied widely among different incubation periods for these enzymes. Furthermore, the rapid inhibition in microbial activities such as ACP, URE, and MBC were observed in the 2 weeks, which should be related to the fact that the microbes were suddenly exposed to heavy metals. The increased inhibition of soil microbial activities is likely to be related to tolerance and adaptation of the microbial community, concentration of pollutants, and mechanisms of heavy metals. The DGGE profile has shown that the structure of the bacterial community changed in amended heavy metal samples. In this research, the microbial community structure was highly affected, consistent with the lower microbial activities in different levels of heavy metals. Furthermore, a great community change in this study, particularly at a high level of contamination, was probably a result of metal toxicity and also unavailability of nutrients because no nutrients were supplied during the whole incubation period.The added concentrations of heavy metals have changed the soil microbial community structure and activities. The highest inhibitory effects on soil microbial activities were observed at 2 weeks of incubation. The bacteria were more sensitive than actinomycetes and fungi. The DGGE profile indicated that bacterial community structure was changed in the Cd/Pb-amended samples, particularly at high concentrations.The investigation of soil microbial community structure and activities together could give more reliable and accurate information about the toxic effects of heavy metals on soil health.
Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2009 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-009-0134-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 342 citations 342 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2009 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-009-0134-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Springer Science and Business Media LLC Yibing Ma; Yu-Rong Liu; Jun-Tao Wang; Ji-Zheng He; Ji-Zheng He; Hang-Wei Hu; Jing Li;pmid: 25728202
Nickel pollution imposes deleterious effects on soil ecosystem. The responses of soil microorganisms to long-term nickel pollution under field conditions remain largely unknown. Here, we used high-throughput sequencing to elucidate the impacts of long-term nickel pollution on soil bacterial communities in two contrasting agricultural soils. Our results found that the soil microbial biomass carbon consistently decreased along the nickel gradients in both soils. Nickel pollution selectively favored or impeded the prevalence of several dominant bacterial guilds, in particular, Actinobacteria showed tolerance, while Acidobacteria and Planctomycetes displayed sensitivity. Despite the apparent shifts in the bacterial community composition, no clear tendency in the bacterial diversity and abundance was identified along the nickel gradients in either soil. Collectively, we provide evidence that long-term nickel pollution shifted the soil bacterial communities, resulting in the decrease of microbial biomass although the bacterial diversity was not significantly changed.
Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2015 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-015-4232-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2015 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-015-4232-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Wei Zhang; Clayton Butterly; Bing Han; Ji-Zheng He; Deli Chen;pmid: 34571475
Modified lignite and black coal (BC) are potential amendments for animal bedding to abate ammonia (NH3) emissions due to their large adsorption capacities for ammoniacal nitrogen (N). However, the ability of modified lignite and BC in reducing NH3 volatilization from livestock manure and the underlying mechanisms remain unknown. The present study has investigated the effect of lignite, modified lignite, BC and modified BC on NH3 volatilization from cattle manure, biological immobilization of manure ammoniacal N and manure properties. Modified lignite and BC reduced the NH3 volatilization from manure by 44 and 36%, respectively, which were comparable with original lignite (43%). The biological immobilization of applied stable isotope labelled 15N in lignite, modified lignite, BC and modified BC amended manures was 15, 18, 11 and 16%, respectively, which were significantly higher than that in unamended manure (4%, P 8.2). Our results highlight that the adsorption and immobilization of manure ammoniacal N induced by amendments are the key drivers in reducing NH3 loss from manure, outweighing the pH effect. The findings of this study provide new insights into the mechanisms of coal amendments reducing NH3 loss from animal manure and their potential applications in intensive livestock systems.
Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2021.113807&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2021.113807&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Spain, France, Spain, Portugal, Germany, South Africa, United States, United States, Spain, Spain, Portugal, Spain, GermanyPublisher:American Association for the Advancement of Science (AAAS) Funded by:EC | eLTER PLUS, EC | BIODESERT, EC | AGREENSKILLSPLUS +2 projectsEC| eLTER PLUS ,EC| BIODESERT ,EC| AGREENSKILLSPLUS ,EC| DRYFUN ,EC| TUdiAuthors: Maestre, Fernando; Eldridge, David; Le Bagousse-Pinguet, Yoann; Delgado-Baquerizo, Manuel; +127 AuthorsMaestre, Fernando; Eldridge, David; Le Bagousse-Pinguet, Yoann; Delgado-Baquerizo, Manuel; Saiz, Hugo; Berdugo, Miguel; Gozalo, Beatriz; Ochoa, Victoria; Guirado, Emilio; García-Gómez, Miguel; Valencia, Enrique; Gaitán, Juan; Asensio, Sergio; Mendoza, Betty; Plaza, César; Díaz-Martínez, Paloma; Rey, Ana; Hu, Hang-Wei; He, Ji-Zheng; Wang, Jun-Tao; Lehmann, Anika; Rillig, Matthias; Cesarz, Simone; Eisenhauer, Nico; Martínez-Valderrama, Jaime; Moreno-Jiménez, Eduardo; Sala, Osvaldo; Abedi, Mehdi; Ahmadian, Negar; Alados, Concepción; Aramayo, Valeria; Amghar, Fateh; Arredondo, Tulio; Ahumada, Rodrigo; Bahalkeh, Khadijeh; Ben Salem, Farah; Blaum, Niels; Boldgiv, Bazartseren; Bowker, Matthew; Bran, Donaldo; Bu, Chongfeng; Canessa, Rafaella; Castillo-Monroy, Andrea; Castro, Helena; Castro, Ignacio; Castro-Quezada, Patricio; Chibani, Roukaya; Conceição, Abel; Currier, Courtney; Darrouzet-Nardi, Anthony; Deák, Balázs; Donoso, David; Dougill, Andrew; Durán, Jorge; Erdenetsetseg, Batdelger; Espinosa, Carlos; Fajardo, Alex; Farzam, Mohammad; Ferrante, Daniela; Frank, Anke; Fraser, Lauchlan; Gherardi, Laureano; Greenville, Aaron; Guerra, Carlos; Gusmán-Montalvan, Elizabeth; Hernández-Hernández, Rosa; Hölzel, Norbert; Huber-Sannwald, Elisabeth; Hughes, Frederic; Jadán-Maza, Oswaldo; Jeltsch, Florian; Jentsch, Anke; Kaseke, Kudzai; Köbel, Melanie; Koopman, Jessica; Leder, Cintia; Linstädter, Anja; Le Roux, Peter; Li, Xinkai; Liancourt, Pierre; Liu, Jushan; Louw, Michelle; Maggs-Kölling, Gillian; Makhalanyane, Thulani; Issa, Oumarou Malam; Manzaneda, Antonio; Marais, Eugene; Mora, Juan; Moreno, Gerardo; Munson, Seth; Nunes, Alice; Oliva, Gabriel; Oñatibia, Gastón; Peter, Guadalupe; Pivari, Marco; Pueyo, Yolanda; Quiroga, R. Emiliano; Rahmanian, Soroor; Reed, Sasha; Rey, Pedro; Richard, Benoit; Rodríguez, Alexandra; Rolo, Víctor; Rubalcaba, Juan; Ruppert, Jan; Salah, Ayman; Schuchardt, Max; Spann, Sedona; Stavi, Ilan; Stephens, Colton; Swemmer, Anthony; Teixido, Alberto; Thomas, Andrew; Throop, Heather; Tielbörger, Katja; Travers, Samantha; Val, James; Valkó, Orsolya; van den Brink, Liesbeth; Ayuso, Sergio Velasco; Velbert, Frederike; Wamiti, Wanyoike; Wang, Deli; Wang, Lixin; Wardle, Glenda; Yahdjian, Laura; Zaady, Eli; Zhang, Yuanming; Zhou, Xiaobing; Singh, Brajesh; Gross, Nicolas;pmid: 36423285
handle: 10486/716905 , 10261/284471 , 1805/37340 , 1959.7/uws:73863 , 2263/91312 , 10900/141400
pmid: 36423285
handle: 10486/716905 , 10261/284471 , 1805/37340 , 1959.7/uws:73863 , 2263/91312 , 10900/141400
Grazing represents the most extensive use of land worldwide. Yet its impacts on ecosystem services remain uncertain because pervasive interactions between grazing pressure, climate, soil properties, and biodiversity may occur but have never been addressed simultaneously. Using a standardized survey at 98 sites across six continents, we show that interactions between grazing pressure, climate, soil, and biodiversity are critical to explain the delivery of fundamental ecosystem services across drylands worldwide. Increasing grazing pressure reduced ecosystem service delivery in warmer and species-poor drylands, whereas positive effects of grazing were observed in colder and species-rich areas. Considering interactions between grazing and local abiotic and biotic factors is key for understanding the fate of dryland ecosystems under climate change and increasing human pressure.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Full-Text: https://doi.org/10.1126/science.abq4062Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of ZaragozaArticle . 2022Data sources: Digital Repository of University of ZaragozaUniversidade de Lisboa: Repositório.ULArticle . 2022License: CC BYData sources: Universidade de Lisboa: Repositório.ULRepositorio Institucional de la Universidad de AlicanteArticle . 2022Data sources: Repositorio Institucional de la Universidad de AlicantePublikationsserver der Universität PotsdamArticle . 2022Data sources: Publikationsserver der Universität PotsdamDigital Repository of University of Zaragoza (ZAGUAN)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Indiana University - Purdue University Indianapolis: IUPUI Scholar WorksArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.abq4062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 177 citations 177 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
visibility 267visibility views 267 download downloads 547 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Full-Text: https://doi.org/10.1126/science.abq4062Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of ZaragozaArticle . 2022Data sources: Digital Repository of University of ZaragozaUniversidade de Lisboa: Repositório.ULArticle . 2022License: CC BYData sources: Universidade de Lisboa: Repositório.ULRepositorio Institucional de la Universidad de AlicanteArticle . 2022Data sources: Repositorio Institucional de la Universidad de AlicantePublikationsserver der Universität PotsdamArticle . 2022Data sources: Publikationsserver der Universität PotsdamDigital Repository of University of Zaragoza (ZAGUAN)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Indiana University - Purdue University Indianapolis: IUPUI Scholar WorksArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.abq4062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017 AustraliaPublisher:Wiley Funded by:ARC | Discovery Projects - Gran..., ARC | Discovery Early Career Re...ARC| Discovery Projects - Grant ID: DP160101028 ,ARC| Discovery Early Career Researcher Award - Grant ID: DE150100870Authors: Hu, H-W; He, J-Z; Singh, BK;SummaryAchieving the Sustainable Development Goal of climate change mitigation within this century will require adoption of new innovative technologies to control emissions of nitrous oxide (N2O), an important greenhouse gas leading to global warming. This is particularly important in the face of growing fertilizer consumption and continuous land degradation. Currently used tools to mitigate N2O emissions are based on agrochemical inputs and agronomic practices. Emerging technologies include plant breeding approaches to manipulate microbiome activities in agro‐ecosystems, and microbial biotechnology approaches for in situ microbiome manipulation and engineering via use of biochemical, cellular and genome‐editing methods. This article assessed the likely contribution of microbial biotechnology to the mitigation of N2O emissions and discussed how to facilitate the development of environmental‐friendly microbiome‐based biotechnology for sustainable climate change mitigation.
University of Wester... arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/11343/259671Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1751-7915.12758&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert University of Wester... arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/11343/259671Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1751-7915.12758&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type 2022Publisher:OpenAlex Authors: Fernando T. Maestre; Yoann Le Bagousse‐Pinguet; Manuel Delgado‐Baquerizo; David J. Eldridge; +96 AuthorsFernando T. Maestre; Yoann Le Bagousse‐Pinguet; Manuel Delgado‐Baquerizo; David J. Eldridge; Hugo Sáiz; Miguel Berdugo; Beatriz Gozalo; Victoria Ochoa; Emilio Guirado; Miguel García‐Gómez; Enrique Valencia; Juan Gaitán; Sergio Asensio; Betty J. Mendoza; César Plaza; Paloma Díaz‐Martínez; Ana Rey; Hang‐Wei Hu; Ji‐Zheng He; Jun‐Tao Wang; Anika Lehmann; Matthias C. Rillig; Simone Cesarz; Nico Eisenhauer; Jaime Martínez‐Valderrama; Eduardo Moreno‐Jiménez; Osvaldo E. Sala; Mehdi Abedi; Negar Ahmadian; Concepción L. Alados; Valeria Aramayo; F. Amghar; Tulio Arredondo; Rodrigo J. Ahumada; Khadijeh Bahalkeh; Farah Ben Salem; Niels Blaum; Bazartseren Boldgiv; Matthew A. Bowker; Donaldo Bran; Chongfeng Bu; Rafaella Canessa; Andrea P. Castillo‐Monroy; Helena Castro; Ignacio Castro; Patricio Castro-Quezada; Roukaya Chibani; Abel Augusto Conceição; Courtney M. Currier; Anthony Darrouzet‐Nardi; Balázs Deák; David A. Donoso; Andrew J. Dougill; Jorge Durán; Erdenetsetseg Batdelger; Carlos I. Espinosa; Alex Fajardo; Mohammad Farzam; Daniela Ferrante; Anke S. K. Frank; Lauchlan H. Fraser; Laureano Gherardi; Aaron C. Greenville; Carlos A. Guerra; Elizabeth Gusmán; Rosa Mary Hernández; Norbert Hölzel; Elisabeth Huber‐Sannwald; Frederic Mendes Hughes; Oswaldo Jadán; Florian Jeltsch; Anke Jentsch; Kudzai Farai Kaseke; Melanie Köbel; Jessica E. Koopman; Cintia Vanesa Leder; Anja Linstädter; Peter C. le Roux; Xinkai Li; Pierre Liancourt; Jushan Liu; Michelle A. Louw; Gillian Maggs‐Kölling; Thulani P. Makhalanyane; Oumarou Malam Issa; Antonio J. Manzaneda; Eugène Marais; Juan Pablo Mora; Gerardo Moreno; Seth M. Munson; Alice Nunes; Gabriel Oliva; Gastón R. Oñatibia; Guadalupe Peter; Marco Otávio Dias Pivari; Yolanda Pueyo; R. Emiliano Quiroga; Soroor Rahmanian; Sasha C. Reed; Pedro J. Rey;Le pâturage représente l'utilisation la plus étendue des terres dans le monde. Pourtant, ses impacts sur les services écosystémiques restent incertains car des interactions omniprésentes entre la pression de pâturage, le climat, les propriétés des sols et la biodiversité peuvent se produire mais n'ont jamais été traitées simultanément. En utilisant une enquête standardisée sur 98 sites sur six continents, nous montrons que les interactions entre la pression du pâturage, le climat, le sol et la biodiversité sont essentielles pour expliquer la fourniture de services écosystémiques fondamentaux dans les zones arides du monde entier. L'augmentation de la pression de pâturage a réduit la prestation de services écosystémiques dans les zones arides plus chaudes et pauvres en espèces, tandis que les effets positifs du pâturage ont été observés dans les zones plus froides et riches en espèces. La prise en compte des interactions entre le pâturage et les facteurs abiotiques et biotiques locaux est essentielle pour comprendre le sort des écosystèmes des terres arides sous le changement climatique et l'augmentation de la pression humaine. El pastoreo representa el uso más extenso de la tierra en todo el mundo. Sin embargo, sus impactos en los servicios ecosistémicos siguen siendo inciertos porque las interacciones generalizadas entre la presión del pastoreo, el clima, las propiedades del suelo y la biodiversidad pueden ocurrir, pero nunca se han abordado simultáneamente. Utilizando una encuesta estandarizada en 98 sitios en seis continentes, mostramos que las interacciones entre la presión del pastoreo, el clima, el suelo y la biodiversidad son fundamentales para explicar la prestación de servicios ecosistémicos fundamentales en las tierras secas de todo el mundo. El aumento de la presión del pastoreo redujo la prestación de servicios ecosistémicos en las tierras secas más cálidas y pobres en especies, mientras que los efectos positivos del pastoreo se observaron en las zonas más frías y ricas en especies. Considerar las interacciones entre el pastoreo y los factores abióticos y bióticos locales es clave para comprender el destino de los ecosistemas de tierras secas bajo el cambio climático y el aumento de la presión humana. Grazing represents the most extensive use of land worldwide. Yet its impacts on ecosystem services remain uncertain because pervasive interactions between grazing pressure, climate, soil properties, and biodiversity may occur but have never been addressed simultaneously. Using a standardized survey at 98 sites across six continents, we show that interactions between grazing pressure, climate, soil, and biodiversity are critical to explain the delivery of fundamental ecosystem services across drylands worldwide. Increasing grazing pressure reduced ecosystem service delivery in warmer and species-poor drylands, whereas positive effects of grazing were observed in colder and species-rich areas. Considering interactions between grazing and local abiotic and biotic factors is key for understanding the fate of dryland ecosystems under climate change and increasing human pressure. يمثل الرعي الاستخدام الأوسع للأراضي في جميع أنحاء العالم. ومع ذلك، لا تزال آثاره على خدمات النظام الإيكولوجي غير مؤكدة لأن التفاعلات المنتشرة بين ضغط الرعي والمناخ وخصائص التربة والتنوع البيولوجي قد تحدث ولكن لم تتم معالجتها أبدًا في وقت واحد. باستخدام مسح موحد في 98 موقعًا في ست قارات، نوضح أن التفاعلات بين ضغط الرعي والمناخ والتربة والتنوع البيولوجي ضرورية لشرح تقديم خدمات النظام الإيكولوجي الأساسية عبر الأراضي الجافة في جميع أنحاء العالم. أدى الضغط المتزايد للرعي إلى تقليل تقديم خدمات النظام الإيكولوجي في الأراضي الجافة الأكثر دفئًا والفقيرة بالأنواع، في حين لوحظت آثار إيجابية للرعي في المناطق الأكثر برودة والغنية بالأنواع. يعتبر النظر في التفاعلات بين الرعي والعوامل المحلية اللاأحيائية والأحيائية أمرًا أساسيًا لفهم مصير النظم الإيكولوجية للأراضي الجافة في ظل تغير المناخ وزيادة الضغط البشري.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60692/dcqj0-ayy92&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60692/dcqj0-ayy92&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Embargo end date: 08 Feb 2024 Spain, Spain, Slovenia, Spain, South Africa, Slovenia, Spain, Germany, Australia, Portugal, France, Slovenia, SpainPublisher:Springer Science and Business Media LLC Funded by:EC | Gradual_Change, ARC | Discovery Projects - Gran...EC| Gradual_Change ,ARC| Discovery Projects - Grant ID: DP210100332Liu, Yu-Rong; van der Heijden, Marcel; Riedo, Judith; Sanz-Lazaro, Carlos; Eldridge, David; Bastida, Felipe; Moreno-Jiménez, Eduardo; Zhou, Xin-Quan; Hu, Hang-Wei; He, Ji-Zheng; Moreno, José; Abades, Sebastian; Alfaro, Fernando; Bamigboye, Adebola; Berdugo, Miguel; Blanco-Pastor, José; de los Ríos, Asunción; Duran, Jorge; Grebenc, Tine; Illán, Javier; Makhalanyane, Thulani; Molina-Montenegro, Marco; Nahberger, Tina; Peñaloza-Bojacá, Gabriel; Plaza, César; Rey, Ana; Rodríguez, Alexandra; Siebe, Christina; Teixido, Alberto; Casado-Coy, Nuria; Trivedi, Pankaj; Torres-Díaz, Cristian; Verma, Jay Prakash; Mukherjee, Arpan; Zeng, Xiao-Min; Wang, Ling; Wang, Jianyong; Zaady, Eli; Zhou, Xiaobing; Huang, Qiaoyun; Tan, Wenfeng; Zhu, Yong-Guan; Rillig, Matthias; Delgado-Baquerizo, Manuel;pmid: 36973286
pmc: PMC10042830
handle: 10261/305238 , 10316/111613 , 10486/707955 , 20.500.14352/89051 , 11343/331956 , 2263/94697 , 1959.7/uws:73920
pmid: 36973286
pmc: PMC10042830
handle: 10261/305238 , 10316/111613 , 10486/707955 , 20.500.14352/89051 , 11343/331956 , 2263/94697 , 1959.7/uws:73920
AbstractSoil contamination is one of the main threats to ecosystem health and sustainability. Yet little is known about the extent to which soil contaminants differ between urban greenspaces and natural ecosystems. Here we show that urban greenspaces and adjacent natural areas (i.e., natural/semi-natural ecosystems) shared similar levels of multiple soil contaminants (metal(loid)s, pesticides, microplastics, and antibiotic resistance genes) across the globe. We reveal that human influence explained many forms of soil contamination worldwide. Socio-economic factors were integral to explaining the occurrence of soil contaminants worldwide. We further show that increased levels of multiple soil contaminants were linked with changes in microbial traits including genes associated with environmental stress resistance, nutrient cycling, and pathogenesis. Taken together, our work demonstrates that human-driven soil contamination in nearby natural areas mirrors that in urban greenspaces globally, and highlights that soil contaminants have the potential to cause dire consequences for ecosystem sustainability and human wellbeing.
Nature Communication... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/11343/331956Data sources: Bielefeld Academic Search Engine (BASE)UP Research Data RepositoryArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/2263/94697Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2023Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAdCOBISS.SI Digital RepositoryArticle . 2023License: CC BYData sources: dCOBISS.SI Digital RepositoryDigital repository of Slovenian research organizationsArticle . 2023License: CC BYData sources: Digital repository of Slovenian research organizationsRefubium - Repositorium der Freien Universität BerlinArticle . 2023License: CC BYData sources: Refubium - Repositorium der Freien Universität BerlinRepositorio Institucional de la Universidad de AlicanteArticle . 2023Data sources: Repositorio Institucional de la Universidad de AlicanteUniversity of Western Sydney (UWS): Research DirectArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-37428-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 69 citations 69 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 117visibility views 117 download downloads 276 Powered bymore_vert Nature Communication... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/11343/331956Data sources: Bielefeld Academic Search Engine (BASE)UP Research Data RepositoryArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/2263/94697Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2023Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAdCOBISS.SI Digital RepositoryArticle . 2023License: CC BYData sources: dCOBISS.SI Digital RepositoryDigital repository of Slovenian research organizationsArticle . 2023License: CC BYData sources: Digital repository of Slovenian research organizationsRefubium - Repositorium der Freien Universität BerlinArticle . 2023License: CC BYData sources: Refubium - Repositorium der Freien Universität BerlinRepositorio Institucional de la Universidad de AlicanteArticle . 2023Data sources: Repositorio Institucional de la Universidad de AlicanteUniversity of Western Sydney (UWS): Research DirectArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-37428-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Ying Yong Sheng Tai Xue Bao Authors: Ju-Pei Shen; Cui Jing Zhang; Ji-Zheng He;pmid: 29732830
In recent decades, global climate change is one of the main concerns around the world. Land use change and the high demand for fossil fuel have caused severe consequences of climate change, such as elevated greenhouse gases, warming, and altering precipitation pattern. These combined factors have substantial impacts on ecosystem processes, especially carbon and nitrogen cycles in terrestrial ecosystems. Since the 1970s, a series of field manipulative experiments had been set up to stimulate the influences of monofactorial and/or multifactorial climate changes, improving our understanding of ecosystem response and feedback to global change. In this review, we summarized the development history of global change experiments, and discussed the main issues of using field manipulative experiments in simulating global change. The application of multifactorial experiments, such as CO2 enrichment, warming, precipitation and nitrogen deposition, were highlighted in the research of soil microbial ecology. Moreover, the response and feedback of soil biota as well as the biogeochemical processes that they mediated were further addressed. We also proposed the prospects of their application in global change research to explore the impact of global change on terrestrial ecosystems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.13287/j.1001-9332.201605.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.13287/j.1001-9332.201605.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 China (People's Republic of), AustraliaPublisher:Springer Science and Business Media LLC Cui-Jing Zhang; Li-Mei Zhang; Ju-Pei Shen; Ren Bai; Jun-Tao Wang; Jun Zeng; Ji-Zheng He; Ji-Zheng He; Hang-Wei Hu;Climate change is projected to have impacts on precipitation and temperature regimes in drylands of high elevation regions, with especially large effects in the Qinghai-Tibetan Plateau. However, there was limited information about how the projected climate change will impact on the soil microbial community and their activity in the region. Here, we present results from a study conducted across 72 soil samples from 24 different sites along a temperature and precipitation gradient (substituted by aridity index ranging from 0.079 to 0.89) of the Plateau, to assess how changes in aridity affect the abundance, community composition, and diversity of bacteria, ammonia-oxidizers, and denitrifers (nirK/S and nosZ genes-containing communities) as well as nitrogen (N) turnover enzyme activities. We found V-shaped or inverted V-shaped relationships between the aridity index (AI) and soil microbial parameters (gene abundance, community structures, microbial diversity, and N turnover enzyme activities) with a threshold at AI = 0.27. The increasing or decreasing rates of the microbial parameters were higher in areas with AI < 0.27 (alpine steppes) than in mesic areas with 0.27 < AI < 0.89 (alpine meadow and swamp meadow). The results indicated that the projected warming and wetting have a strong impact on soil microbial communities in the alpine steppes.
Microbial Ecology arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00248-017-1098-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Microbial Ecology arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00248-017-1098-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Springer Science and Business Media LLC Funded by:ARC | Discovery Projects - Gran..., EC | BIOCOM, EC | BIODESERT +2 projectsARC| Discovery Projects - Grant ID: DP170104634 ,EC| BIOCOM ,EC| BIODESERT ,NSF| Dimensions: Collaborative research: Community genomic drivers of moss microbiome assembly and function in rapidly changing Alaskan ecosystems ,EC| CLIMIFUNManuel Delgado-Baquerizo; Manuel Delgado-Baquerizo; Ji-Zheng He; Ji-Zheng He; Noah Fierer; Noah Fierer; Kelly Hamonts; Fernando T. Maestre; Andrew Bissett; David J. Eldridge; Jun-Tao Wang; Yu-Rong Liu; Brajesh K. Singh;pmid: 29046544
The legacy impacts of past climates on the current distribution of soil microbial communities are largely unknown. Here, we use data from more than 1,000 sites from five separate global and regional datasets to identify the importance of palaeoclimatic conditions (Last Glacial Maximum and mid-Holocene) in shaping the current structure of soil bacterial communities in natural and agricultural soils. We show that palaeoclimate explains more of the variation in the richness and composition of bacterial communities than current climate. Moreover, palaeoclimate accounts for a unique fraction of this variation that cannot be predicted from geographical location, current climate, soil properties or plant diversity. Climatic legacies (temperature and precipitation anomalies from the present to ~20 kyr ago) probably shape soil bacterial communities both directly and indirectly through shifts in soil properties and plant communities. The ability to predict the distribution of soil bacteria from either palaeoclimate or current climate declines greatly in agricultural soils, highlighting the fact that anthropogenic activities have a strong influence on soil bacterial diversity. We illustrate how climatic legacies can help to explain the current distribution of soil bacteria in natural ecosystems and advocate that climatic legacies should be considered when predicting microbial responses to climate change.
Nature Ecology & Evo... arrow_drop_down Nature Ecology & EvolutionArticle . 2017 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefNature Ecology & EvolutionArticle . 2017 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Western Sydney (UWS): Research DirectArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-017-0259-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 76 citations 76 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 3visibility views 3 download downloads 41 Powered bymore_vert Nature Ecology & Evo... arrow_drop_down Nature Ecology & EvolutionArticle . 2017 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefNature Ecology & EvolutionArticle . 2017 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Western Sydney (UWS): Research DirectArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-017-0259-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Springer Science and Business Media LLC Sardar Khan; Min Qiao; Abd El-Latif Hesham; Ji-Zheng He; Shafiq Ur Rehman;pmid: 19333640
Soil contamination with heavy metals occurs as a result of both anthropogenic and natural activities. Heavy metals could have long-term hazardous impacts on the health of soil ecosystems and adverse influences on soil biological processes. Soil enzymatic activities are recognized as sensors towards any natural and anthropogenic disturbance occurring in the soil ecosystem. Similarly, microbial biomass carbon (MBC) is also considered as one of the important soil biological activities frequently influenced by heavy metal contamination. The polymerase chain reaction-denaturing gradient gel electrophoresis (DGGE) has recently been used to investigate changes in soil microbial community composition in response to environmental stresses. Soil microbial community structure and activities are difficult to elucidate using single monitoring approach; therefore, for a better insight and complete depiction of the soil microbial situation, different approaches need to be used. This study was conducted in a greenhouse for a period of 12 weeks to evaluate the changes in indigenous microbial community structure and activities in the soil amended with different application rates of Cd, Pb, and Cd/Pb mix. In a field environment, soil is contaminated with single or mixed heavy metals; so that, in this research, we used the selected metals in both single and mixed forms at different application rates and investigated their toxic effects on microbial community structure and activities, using soil enzyme assays, plate counting, and advanced molecular DGGE technique. Soil microbial activities, including acid phosphatase (ACP), urease (URE), and MBC, and microbial community structure were studied.A soil sample (0-20 cm) with an unknown history of heavy metal contamination was collected and amended with Cd, Pb, and Cd/Pb mix using the CdSO(4) and Pb(NO(3))(2) solutions at different application rates. The amended soils were incubated in the greenhouse at 25 +/- 4 degrees C and 60% water-holding capacity for 12 weeks. During the incubation period, samples were collected from each pot at 0, 2, 9, and 12 weeks for enzyme assays, MBC, numeration of microbes, and DNA extraction. Fumigation-extraction method was used to measure the MBC, while plate counting techniques were used to numerate viable heterotrophic bacteria, fungi, and actinomycetes. Soil DNAs were extracted from the samples and used for DGGE analysis.ACP, URE, and MBC activities of microbial community were significantly lower (p < 0.05) in the metal-amended samples than those in the control. The enzyme inhibition extent was obvious between different incubation periods and varied as the incubation proceeded, and the highest rate was detected in the samples after 2 weeks. However, the lowest values of ACP and URE activities (35.6% and 36.6% of the control, respectively) were found in the Cd(3)/Pb(3)-treated sample after 2 weeks. Similarly, MBC was strongly decreased in both Cd/Pb-amended samples and highest reduction (52.4%) was detected for Cd(3)/Pb(3) treatment. The number of bacteria and actinomycetes were significantly decreased in the heavy metal-amended samples compared to the control, while fungal cells were not significantly different (from 2.3% to 23.87%). In this study, the DGGE profile indicated that the high dose of metal amendment caused a greater change in the number of bands. DGGE banding patterns confirmed that the addition of metals had a significant impact on microbial community structure.In soil ecosystem, heavy metals exhibit toxicological effects on soil microbes which may lead to the decrease of their numbers and activities. This study demonstrated that toxicological effects of heavy metals on soil microbial community structure and activities depend largely on the type and concentration of metal and incubation time. The inhibition extent varied widely among different incubation periods for these enzymes. Furthermore, the rapid inhibition in microbial activities such as ACP, URE, and MBC were observed in the 2 weeks, which should be related to the fact that the microbes were suddenly exposed to heavy metals. The increased inhibition of soil microbial activities is likely to be related to tolerance and adaptation of the microbial community, concentration of pollutants, and mechanisms of heavy metals. The DGGE profile has shown that the structure of the bacterial community changed in amended heavy metal samples. In this research, the microbial community structure was highly affected, consistent with the lower microbial activities in different levels of heavy metals. Furthermore, a great community change in this study, particularly at a high level of contamination, was probably a result of metal toxicity and also unavailability of nutrients because no nutrients were supplied during the whole incubation period.The added concentrations of heavy metals have changed the soil microbial community structure and activities. The highest inhibitory effects on soil microbial activities were observed at 2 weeks of incubation. The bacteria were more sensitive than actinomycetes and fungi. The DGGE profile indicated that bacterial community structure was changed in the Cd/Pb-amended samples, particularly at high concentrations.The investigation of soil microbial community structure and activities together could give more reliable and accurate information about the toxic effects of heavy metals on soil health.
Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2009 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-009-0134-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 342 citations 342 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2009 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-009-0134-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu