- home
- Advanced Search
- Energy Research
- 11. Sustainability
- Energy Research
- 11. Sustainability
description Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Klaus Philipp Sedlazeck; Daniel Höllen; Markus Lehner; Markus Stöllner; Alexia Aldrian; Therese Schwarz; Iris Berneder; Francesca Capo Tous;pmid: 32559967
The purpose of this study was to test the feasibility of a specific mineral carbonation reaction route applied to different types of alkaline industrial residues, i.e. biomass, paper sludge and municipal solid waste incineration bottom ashes and stainless steel slags and dust. This new approach includes the dissolution of industrial residues in hydrochloric acid (HCl), followed by precipitation of iron compounds from the resulting aqueous solutions and the precipitation of calcium carbonates to employ in industrial applications (Carbon Capture, Utilisation and Storage, CCUS). The aim of this work is to apply this stepwise treatment to different types of poorly valorised industrial residues to assess which may be the most promising ones to employ for the process, in terms of total content of specific elements in the obtained products. Our results clearly indicate that the investigated ashes and slags consist of 20-30 wt% CaO which is bound in a broad variety of mineral phases. Reaction of slags and ashes with HCl leads to the formation of Si-rich solid residues and Ca-rich aqueous solutions. Dissolution residues from ash treatment might be used as lightweight concrete aggregate in case of appropriate mechanical properties, whereas dissolution residues from slag treatment might serve as metallurgical Cr concentrates. Resulting aqueous solutions show high concentrations of Ca (>10 g/L), up to 27 g/L of Fe and significant amounts of heavy metals like Pb, Ba, Zn, Cu, Ni. The concentration of dissolved Fe decreases to 2 mg/L by adding NH3 which leads to the precipitation of amorphous iron phases. Finally, calcium carbonates with a purity of 79-97% are precipitated by injecting CO2 at pH 9. These carbonates present lower heavy metal contents than the input materials (e.g. 0.3 wt% ZnO compared to 0.9 wt% for EAF-FD).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2018.06.048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2018.06.048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Daniel C. Rosenfeld; Hans Böhm; Johannes Lindorfer; Markus Lehner;Abstract Since the European Union's target a domestic greenhouse gas emission reduction of 80% till 2050, as compared to the value of 1990 (European Commission, 2011), there has been an increasing interest in greening large industrial processes. Thus, gas greening and alternative emission reduction processes are gaining importance. In this study, a gas greening system for an integrated steel plant, producing synthetic natural gas serving as a substitute for the fossil fuel-based gas, was investigated. The analysed system consisted of a Power-to-Gas unit combined with a biomass gasification plant, where carbon rich steel gases were used as a CO2 source for methanation. To analyse the system, three extreme value scenarios and three constrained scenarios were defined and evaluated. The biomass gasification plant, set to a maximum nominal power of 105 MWth, was the main limiting factor for the constrained scenarios. The assessment included a basic mass and energy balance, techno-economic analysis, sensitivity analysis, and CO2 potential impact analysis. It was found that the main cost influencing factor throughout all six scenarios was the energy supply cost (electricity and biomass).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2019.09.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 50 citations 50 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2019.09.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Klaus Philipp Sedlazeck; Daniel Höllen; Markus Lehner; Markus Stöllner; Alexia Aldrian; Therese Schwarz; Iris Berneder; Francesca Capo Tous;pmid: 32559967
The purpose of this study was to test the feasibility of a specific mineral carbonation reaction route applied to different types of alkaline industrial residues, i.e. biomass, paper sludge and municipal solid waste incineration bottom ashes and stainless steel slags and dust. This new approach includes the dissolution of industrial residues in hydrochloric acid (HCl), followed by precipitation of iron compounds from the resulting aqueous solutions and the precipitation of calcium carbonates to employ in industrial applications (Carbon Capture, Utilisation and Storage, CCUS). The aim of this work is to apply this stepwise treatment to different types of poorly valorised industrial residues to assess which may be the most promising ones to employ for the process, in terms of total content of specific elements in the obtained products. Our results clearly indicate that the investigated ashes and slags consist of 20-30 wt% CaO which is bound in a broad variety of mineral phases. Reaction of slags and ashes with HCl leads to the formation of Si-rich solid residues and Ca-rich aqueous solutions. Dissolution residues from ash treatment might be used as lightweight concrete aggregate in case of appropriate mechanical properties, whereas dissolution residues from slag treatment might serve as metallurgical Cr concentrates. Resulting aqueous solutions show high concentrations of Ca (>10 g/L), up to 27 g/L of Fe and significant amounts of heavy metals like Pb, Ba, Zn, Cu, Ni. The concentration of dissolved Fe decreases to 2 mg/L by adding NH3 which leads to the precipitation of amorphous iron phases. Finally, calcium carbonates with a purity of 79-97% are precipitated by injecting CO2 at pH 9. These carbonates present lower heavy metal contents than the input materials (e.g. 0.3 wt% ZnO compared to 0.9 wt% for EAF-FD).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2018.06.048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2018.06.048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Daniel C. Rosenfeld; Hans Böhm; Johannes Lindorfer; Markus Lehner;Abstract Since the European Union's target a domestic greenhouse gas emission reduction of 80% till 2050, as compared to the value of 1990 (European Commission, 2011), there has been an increasing interest in greening large industrial processes. Thus, gas greening and alternative emission reduction processes are gaining importance. In this study, a gas greening system for an integrated steel plant, producing synthetic natural gas serving as a substitute for the fossil fuel-based gas, was investigated. The analysed system consisted of a Power-to-Gas unit combined with a biomass gasification plant, where carbon rich steel gases were used as a CO2 source for methanation. To analyse the system, three extreme value scenarios and three constrained scenarios were defined and evaluated. The biomass gasification plant, set to a maximum nominal power of 105 MWth, was the main limiting factor for the constrained scenarios. The assessment included a basic mass and energy balance, techno-economic analysis, sensitivity analysis, and CO2 potential impact analysis. It was found that the main cost influencing factor throughout all six scenarios was the energy supply cost (electricity and biomass).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2019.09.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 50 citations 50 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2019.09.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu