Advanced search in
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
2 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • 11. Sustainability

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Klaus Philipp Sedlazeck; Daniel Höllen; Markus Lehner; Markus Stöllner; +4 Authors

    The purpose of this study was to test the feasibility of a specific mineral carbonation reaction route applied to different types of alkaline industrial residues, i.e. biomass, paper sludge and municipal solid waste incineration bottom ashes and stainless steel slags and dust. This new approach includes the dissolution of industrial residues in hydrochloric acid (HCl), followed by precipitation of iron compounds from the resulting aqueous solutions and the precipitation of calcium carbonates to employ in industrial applications (Carbon Capture, Utilisation and Storage, CCUS). The aim of this work is to apply this stepwise treatment to different types of poorly valorised industrial residues to assess which may be the most promising ones to employ for the process, in terms of total content of specific elements in the obtained products. Our results clearly indicate that the investigated ashes and slags consist of 20-30 wt% CaO which is bound in a broad variety of mineral phases. Reaction of slags and ashes with HCl leads to the formation of Si-rich solid residues and Ca-rich aqueous solutions. Dissolution residues from ash treatment might be used as lightweight concrete aggregate in case of appropriate mechanical properties, whereas dissolution residues from slag treatment might serve as metallurgical Cr concentrates. Resulting aqueous solutions show high concentrations of Ca (>10 g/L), up to 27 g/L of Fe and significant amounts of heavy metals like Pb, Ba, Zn, Cu, Ni. The concentration of dissolved Fe decreases to 2 mg/L by adding NH3 which leads to the precipitation of amorphous iron phases. Finally, calcium carbonates with a purity of 79-97% are precipitated by injecting CO2 at pH 9. These carbonates present lower heavy metal contents than the input materials (e.g. 0.3 wt% ZnO compared to 0.9 wt% for EAF-FD).

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Waste Managementarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Waste Management
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    bronze
    15
    citations15
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Waste Managementarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Waste Management
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Daniel C. Rosenfeld; Hans Böhm; Johannes Lindorfer; Markus Lehner;

    Abstract Since the European Union's target a domestic greenhouse gas emission reduction of 80% till 2050, as compared to the value of 1990 (European Commission, 2011), there has been an increasing interest in greening large industrial processes. Thus, gas greening and alternative emission reduction processes are gaining importance. In this study, a gas greening system for an integrated steel plant, producing synthetic natural gas serving as a substitute for the fossil fuel-based gas, was investigated. The analysed system consisted of a Power-to-Gas unit combined with a biomass gasification plant, where carbon rich steel gases were used as a CO2 source for methanation. To analyse the system, three extreme value scenarios and three constrained scenarios were defined and evaluated. The biomass gasification plant, set to a maximum nominal power of 105 MWth, was the main limiting factor for the constrained scenarios. The assessment included a basic mass and energy balance, techno-economic analysis, sensitivity analysis, and CO2 potential impact analysis. It was found that the main cost influencing factor throughout all six scenarios was the energy supply cost (electricity and biomass).

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable Energy
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    50
    citations50
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable Energy
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph
Advanced search in
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
2 Research products
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Klaus Philipp Sedlazeck; Daniel Höllen; Markus Lehner; Markus Stöllner; +4 Authors

    The purpose of this study was to test the feasibility of a specific mineral carbonation reaction route applied to different types of alkaline industrial residues, i.e. biomass, paper sludge and municipal solid waste incineration bottom ashes and stainless steel slags and dust. This new approach includes the dissolution of industrial residues in hydrochloric acid (HCl), followed by precipitation of iron compounds from the resulting aqueous solutions and the precipitation of calcium carbonates to employ in industrial applications (Carbon Capture, Utilisation and Storage, CCUS). The aim of this work is to apply this stepwise treatment to different types of poorly valorised industrial residues to assess which may be the most promising ones to employ for the process, in terms of total content of specific elements in the obtained products. Our results clearly indicate that the investigated ashes and slags consist of 20-30 wt% CaO which is bound in a broad variety of mineral phases. Reaction of slags and ashes with HCl leads to the formation of Si-rich solid residues and Ca-rich aqueous solutions. Dissolution residues from ash treatment might be used as lightweight concrete aggregate in case of appropriate mechanical properties, whereas dissolution residues from slag treatment might serve as metallurgical Cr concentrates. Resulting aqueous solutions show high concentrations of Ca (>10 g/L), up to 27 g/L of Fe and significant amounts of heavy metals like Pb, Ba, Zn, Cu, Ni. The concentration of dissolved Fe decreases to 2 mg/L by adding NH3 which leads to the precipitation of amorphous iron phases. Finally, calcium carbonates with a purity of 79-97% are precipitated by injecting CO2 at pH 9. These carbonates present lower heavy metal contents than the input materials (e.g. 0.3 wt% ZnO compared to 0.9 wt% for EAF-FD).

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Waste Managementarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Waste Management
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    bronze
    15
    citations15
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Waste Managementarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Waste Management
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Daniel C. Rosenfeld; Hans Böhm; Johannes Lindorfer; Markus Lehner;

    Abstract Since the European Union's target a domestic greenhouse gas emission reduction of 80% till 2050, as compared to the value of 1990 (European Commission, 2011), there has been an increasing interest in greening large industrial processes. Thus, gas greening and alternative emission reduction processes are gaining importance. In this study, a gas greening system for an integrated steel plant, producing synthetic natural gas serving as a substitute for the fossil fuel-based gas, was investigated. The analysed system consisted of a Power-to-Gas unit combined with a biomass gasification plant, where carbon rich steel gases were used as a CO2 source for methanation. To analyse the system, three extreme value scenarios and three constrained scenarios were defined and evaluated. The biomass gasification plant, set to a maximum nominal power of 105 MWth, was the main limiting factor for the constrained scenarios. The assessment included a basic mass and energy balance, techno-economic analysis, sensitivity analysis, and CO2 potential impact analysis. It was found that the main cost influencing factor throughout all six scenarios was the energy supply cost (electricity and biomass).

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable Energy
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    50
    citations50
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable Energy
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph