- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2022 FinlandPublisher:Elsevier BV Michał Preisner; Marzena Smol; Mika Horttanainen; Ivan Deviatkin; Jouni Havukainen; Maris Klavins; Ruta Ozola-Davidane; Jolita Kruopienė; Beata Szatkowska; Lise Appels; Sofie Houtmeyers; Kati Roosalu;pmid: 34923410
The European Union is currently in the process of transformation toward a circular economy model in which different areas of activity should be integrated for more efficient management of raw materials and waste. The wastewater sector has a great potential in this regard and therefore is an important element of the transformation process to the circular economy model. The targets of the circular economy policy framework such as resource recovery are tightly connected with the wastewater treatment processes and sewage sludge management. With this in view, the present study aims to review existing indicators on resource recovery that can enable efficient monitoring of the sustainable and circular solutions implemented in the wastewater sector. Within the reviewed indicators, most of them were focused on technological aspects of resource recovery processes such as nutrient removal efficiency, sewage sludge processing methods and environmental aspects as the pollutant share in the sewage sludge or its ashes. Moreover, other wide-scope indicators such as the wastewater service coverage or the production of bio-based fertilizers and hydrochar within the wastewater sector were analyzed. The results were used for the development of recommendations for improving the resources recovery monitoring framework in the wastewater sector and a proposal of a circularity indicator for a wastewater treatment plant highlighting new challenges for further researches and wastewater professionals.
LUTPub arrow_drop_down Journal of Environmental ManagementArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2021.114261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 62 citations 62 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert LUTPub arrow_drop_down Journal of Environmental ManagementArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2021.114261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 FinlandPublisher:Elsevier BV Michał Preisner; Marzena Smol; Mika Horttanainen; Ivan Deviatkin; Jouni Havukainen; Maris Klavins; Ruta Ozola-Davidane; Jolita Kruopienė; Beata Szatkowska; Lise Appels; Sofie Houtmeyers; Kati Roosalu;pmid: 34923410
The European Union is currently in the process of transformation toward a circular economy model in which different areas of activity should be integrated for more efficient management of raw materials and waste. The wastewater sector has a great potential in this regard and therefore is an important element of the transformation process to the circular economy model. The targets of the circular economy policy framework such as resource recovery are tightly connected with the wastewater treatment processes and sewage sludge management. With this in view, the present study aims to review existing indicators on resource recovery that can enable efficient monitoring of the sustainable and circular solutions implemented in the wastewater sector. Within the reviewed indicators, most of them were focused on technological aspects of resource recovery processes such as nutrient removal efficiency, sewage sludge processing methods and environmental aspects as the pollutant share in the sewage sludge or its ashes. Moreover, other wide-scope indicators such as the wastewater service coverage or the production of bio-based fertilizers and hydrochar within the wastewater sector were analyzed. The results were used for the development of recommendations for improving the resources recovery monitoring framework in the wastewater sector and a proposal of a circularity indicator for a wastewater treatment plant highlighting new challenges for further researches and wastewater professionals.
LUTPub arrow_drop_down Journal of Environmental ManagementArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2021.114261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 62 citations 62 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert LUTPub arrow_drop_down Journal of Environmental ManagementArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2021.114261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Jānis Krūmiņš; Māris Kļaviņš; Rūta Ozola-Davidāne; Linda Ansone-Bērtiņa;doi: 10.3390/min12030349
Carbon capture is among the most sustainable strategies to limit carbon dioxide emissions, which account for a large share of human impact on climate change and ecosystem destruction. This growing threat calls for novel solutions to reduce emissions on an industrial level. Carbon capture by amorphous solids is among the most reasonable options as it requires less energy when compared to other techniques and has comparatively lower development and maintenance costs. In this respect, the method of carbon dioxide adsorption by solids can be used in the long-term and on an industrial scale. Furthermore, certain sorbents are reusable, which makes their use for carbon capture economically justified and acquisition of natural resources full and sustainable. Clay minerals, which are a universally available and versatile material, are amidst such sorbents. These materials are capable of interlayer and surface adsorption of carbon dioxide. In addition, their modification allows to improve carbon dioxide adsorption capabilities even more. The aim of the review is to discuss the prospective of the most widely available clay minerals in the Baltic States for large-scale carbon dioxide emission reduction and to suggest suitable approaches for clay modification to improve carbon dioxide adsorption capacity.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/min12030349&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/min12030349&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Jānis Krūmiņš; Māris Kļaviņš; Rūta Ozola-Davidāne; Linda Ansone-Bērtiņa;doi: 10.3390/min12030349
Carbon capture is among the most sustainable strategies to limit carbon dioxide emissions, which account for a large share of human impact on climate change and ecosystem destruction. This growing threat calls for novel solutions to reduce emissions on an industrial level. Carbon capture by amorphous solids is among the most reasonable options as it requires less energy when compared to other techniques and has comparatively lower development and maintenance costs. In this respect, the method of carbon dioxide adsorption by solids can be used in the long-term and on an industrial scale. Furthermore, certain sorbents are reusable, which makes their use for carbon capture economically justified and acquisition of natural resources full and sustainable. Clay minerals, which are a universally available and versatile material, are amidst such sorbents. These materials are capable of interlayer and surface adsorption of carbon dioxide. In addition, their modification allows to improve carbon dioxide adsorption capabilities even more. The aim of the review is to discuss the prospective of the most widely available clay minerals in the Baltic States for large-scale carbon dioxide emission reduction and to suggest suitable approaches for clay modification to improve carbon dioxide adsorption capacity.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/min12030349&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/min12030349&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 Lithuania, ItalyPublisher:MDPI AG Marzena Smol; Michał Preisner; Augusto Bianchini; Jessica Rossi; Ludwig Hermann; Tanja Schaaf; Jolita Kruopienė; Kastytis Pamakštys; Maris Klavins; Ruta Ozola-Davidane; Daina Kalnina; Elina Strade; Viktoria Voronova; Karin Pachel; Xiaosheng Yang; Britt-Marie Steenari; Magdalena Svanström;doi: 10.3390/su12062567
handle: 11585/796816
Despite the significant reduction of phosphorus (P) discharge in the Baltic Sea in the last decades, obtained through the implementation of some approaches within the Helsinki Convention, eutrophication is still considered the biggest problem for the Baltic Sea environment. Consequently, the reduction of P load is an urgent need to solve, but the complexity of both the environmental and legislative context of the area makes this process difficult (more than in the past). Eutrophication is an intricate issue requiring a proper framework of governance that is not easy to determine in the Baltic Sea Region where the needs of several different countries converge. To identify the most suitable strategy to reduce the eutrophication in the Baltic Sea, the InPhos project (no. 17022, 2018–2019, funded by the European Institute of Innovation & Technology (EIT) Raw Materials) adopted a holistic approach considering technical, political, economic, environmental and social aspects of P management. With the aims to raise awareness about the P challenge, foster the dialogue among all the stakeholders, and find solutions already developed in other countries (such as Germany and Switzerland) to be transferred in the Baltic Sea Region, the InPhos project consortium applied the methodology proposed in this paper, consisting of three main phases: (i) analysis of the available technologies to remove P from waste streams that contribute to eutrophication; (ii) analysis of the main streams involving P in Baltic Sea countries to highlight the potential of more sustainable and circular P management; (iii) study of the current context (e.g., already-existing initiatives and issues). This approach allowed us to identify four categories of recommendations and practical actions proposed to improve P management in the Baltic Sea region. During the project, the consortium mainly addressed social aspects. Following steps beyond the project will be more quantitative to determine the techno-economic feasibility of circular P management in selected demo cases in the region.
Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/6/2567/pdfData sources: Multidisciplinary Digital Publishing InstituteKTUePubl (Repository of Kaunas University of Technology)Article . 2020License: CC BYData sources: KTUePubl (Repository of Kaunas University of Technology)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12062567&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/6/2567/pdfData sources: Multidisciplinary Digital Publishing InstituteKTUePubl (Repository of Kaunas University of Technology)Article . 2020License: CC BYData sources: KTUePubl (Repository of Kaunas University of Technology)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12062567&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 Lithuania, ItalyPublisher:MDPI AG Marzena Smol; Michał Preisner; Augusto Bianchini; Jessica Rossi; Ludwig Hermann; Tanja Schaaf; Jolita Kruopienė; Kastytis Pamakštys; Maris Klavins; Ruta Ozola-Davidane; Daina Kalnina; Elina Strade; Viktoria Voronova; Karin Pachel; Xiaosheng Yang; Britt-Marie Steenari; Magdalena Svanström;doi: 10.3390/su12062567
handle: 11585/796816
Despite the significant reduction of phosphorus (P) discharge in the Baltic Sea in the last decades, obtained through the implementation of some approaches within the Helsinki Convention, eutrophication is still considered the biggest problem for the Baltic Sea environment. Consequently, the reduction of P load is an urgent need to solve, but the complexity of both the environmental and legislative context of the area makes this process difficult (more than in the past). Eutrophication is an intricate issue requiring a proper framework of governance that is not easy to determine in the Baltic Sea Region where the needs of several different countries converge. To identify the most suitable strategy to reduce the eutrophication in the Baltic Sea, the InPhos project (no. 17022, 2018–2019, funded by the European Institute of Innovation & Technology (EIT) Raw Materials) adopted a holistic approach considering technical, political, economic, environmental and social aspects of P management. With the aims to raise awareness about the P challenge, foster the dialogue among all the stakeholders, and find solutions already developed in other countries (such as Germany and Switzerland) to be transferred in the Baltic Sea Region, the InPhos project consortium applied the methodology proposed in this paper, consisting of three main phases: (i) analysis of the available technologies to remove P from waste streams that contribute to eutrophication; (ii) analysis of the main streams involving P in Baltic Sea countries to highlight the potential of more sustainable and circular P management; (iii) study of the current context (e.g., already-existing initiatives and issues). This approach allowed us to identify four categories of recommendations and practical actions proposed to improve P management in the Baltic Sea region. During the project, the consortium mainly addressed social aspects. Following steps beyond the project will be more quantitative to determine the techno-economic feasibility of circular P management in selected demo cases in the region.
Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/6/2567/pdfData sources: Multidisciplinary Digital Publishing InstituteKTUePubl (Repository of Kaunas University of Technology)Article . 2020License: CC BYData sources: KTUePubl (Repository of Kaunas University of Technology)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12062567&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/6/2567/pdfData sources: Multidisciplinary Digital Publishing InstituteKTUePubl (Repository of Kaunas University of Technology)Article . 2020License: CC BYData sources: KTUePubl (Repository of Kaunas University of Technology)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12062567&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 LithuaniaPublisher:MDPI AG Juris Burlakovs; Zane Vincevica-Gaile; Maris Krievans; Yahya Jani; Mika Horttanainen; Kaur-Mikk Pehme; Elina Dace; Roy Hendroko Setyobudi; Jovita Pilecka; Gintaras Denafas; Inga Grinfelde; Amit Bhatnagar; Vasiliy Rud; Vita Rudovica; Ronald L. Mersky; Olga Anne; Mait Kriipsalu; Ruta Ozola-Davidane; Toomas Tamm; Maris Klavins;doi: 10.3390/min10060558
Industrial and strategic significance of platinum group elements (PGEs)—Os, Ir, Ru, Rh, Pd, Pt—makes them irreplaceable; furthermore, some PGEs are used by investors as “safe heaven” assets traded in the commodity markets. This review analyzes PGEs from various aspects: their place in the geosphere, destiny in the anthroposphere, and opportunity in the economy considering interactions among the exploration, recycling of urban ores, trade markets, speculative rhetoric, and changes required for successful technological progress towards the implementation of sustainability. The global market of PGEs is driven by several concerns: costs for extraction/recycling; logistics; the demand of industries; policies of waste management. Diversity of application and specific chemical properties, as well as improper waste management, make the recycling of PGEs complicated. The processing approach depends on composition and the amount of available waste material, and so therefore urban ores are a significant source of PGEs, especially when the supply of elements is limited by geopolitical or market tensions. Recycling potential of urban ores is particularly important in a long-term view disregarding short-term economic fluctuations, and it should influence investment flows in the advancement of innovation.
Minerals arrow_drop_down KTUePubl (Repository of Kaunas University of Technology)Article . 2020License: CC BYData sources: KTUePubl (Repository of Kaunas University of Technology)Virtual Library of Klaipeda UniversityArticle . 2020License: CC BYData sources: Virtual Library of Klaipeda Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/min10060558&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Minerals arrow_drop_down KTUePubl (Repository of Kaunas University of Technology)Article . 2020License: CC BYData sources: KTUePubl (Repository of Kaunas University of Technology)Virtual Library of Klaipeda UniversityArticle . 2020License: CC BYData sources: Virtual Library of Klaipeda Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/min10060558&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 LithuaniaPublisher:MDPI AG Juris Burlakovs; Zane Vincevica-Gaile; Maris Krievans; Yahya Jani; Mika Horttanainen; Kaur-Mikk Pehme; Elina Dace; Roy Hendroko Setyobudi; Jovita Pilecka; Gintaras Denafas; Inga Grinfelde; Amit Bhatnagar; Vasiliy Rud; Vita Rudovica; Ronald L. Mersky; Olga Anne; Mait Kriipsalu; Ruta Ozola-Davidane; Toomas Tamm; Maris Klavins;doi: 10.3390/min10060558
Industrial and strategic significance of platinum group elements (PGEs)—Os, Ir, Ru, Rh, Pd, Pt—makes them irreplaceable; furthermore, some PGEs are used by investors as “safe heaven” assets traded in the commodity markets. This review analyzes PGEs from various aspects: their place in the geosphere, destiny in the anthroposphere, and opportunity in the economy considering interactions among the exploration, recycling of urban ores, trade markets, speculative rhetoric, and changes required for successful technological progress towards the implementation of sustainability. The global market of PGEs is driven by several concerns: costs for extraction/recycling; logistics; the demand of industries; policies of waste management. Diversity of application and specific chemical properties, as well as improper waste management, make the recycling of PGEs complicated. The processing approach depends on composition and the amount of available waste material, and so therefore urban ores are a significant source of PGEs, especially when the supply of elements is limited by geopolitical or market tensions. Recycling potential of urban ores is particularly important in a long-term view disregarding short-term economic fluctuations, and it should influence investment flows in the advancement of innovation.
Minerals arrow_drop_down KTUePubl (Repository of Kaunas University of Technology)Article . 2020License: CC BYData sources: KTUePubl (Repository of Kaunas University of Technology)Virtual Library of Klaipeda UniversityArticle . 2020License: CC BYData sources: Virtual Library of Klaipeda Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/min10060558&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Minerals arrow_drop_down KTUePubl (Repository of Kaunas University of Technology)Article . 2020License: CC BYData sources: KTUePubl (Repository of Kaunas University of Technology)Virtual Library of Klaipeda UniversityArticle . 2020License: CC BYData sources: Virtual Library of Klaipeda Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/min10060558&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022 FinlandPublisher:Elsevier BV Michał Preisner; Marzena Smol; Mika Horttanainen; Ivan Deviatkin; Jouni Havukainen; Maris Klavins; Ruta Ozola-Davidane; Jolita Kruopienė; Beata Szatkowska; Lise Appels; Sofie Houtmeyers; Kati Roosalu;pmid: 34923410
The European Union is currently in the process of transformation toward a circular economy model in which different areas of activity should be integrated for more efficient management of raw materials and waste. The wastewater sector has a great potential in this regard and therefore is an important element of the transformation process to the circular economy model. The targets of the circular economy policy framework such as resource recovery are tightly connected with the wastewater treatment processes and sewage sludge management. With this in view, the present study aims to review existing indicators on resource recovery that can enable efficient monitoring of the sustainable and circular solutions implemented in the wastewater sector. Within the reviewed indicators, most of them were focused on technological aspects of resource recovery processes such as nutrient removal efficiency, sewage sludge processing methods and environmental aspects as the pollutant share in the sewage sludge or its ashes. Moreover, other wide-scope indicators such as the wastewater service coverage or the production of bio-based fertilizers and hydrochar within the wastewater sector were analyzed. The results were used for the development of recommendations for improving the resources recovery monitoring framework in the wastewater sector and a proposal of a circularity indicator for a wastewater treatment plant highlighting new challenges for further researches and wastewater professionals.
LUTPub arrow_drop_down Journal of Environmental ManagementArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2021.114261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 62 citations 62 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert LUTPub arrow_drop_down Journal of Environmental ManagementArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2021.114261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 FinlandPublisher:Elsevier BV Michał Preisner; Marzena Smol; Mika Horttanainen; Ivan Deviatkin; Jouni Havukainen; Maris Klavins; Ruta Ozola-Davidane; Jolita Kruopienė; Beata Szatkowska; Lise Appels; Sofie Houtmeyers; Kati Roosalu;pmid: 34923410
The European Union is currently in the process of transformation toward a circular economy model in which different areas of activity should be integrated for more efficient management of raw materials and waste. The wastewater sector has a great potential in this regard and therefore is an important element of the transformation process to the circular economy model. The targets of the circular economy policy framework such as resource recovery are tightly connected with the wastewater treatment processes and sewage sludge management. With this in view, the present study aims to review existing indicators on resource recovery that can enable efficient monitoring of the sustainable and circular solutions implemented in the wastewater sector. Within the reviewed indicators, most of them were focused on technological aspects of resource recovery processes such as nutrient removal efficiency, sewage sludge processing methods and environmental aspects as the pollutant share in the sewage sludge or its ashes. Moreover, other wide-scope indicators such as the wastewater service coverage or the production of bio-based fertilizers and hydrochar within the wastewater sector were analyzed. The results were used for the development of recommendations for improving the resources recovery monitoring framework in the wastewater sector and a proposal of a circularity indicator for a wastewater treatment plant highlighting new challenges for further researches and wastewater professionals.
LUTPub arrow_drop_down Journal of Environmental ManagementArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2021.114261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 62 citations 62 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert LUTPub arrow_drop_down Journal of Environmental ManagementArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2021.114261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Jānis Krūmiņš; Māris Kļaviņš; Rūta Ozola-Davidāne; Linda Ansone-Bērtiņa;doi: 10.3390/min12030349
Carbon capture is among the most sustainable strategies to limit carbon dioxide emissions, which account for a large share of human impact on climate change and ecosystem destruction. This growing threat calls for novel solutions to reduce emissions on an industrial level. Carbon capture by amorphous solids is among the most reasonable options as it requires less energy when compared to other techniques and has comparatively lower development and maintenance costs. In this respect, the method of carbon dioxide adsorption by solids can be used in the long-term and on an industrial scale. Furthermore, certain sorbents are reusable, which makes their use for carbon capture economically justified and acquisition of natural resources full and sustainable. Clay minerals, which are a universally available and versatile material, are amidst such sorbents. These materials are capable of interlayer and surface adsorption of carbon dioxide. In addition, their modification allows to improve carbon dioxide adsorption capabilities even more. The aim of the review is to discuss the prospective of the most widely available clay minerals in the Baltic States for large-scale carbon dioxide emission reduction and to suggest suitable approaches for clay modification to improve carbon dioxide adsorption capacity.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/min12030349&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/min12030349&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Jānis Krūmiņš; Māris Kļaviņš; Rūta Ozola-Davidāne; Linda Ansone-Bērtiņa;doi: 10.3390/min12030349
Carbon capture is among the most sustainable strategies to limit carbon dioxide emissions, which account for a large share of human impact on climate change and ecosystem destruction. This growing threat calls for novel solutions to reduce emissions on an industrial level. Carbon capture by amorphous solids is among the most reasonable options as it requires less energy when compared to other techniques and has comparatively lower development and maintenance costs. In this respect, the method of carbon dioxide adsorption by solids can be used in the long-term and on an industrial scale. Furthermore, certain sorbents are reusable, which makes their use for carbon capture economically justified and acquisition of natural resources full and sustainable. Clay minerals, which are a universally available and versatile material, are amidst such sorbents. These materials are capable of interlayer and surface adsorption of carbon dioxide. In addition, their modification allows to improve carbon dioxide adsorption capabilities even more. The aim of the review is to discuss the prospective of the most widely available clay minerals in the Baltic States for large-scale carbon dioxide emission reduction and to suggest suitable approaches for clay modification to improve carbon dioxide adsorption capacity.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/min12030349&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/min12030349&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 Lithuania, ItalyPublisher:MDPI AG Marzena Smol; Michał Preisner; Augusto Bianchini; Jessica Rossi; Ludwig Hermann; Tanja Schaaf; Jolita Kruopienė; Kastytis Pamakštys; Maris Klavins; Ruta Ozola-Davidane; Daina Kalnina; Elina Strade; Viktoria Voronova; Karin Pachel; Xiaosheng Yang; Britt-Marie Steenari; Magdalena Svanström;doi: 10.3390/su12062567
handle: 11585/796816
Despite the significant reduction of phosphorus (P) discharge in the Baltic Sea in the last decades, obtained through the implementation of some approaches within the Helsinki Convention, eutrophication is still considered the biggest problem for the Baltic Sea environment. Consequently, the reduction of P load is an urgent need to solve, but the complexity of both the environmental and legislative context of the area makes this process difficult (more than in the past). Eutrophication is an intricate issue requiring a proper framework of governance that is not easy to determine in the Baltic Sea Region where the needs of several different countries converge. To identify the most suitable strategy to reduce the eutrophication in the Baltic Sea, the InPhos project (no. 17022, 2018–2019, funded by the European Institute of Innovation & Technology (EIT) Raw Materials) adopted a holistic approach considering technical, political, economic, environmental and social aspects of P management. With the aims to raise awareness about the P challenge, foster the dialogue among all the stakeholders, and find solutions already developed in other countries (such as Germany and Switzerland) to be transferred in the Baltic Sea Region, the InPhos project consortium applied the methodology proposed in this paper, consisting of three main phases: (i) analysis of the available technologies to remove P from waste streams that contribute to eutrophication; (ii) analysis of the main streams involving P in Baltic Sea countries to highlight the potential of more sustainable and circular P management; (iii) study of the current context (e.g., already-existing initiatives and issues). This approach allowed us to identify four categories of recommendations and practical actions proposed to improve P management in the Baltic Sea region. During the project, the consortium mainly addressed social aspects. Following steps beyond the project will be more quantitative to determine the techno-economic feasibility of circular P management in selected demo cases in the region.
Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/6/2567/pdfData sources: Multidisciplinary Digital Publishing InstituteKTUePubl (Repository of Kaunas University of Technology)Article . 2020License: CC BYData sources: KTUePubl (Repository of Kaunas University of Technology)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12062567&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/6/2567/pdfData sources: Multidisciplinary Digital Publishing InstituteKTUePubl (Repository of Kaunas University of Technology)Article . 2020License: CC BYData sources: KTUePubl (Repository of Kaunas University of Technology)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12062567&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 Lithuania, ItalyPublisher:MDPI AG Marzena Smol; Michał Preisner; Augusto Bianchini; Jessica Rossi; Ludwig Hermann; Tanja Schaaf; Jolita Kruopienė; Kastytis Pamakštys; Maris Klavins; Ruta Ozola-Davidane; Daina Kalnina; Elina Strade; Viktoria Voronova; Karin Pachel; Xiaosheng Yang; Britt-Marie Steenari; Magdalena Svanström;doi: 10.3390/su12062567
handle: 11585/796816
Despite the significant reduction of phosphorus (P) discharge in the Baltic Sea in the last decades, obtained through the implementation of some approaches within the Helsinki Convention, eutrophication is still considered the biggest problem for the Baltic Sea environment. Consequently, the reduction of P load is an urgent need to solve, but the complexity of both the environmental and legislative context of the area makes this process difficult (more than in the past). Eutrophication is an intricate issue requiring a proper framework of governance that is not easy to determine in the Baltic Sea Region where the needs of several different countries converge. To identify the most suitable strategy to reduce the eutrophication in the Baltic Sea, the InPhos project (no. 17022, 2018–2019, funded by the European Institute of Innovation & Technology (EIT) Raw Materials) adopted a holistic approach considering technical, political, economic, environmental and social aspects of P management. With the aims to raise awareness about the P challenge, foster the dialogue among all the stakeholders, and find solutions already developed in other countries (such as Germany and Switzerland) to be transferred in the Baltic Sea Region, the InPhos project consortium applied the methodology proposed in this paper, consisting of three main phases: (i) analysis of the available technologies to remove P from waste streams that contribute to eutrophication; (ii) analysis of the main streams involving P in Baltic Sea countries to highlight the potential of more sustainable and circular P management; (iii) study of the current context (e.g., already-existing initiatives and issues). This approach allowed us to identify four categories of recommendations and practical actions proposed to improve P management in the Baltic Sea region. During the project, the consortium mainly addressed social aspects. Following steps beyond the project will be more quantitative to determine the techno-economic feasibility of circular P management in selected demo cases in the region.
Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/6/2567/pdfData sources: Multidisciplinary Digital Publishing InstituteKTUePubl (Repository of Kaunas University of Technology)Article . 2020License: CC BYData sources: KTUePubl (Repository of Kaunas University of Technology)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12062567&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/6/2567/pdfData sources: Multidisciplinary Digital Publishing InstituteKTUePubl (Repository of Kaunas University of Technology)Article . 2020License: CC BYData sources: KTUePubl (Repository of Kaunas University of Technology)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12062567&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 LithuaniaPublisher:MDPI AG Juris Burlakovs; Zane Vincevica-Gaile; Maris Krievans; Yahya Jani; Mika Horttanainen; Kaur-Mikk Pehme; Elina Dace; Roy Hendroko Setyobudi; Jovita Pilecka; Gintaras Denafas; Inga Grinfelde; Amit Bhatnagar; Vasiliy Rud; Vita Rudovica; Ronald L. Mersky; Olga Anne; Mait Kriipsalu; Ruta Ozola-Davidane; Toomas Tamm; Maris Klavins;doi: 10.3390/min10060558
Industrial and strategic significance of platinum group elements (PGEs)—Os, Ir, Ru, Rh, Pd, Pt—makes them irreplaceable; furthermore, some PGEs are used by investors as “safe heaven” assets traded in the commodity markets. This review analyzes PGEs from various aspects: their place in the geosphere, destiny in the anthroposphere, and opportunity in the economy considering interactions among the exploration, recycling of urban ores, trade markets, speculative rhetoric, and changes required for successful technological progress towards the implementation of sustainability. The global market of PGEs is driven by several concerns: costs for extraction/recycling; logistics; the demand of industries; policies of waste management. Diversity of application and specific chemical properties, as well as improper waste management, make the recycling of PGEs complicated. The processing approach depends on composition and the amount of available waste material, and so therefore urban ores are a significant source of PGEs, especially when the supply of elements is limited by geopolitical or market tensions. Recycling potential of urban ores is particularly important in a long-term view disregarding short-term economic fluctuations, and it should influence investment flows in the advancement of innovation.
Minerals arrow_drop_down KTUePubl (Repository of Kaunas University of Technology)Article . 2020License: CC BYData sources: KTUePubl (Repository of Kaunas University of Technology)Virtual Library of Klaipeda UniversityArticle . 2020License: CC BYData sources: Virtual Library of Klaipeda Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/min10060558&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Minerals arrow_drop_down KTUePubl (Repository of Kaunas University of Technology)Article . 2020License: CC BYData sources: KTUePubl (Repository of Kaunas University of Technology)Virtual Library of Klaipeda UniversityArticle . 2020License: CC BYData sources: Virtual Library of Klaipeda Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/min10060558&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 LithuaniaPublisher:MDPI AG Juris Burlakovs; Zane Vincevica-Gaile; Maris Krievans; Yahya Jani; Mika Horttanainen; Kaur-Mikk Pehme; Elina Dace; Roy Hendroko Setyobudi; Jovita Pilecka; Gintaras Denafas; Inga Grinfelde; Amit Bhatnagar; Vasiliy Rud; Vita Rudovica; Ronald L. Mersky; Olga Anne; Mait Kriipsalu; Ruta Ozola-Davidane; Toomas Tamm; Maris Klavins;doi: 10.3390/min10060558
Industrial and strategic significance of platinum group elements (PGEs)—Os, Ir, Ru, Rh, Pd, Pt—makes them irreplaceable; furthermore, some PGEs are used by investors as “safe heaven” assets traded in the commodity markets. This review analyzes PGEs from various aspects: their place in the geosphere, destiny in the anthroposphere, and opportunity in the economy considering interactions among the exploration, recycling of urban ores, trade markets, speculative rhetoric, and changes required for successful technological progress towards the implementation of sustainability. The global market of PGEs is driven by several concerns: costs for extraction/recycling; logistics; the demand of industries; policies of waste management. Diversity of application and specific chemical properties, as well as improper waste management, make the recycling of PGEs complicated. The processing approach depends on composition and the amount of available waste material, and so therefore urban ores are a significant source of PGEs, especially when the supply of elements is limited by geopolitical or market tensions. Recycling potential of urban ores is particularly important in a long-term view disregarding short-term economic fluctuations, and it should influence investment flows in the advancement of innovation.
Minerals arrow_drop_down KTUePubl (Repository of Kaunas University of Technology)Article . 2020License: CC BYData sources: KTUePubl (Repository of Kaunas University of Technology)Virtual Library of Klaipeda UniversityArticle . 2020License: CC BYData sources: Virtual Library of Klaipeda Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/min10060558&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Minerals arrow_drop_down KTUePubl (Repository of Kaunas University of Technology)Article . 2020License: CC BYData sources: KTUePubl (Repository of Kaunas University of Technology)Virtual Library of Klaipeda UniversityArticle . 2020License: CC BYData sources: Virtual Library of Klaipeda Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/min10060558&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu