- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2019 SpainPublisher:Elsevier BV Authors: Gimeno Furió, Alexandra; Hernandez, Leonor; Navarrete Argilés, Nuria; Mondragon, Rosa;Carbon nanoparticles are very useful in solar thermal applications, since they absorb much of the solar spectrum, are cheap and have excellent optical properties. Carbon nanoparticlesthermal oil-based nanofluid was prepared using two-step method with diphenyl sulfone as surfactant to achieve that nanoparticles remain suspended even at high temperatures. The size particle distribution was studied using two Dynamic Light Scattering systems at room and high temperature and also evaluated before and after exposing the nanofluid to a thermal treatment so that conditions closer to those in real applications were replicated. Moreover, the morphological changes due to the thermal treatment were observed with Transmission Electron Microscopy. Finally, the optical properties as the ballistic transmittance, absorption coefficient and scattering albedo of the base fluid as well as of the nanofluid were measured using a spectrophotometer with and without integrating sphere. The results of this study contribute to the knowledge about these solar nanofluids that are promising alternatives to the conventional solar collectors.
Renewable Energy arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARepositori Institucional de la Universitat Jaume IArticle . 2019Data sources: Repositori Institucional de la Universitat Jaume Iadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2019.03.080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 23visibility views 23 download downloads 75 Powered bymore_vert Renewable Energy arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARepositori Institucional de la Universitat Jaume IArticle . 2019Data sources: Repositori Institucional de la Universitat Jaume Iadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2019.03.080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 SpainPublisher:Elsevier BV Authors: Mondragon, Rosa; Juliá Bolívar, José Enrique; Barba-Juan, Antonio; Jarque Fonfría, Juan Carlos;The stability and agglomeration state of nanofluids are key parameters for their use in different applications. Silica nanofluids were prepared by dispersing the nanoparticles in distilled water using an ultrasonic probe, which has proved to be the most effective system and gives the best results when compared with previous works. Results were obtained concerning the influence of the solid content, pH and salt concentration on the zeta potential, electrical double layer, viscosity, elastic and viscous moduli, particle size and light backscattering. Measurement of all these properties provides information about the colloidal state of nanofluids. The most important variable is the solid content. Despite the agglomeration due to high concentration, nanofluids with low viscosity and behaving like liquid were prepared at 20% of mass load thanks to the good dispersion achieved with the ultrasonic treatment. The pH of the medium can be used to control the stability, since the nanofluids are more stable under basic conditions far from the isoelectric point (IEP) and settle at pH = 2. Therefore, stable nanofluids for at least 48 h, with high solid content, can be prepared at high pH value (pH > 7) due to the electrostatic repulsion between particles.
Powder Technology arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTARepositori Institucional de la Universitat Jaume IArticle . 2012Data sources: Repositori Institucional de la Universitat Jaume Iadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.powtec.2012.02.043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 129 citations 129 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
visibility 49visibility views 49 download downloads 350 Powered bymore_vert Powder Technology arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTARepositori Institucional de la Universitat Jaume IArticle . 2012Data sources: Repositori Institucional de la Universitat Jaume Iadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.powtec.2012.02.043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 SpainPublisher:Informa UK Limited Authors: Josep Forner-Escrig; Roberto Palma; Rosa Mondragón;Nanoencapsulated phase change materials (nePCMs) – which are composed of a core with a phase change material and of a shell that envelopes the core – are currently under research for heat storage applications. Mechanically, one problem encountered in the synthesis of nePCMs is the failure of the shell due to thermal stresses during heating/cooling cycles. Thus, a compromise between shell and core volumes must be found to guarantee both mechanical reliability and heat storage capacity. At present, this compromise is commonly achieved by trial and error experiments or by using simple analytical solutions. On this ground, the current work presents a thermodynamically consistent and three-dimensional finite element (FE) formulation considering both solid and liquid phases to study thermal stresses in nePCMs. Despite the fact that there are several phase change FE formulations in the literature, the main novelty of the present work is its monolithic coupling – no staggered approaches are required – between thermal and mechanical fields. Then, the FE formulation is implemented in a computational code and it is validated against one-dimensional analytical solutions. Finally, the FE model is used to perform a thermal stress analysis for different nePCM geometries and materials to predict their mechanical failure by using Rankine’s criterion.
Journal of Thermal S... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARepositori Institucional de la Universitat Jaume IArticle . 2020Data sources: Repositori Institucional de la Universitat Jaume Iadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/01495739.2020.1718045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 13visibility views 13 download downloads 53 Powered bymore_vert Journal of Thermal S... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARepositori Institucional de la Universitat Jaume IArticle . 2020Data sources: Repositori Institucional de la Universitat Jaume Iadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/01495739.2020.1718045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 SpainPublisher:Elsevier BV Alexandra Gimeno-Furio; Nuria Navarrete; Rosa Mondragon; Leonor Hernandez; Raul Martinez-Cuenca; Luis Cabedo; J. Enrique Julia;Abstract Synthetic thermal oils are used as heat transfer fluids (HTFs) in different applications, due to their higher working temperature. In this way, one of the applications of interest is the use of thermal oils in Concentrated Solar Power (CSP) plants with Parabolic Trough technology. Nowadays, the HTF known commercially as Therminol VP1 (Solutia Inc.) is being used in CSP plants. This fluid is composed of a eutectic mixture of diphenyl (C 12 H 10 ) and diphenyl oxide (C 12 H 10 O), and it is used as an HTF with a maximum working temperature of 400 °C. However, one of the drawbacks of Therminol VP1 is its low thermal conductivity. In recent years it has been demonstrated that the addition of nanoparticles can improve the thermal properties of HTFs, and they are then called nanofluids. The key factor of nanofluids is their high stability over time. However, at high temperatures it is necessary to add chemically compatible surfactants that do not degrade and endow the nanofluids with stability through steric repulsion even under high temperature conditions. In this work, a carbon black/Therminol VP1 nanofluid was synthesized and stabilized using diphenyl sulfone as a stabilizer. Stability tests after thermal cycling at 400 °C showed the higher performance of this additive compared to others commonly used in the literature. Thermal conductivity, heat capacity, and viscosity of the nanofluids at 3 vol% and 5 vol% were characterized from 50 °C to 350 °C. Finally, the Mouromsteff number was calculated to determine the heat transfer enhancement provided by the use of nanofluids.
Repositori Instituci... arrow_drop_down Repositori Institucional de la Universitat Jaume IArticle . 2017Data sources: Repositori Institucional de la Universitat Jaume IInternational Journal of Heat and Mass TransferArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijheatmasstransfer.2017.05.097&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 26visibility views 26 Powered bymore_vert Repositori Instituci... arrow_drop_down Repositori Institucional de la Universitat Jaume IArticle . 2017Data sources: Repositori Institucional de la Universitat Jaume IInternational Journal of Heat and Mass TransferArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijheatmasstransfer.2017.05.097&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 SpainPublisher:Elsevier BV Authors: Navarrete Argilés, Nuria; La Zara, Damiano; Goulas, Aristeidis; Valdesueiro, David; +3 AuthorsNavarrete Argilés, Nuria; La Zara, Damiano; Goulas, Aristeidis; Valdesueiro, David; Hernandez, Leonor; van Ommen, J. Ruud; Mondragon, Rosa;Renewable energy has become of great interest over the past years in order to mitigate Global Warming. One of the actions gaining attention is the enhancement of the thermal energy storage capacity of Concentrated Solar Power plants. The addition of nanoencapsulated phase change materials (core-shell nanoparticles) to the already used materials has been proposed for that purpose, due to the possibility of increasing thermal storage through the contribution of both core latent heat and sensible heat. In this work, Atomic Layer Deposition has been used to synthesise SiO2 and Al2O3 nanoscale coatings on tin nanoparticles. The multi-encapsulated phase change materials have been characterised in terms of chemical composition, crystalline structure, particle size, thermal stability and thermal storage capacity. Sn@Al2O3 nanoparticles present the best thermal behaviour as they show the lowest reduction in the phase change enthalpy over 100 cycles due to the oxidation barrier of the coating. Moreover, the specific heat of both nanoparticles and solar salt-based nanofluids is increased, making the nanoencapsulated phase change material suitable for thermal energy storage applications.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARepositori Institucional de la Universitat Jaume IArticle . 2020License: CC BY NC NDData sources: Repositori Institucional de la Universitat Jaume ISolar Energy Materials and Solar CellsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2019.110322&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 43visibility views 43 download downloads 86 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARepositori Institucional de la Universitat Jaume IArticle . 2020License: CC BY NC NDData sources: Repositori Institucional de la Universitat Jaume ISolar Energy Materials and Solar CellsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2019.110322&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 SpainPublisher:Public Library of Science (PLoS) Rosa Mondragón; Daniel Sánchez; Ramón Cabello; Rodrigo Llopis; J. Enrique Juliá;Solar energy has become an important renewable energy source for reducing the use of fossil fuels and to mitigate global warming, for which solar collectors constitute a technology that is to be promoted. The use of nanofluids can increase the efficiency of solar into thermal energy conversion in solar collectors. Experimental values for the specific heat, thermal conductivity and viscosity of alumina/water nanofluids are needed to evaluate the influence of the solid content (from 0.25 to 5 v%) and the flow rate on the Reynolds, Nusselt and the heat transfer coefficient. In the laminar flow regime, thermal conductivity enhancement over specific heat decrement is key parameter, and a 2.34% increase in the heat transfer coefficient is theoretically obtained for 1 v% alumina nanofluid. To corroborate the results, experimental tests were run in a flat plate solar collector. A reduction in efficiency from 47% to 41.5% and a decrease in the heat removal factor were obtained using the nanofluid due to the formation of a nanoparticle deposition layer adding an addition thermal resistance to heat transfer. Nanofluids are recommended only if the nanoparticle concentration is high enough to enhance thermal conductivity, but no so high so as to avoid wall deposition.
PLoS ONE arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARepositori Institucional de la Universitat Jaume IArticle . 2019License: CC BY SAData sources: Repositori Institucional de la Universitat Jaume Iadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0212260&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 14visibility views 14 download downloads 34 Powered bymore_vert PLoS ONE arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARepositori Institucional de la Universitat Jaume IArticle . 2019License: CC BY SAData sources: Repositori Institucional de la Universitat Jaume Iadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0212260&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 SpainPublisher:Elsevier BV Authors: Josep Forner-Escrig; Rosa Mondragón; Leonor Hernández; Roberto Palma;handle: 10481/69704
This research was partially funded by Ministerio de Economia y Competitividad (MINECO) of Spain through the project ENE201677694R. Josep FornerEscrig thanks Ministerio de Economia, Industria y Competitividad of Spain and Fondo Social Europeo for a predoctoral fellowship through Grant Ref. BES-2017-080217 (FPI program) . This work has been developed by participants of the COST Action CA15119 Overcoming Barriers to Nanofluids Market Uptake (NANOUPTAKE) . Nanoencapsulated phase change materials (nePCMs) are one of the technologies currently under research for energy storage purposes. These nePCMs are composed of a phase change core surrounded by a shell which confines the core material when this one is in liquid phase. One of the problems experimentally encountered when applying thermal cycles to the nePCMs is that their shell fails mechanically and the thermal stresses arising may be one of the causes of this failure. In order to evaluate the impact of the uncertainties of material and geometrical parameters available for nePCMs, the present work presents a probabilistic numerical tool, which combines Monte Carlo techniques and a finite element thermomechanical model with phase change, to study two key magnitudes of nePCMs for energy storage applications of tin and aluminium nePCMs: the maximum Rankine's equivalent stress and the energy density capability. Then, both uncertainty and sensitivity analyses are performed to determine the physical parameters that have the most significant influence on the maximum Rankine's stress, which are found to be the melting temperature and the thermal expansion of the core. Finally, both a deterministic and a probabilistic failure criterion are considered to analyse its influence on the number of predicted failures, specially when dispersion on tensile strength measurements exists as well. Only 1.87% of tin nePCMs are expected to fail mechanically while aluminium ones are not likely to resist. Ministerio de Economia y Competitividad (MINECO) of Spain ENE201677694R Ministerio de Economia, Industria y Competitividad of Spain European Social Fund (ESF) European Commission BES-2017-080217 European Cooperation in Science and Technology (COST) CA15119
Mechanics of Materia... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTA2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARepositori Institucional de la Universitat Jaume IArticle . 2021License: CC BY SAData sources: Repositori Institucional de la Universitat Jaume IRepositorio Institucional Universidad de GranadaArticle . 2021License: CC BYData sources: Repositorio Institucional Universidad de Granadaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.mechmat.2021.103886&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 19visibility views 19 download downloads 28 Powered bymore_vert Mechanics of Materia... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTA2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARepositori Institucional de la Universitat Jaume IArticle . 2021License: CC BY SAData sources: Repositori Institucional de la Universitat Jaume IRepositorio Institucional Universidad de GranadaArticle . 2021License: CC BYData sources: Repositorio Institucional Universidad de Granadaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.mechmat.2021.103886&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2014 SpainPublisher:Springer Science and Business Media LLC Patricia Andreu-Cabedo; Rosa Mondragón; Raúl Martínez-Cuenca; J. Enrique Julia; Luis Cabedo; Leonor Hernández;Abstract Thermal energy storage (TES) is extremely important in concentrated solar power (CSP) plants since it represents the main difference and advantage of CSP plants with respect to other renewable energy sources such as wind, photovoltaic, etc. CSP represents a low-carbon emission renewable source of energy, and TES allows CSP plants to have energy availability and dispatchability using available industrial technologies. Molten salts are used in CSP plants as a TES material because of their high operational temperature and stability of up to 500°C. Their main drawbacks are their relative poor thermal properties and energy storage density. A simple cost-effective way to improve thermal properties of fluids is to dope them with nanoparticles, thus obtaining the so-called salt-based nanofluids. In this work, solar salt used in CSP plants (60% NaNO3 + 40% KNO3) was doped with silica nanoparticles at different solid mass concentrations (from 0.5% to 2%). Specific heat was measured by means of differential scanning calorimetry (DSC). A maximum increase of 25.03% was found at an optimal concentration of 1 wt.% of nanoparticles. The size distribution of nanoparticle clusters present in the salt at each concentration was evaluated by means of scanning electron microscopy (SEM) and image processing, as well as by means of dynamic light scattering (DLS). The cluster size and the specific surface available depended on the solid content, and a relationship between the specific heat increment and the available particle surface area was obtained. It was proved that the mechanism involved in the specific heat increment is based on a surface phenomenon. Stability of samples was tested for several thermal cycles and thermogravimetric analysis at high temperature was carried out, the samples being stable. PACS 65.: Thermal properties of condensed matter; 65.20.-w: Thermal properties of liquids; 65.20.Jk: Studies of thermodynamic properties of specific liquids
Nanoscale Research L... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2014Data sources: Recolector de Ciencia Abierta, RECOLECTARepositori Institucional de la Universitat Jaume IArticle . 2014License: CC BY SAData sources: Repositori Institucional de la Universitat Jaume Iadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/1556-276x-9-582&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 154 citations 154 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 32visibility views 32 download downloads 39 Powered bymore_vert Nanoscale Research L... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2014Data sources: Recolector de Ciencia Abierta, RECOLECTARepositori Institucional de la Universitat Jaume IArticle . 2014License: CC BY SAData sources: Repositori Institucional de la Universitat Jaume Iadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/1556-276x-9-582&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 SpainPublisher:Elsevier BV Authors: Navarrete Argilés, Nuria; Hernandez, Leonor; VELA GASULLA, ANTONIO FABIAN; Mondragon, Rosa;The potential use of molten salt-based nanofluids as thermal energy storage material in Concentrated Solar Power plants has gained attention over the last years due to their enhanced storage capacity. The possible effects of the salt-based nanofluid production at industrial scale have not been yet investigated, as this could influence the nanoparticles agglomeration and therefore their thermal and flow properties. Four methods were evaluated for the production of solar salt-based nanofluids containing 1 wt% of silica nanoparticles. The particle size distribution, the stability, the rheological behaviour and the specific heat of the samples were measured. Nanofluids prepared by means of a dry mixing method presented the lowest viscosity, trimodal particle size distribution and lack of stability. The commonly used dissolution method coupled with oven drying in a petri dish as well as the ball milling method presented non-Newtonian behaviour and intermediate values of particle size and stability. The new spray drying method proposed provided a monomodal particle size distribution with high stability but the highest viscosity and shear thickening behaviour. Results suggest that the four methods evaluated are appropriate for specific heat enhancement (up to 21.1%) but a commitment between stability and viscosity has to be achieved.
Journal of Molecular... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARepositori Institucional de la Universitat Jaume IArticle . 2020Data sources: Repositori Institucional de la Universitat Jaume IJournal of Molecular LiquidsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.molliq.2020.112570&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 38 citations 38 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 18visibility views 18 download downloads 66 Powered bymore_vert Journal of Molecular... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARepositori Institucional de la Universitat Jaume IArticle . 2020Data sources: Repositori Institucional de la Universitat Jaume IJournal of Molecular LiquidsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.molliq.2020.112570&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 SpainPublisher:Elsevier BV Authors: Forner Escrig, Josep; Mondragon, Rosa; Hernandez, Leonor; Palma Guerrero, Roberto;Nanoparticles (NPs) exhibit remarkable photothermal conversion efficiency under optical illumination. This light-induced heating on NPs is interesting in many different applications, such as solar radiation absorption in nanofluids, which the present work focuses on. Consequently, mastering the temperature increase undergone by NPs and the surrounding media is extremely relevant today. As nanothermometry measurements of a single NP are hard to obtain, numerical simulations can contribute to better understand the physical phenomena involved in light-induced heating. In this vein, the current work presents theoretical and numerical formulations to predict the heating of optically excited NPs. Theoretically, a thermodynamic approach is conducted to obtain balance and constitutive equations. These equations are numerically discretised in the finite element method and implemented into a research code. The main novelty of the present work lies in developing, from a multiphysics perspective, a time domain formulation capable of modelling instantaneous dissipation that can be easily extended to account for more physical phenomena. Finally, the numerical model is validated by comparing analytical and numerical results, and maximum values of 0.0014 (%) of relative error between them are reached. Then some different analysis are performed for gold, silver and graphite NPs of 20 (nm) in diameter to characterise the temperature increase they produce in the surrounding medium (water) when optically excited at a wavelength of 400 (nm) and a laser intensity of 5 × 104(W/cm2) –silver NPs exhibiting the most significant temperature increase. The influence of NP concentration on the increase of temperature in nanofluids is numerically assessed as well by testing values of NP concentration up to a maximum of 0.052 (%), which considerably enhances temperature increase. In conclusion, the present numerical tool could be used to predict light-induced heating in NPs, which could complement and reduce the number of experiments for optimising the photothermal efficiency of solar nanofluids.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARepositori Institucional de la Universitat Jaume IArticle . 2020Data sources: Repositori Institucional de la Universitat Jaume IInternational Journal of Mechanical SciencesArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijmecsci.2020.105952&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 33visibility views 33 download downloads 60 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARepositori Institucional de la Universitat Jaume IArticle . 2020Data sources: Repositori Institucional de la Universitat Jaume IInternational Journal of Mechanical SciencesArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijmecsci.2020.105952&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2019 SpainPublisher:Elsevier BV Authors: Gimeno Furió, Alexandra; Hernandez, Leonor; Navarrete Argilés, Nuria; Mondragon, Rosa;Carbon nanoparticles are very useful in solar thermal applications, since they absorb much of the solar spectrum, are cheap and have excellent optical properties. Carbon nanoparticlesthermal oil-based nanofluid was prepared using two-step method with diphenyl sulfone as surfactant to achieve that nanoparticles remain suspended even at high temperatures. The size particle distribution was studied using two Dynamic Light Scattering systems at room and high temperature and also evaluated before and after exposing the nanofluid to a thermal treatment so that conditions closer to those in real applications were replicated. Moreover, the morphological changes due to the thermal treatment were observed with Transmission Electron Microscopy. Finally, the optical properties as the ballistic transmittance, absorption coefficient and scattering albedo of the base fluid as well as of the nanofluid were measured using a spectrophotometer with and without integrating sphere. The results of this study contribute to the knowledge about these solar nanofluids that are promising alternatives to the conventional solar collectors.
Renewable Energy arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARepositori Institucional de la Universitat Jaume IArticle . 2019Data sources: Repositori Institucional de la Universitat Jaume Iadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2019.03.080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 23visibility views 23 download downloads 75 Powered bymore_vert Renewable Energy arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARepositori Institucional de la Universitat Jaume IArticle . 2019Data sources: Repositori Institucional de la Universitat Jaume Iadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2019.03.080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 SpainPublisher:Elsevier BV Authors: Mondragon, Rosa; Juliá Bolívar, José Enrique; Barba-Juan, Antonio; Jarque Fonfría, Juan Carlos;The stability and agglomeration state of nanofluids are key parameters for their use in different applications. Silica nanofluids were prepared by dispersing the nanoparticles in distilled water using an ultrasonic probe, which has proved to be the most effective system and gives the best results when compared with previous works. Results were obtained concerning the influence of the solid content, pH and salt concentration on the zeta potential, electrical double layer, viscosity, elastic and viscous moduli, particle size and light backscattering. Measurement of all these properties provides information about the colloidal state of nanofluids. The most important variable is the solid content. Despite the agglomeration due to high concentration, nanofluids with low viscosity and behaving like liquid were prepared at 20% of mass load thanks to the good dispersion achieved with the ultrasonic treatment. The pH of the medium can be used to control the stability, since the nanofluids are more stable under basic conditions far from the isoelectric point (IEP) and settle at pH = 2. Therefore, stable nanofluids for at least 48 h, with high solid content, can be prepared at high pH value (pH > 7) due to the electrostatic repulsion between particles.
Powder Technology arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTARepositori Institucional de la Universitat Jaume IArticle . 2012Data sources: Repositori Institucional de la Universitat Jaume Iadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.powtec.2012.02.043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 129 citations 129 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
visibility 49visibility views 49 download downloads 350 Powered bymore_vert Powder Technology arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTARepositori Institucional de la Universitat Jaume IArticle . 2012Data sources: Repositori Institucional de la Universitat Jaume Iadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.powtec.2012.02.043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 SpainPublisher:Informa UK Limited Authors: Josep Forner-Escrig; Roberto Palma; Rosa Mondragón;Nanoencapsulated phase change materials (nePCMs) – which are composed of a core with a phase change material and of a shell that envelopes the core – are currently under research for heat storage applications. Mechanically, one problem encountered in the synthesis of nePCMs is the failure of the shell due to thermal stresses during heating/cooling cycles. Thus, a compromise between shell and core volumes must be found to guarantee both mechanical reliability and heat storage capacity. At present, this compromise is commonly achieved by trial and error experiments or by using simple analytical solutions. On this ground, the current work presents a thermodynamically consistent and three-dimensional finite element (FE) formulation considering both solid and liquid phases to study thermal stresses in nePCMs. Despite the fact that there are several phase change FE formulations in the literature, the main novelty of the present work is its monolithic coupling – no staggered approaches are required – between thermal and mechanical fields. Then, the FE formulation is implemented in a computational code and it is validated against one-dimensional analytical solutions. Finally, the FE model is used to perform a thermal stress analysis for different nePCM geometries and materials to predict their mechanical failure by using Rankine’s criterion.
Journal of Thermal S... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARepositori Institucional de la Universitat Jaume IArticle . 2020Data sources: Repositori Institucional de la Universitat Jaume Iadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/01495739.2020.1718045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 13visibility views 13 download downloads 53 Powered bymore_vert Journal of Thermal S... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARepositori Institucional de la Universitat Jaume IArticle . 2020Data sources: Repositori Institucional de la Universitat Jaume Iadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/01495739.2020.1718045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 SpainPublisher:Elsevier BV Alexandra Gimeno-Furio; Nuria Navarrete; Rosa Mondragon; Leonor Hernandez; Raul Martinez-Cuenca; Luis Cabedo; J. Enrique Julia;Abstract Synthetic thermal oils are used as heat transfer fluids (HTFs) in different applications, due to their higher working temperature. In this way, one of the applications of interest is the use of thermal oils in Concentrated Solar Power (CSP) plants with Parabolic Trough technology. Nowadays, the HTF known commercially as Therminol VP1 (Solutia Inc.) is being used in CSP plants. This fluid is composed of a eutectic mixture of diphenyl (C 12 H 10 ) and diphenyl oxide (C 12 H 10 O), and it is used as an HTF with a maximum working temperature of 400 °C. However, one of the drawbacks of Therminol VP1 is its low thermal conductivity. In recent years it has been demonstrated that the addition of nanoparticles can improve the thermal properties of HTFs, and they are then called nanofluids. The key factor of nanofluids is their high stability over time. However, at high temperatures it is necessary to add chemically compatible surfactants that do not degrade and endow the nanofluids with stability through steric repulsion even under high temperature conditions. In this work, a carbon black/Therminol VP1 nanofluid was synthesized and stabilized using diphenyl sulfone as a stabilizer. Stability tests after thermal cycling at 400 °C showed the higher performance of this additive compared to others commonly used in the literature. Thermal conductivity, heat capacity, and viscosity of the nanofluids at 3 vol% and 5 vol% were characterized from 50 °C to 350 °C. Finally, the Mouromsteff number was calculated to determine the heat transfer enhancement provided by the use of nanofluids.
Repositori Instituci... arrow_drop_down Repositori Institucional de la Universitat Jaume IArticle . 2017Data sources: Repositori Institucional de la Universitat Jaume IInternational Journal of Heat and Mass TransferArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijheatmasstransfer.2017.05.097&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 26visibility views 26 Powered bymore_vert Repositori Instituci... arrow_drop_down Repositori Institucional de la Universitat Jaume IArticle . 2017Data sources: Repositori Institucional de la Universitat Jaume IInternational Journal of Heat and Mass TransferArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijheatmasstransfer.2017.05.097&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 SpainPublisher:Elsevier BV Authors: Navarrete Argilés, Nuria; La Zara, Damiano; Goulas, Aristeidis; Valdesueiro, David; +3 AuthorsNavarrete Argilés, Nuria; La Zara, Damiano; Goulas, Aristeidis; Valdesueiro, David; Hernandez, Leonor; van Ommen, J. Ruud; Mondragon, Rosa;Renewable energy has become of great interest over the past years in order to mitigate Global Warming. One of the actions gaining attention is the enhancement of the thermal energy storage capacity of Concentrated Solar Power plants. The addition of nanoencapsulated phase change materials (core-shell nanoparticles) to the already used materials has been proposed for that purpose, due to the possibility of increasing thermal storage through the contribution of both core latent heat and sensible heat. In this work, Atomic Layer Deposition has been used to synthesise SiO2 and Al2O3 nanoscale coatings on tin nanoparticles. The multi-encapsulated phase change materials have been characterised in terms of chemical composition, crystalline structure, particle size, thermal stability and thermal storage capacity. Sn@Al2O3 nanoparticles present the best thermal behaviour as they show the lowest reduction in the phase change enthalpy over 100 cycles due to the oxidation barrier of the coating. Moreover, the specific heat of both nanoparticles and solar salt-based nanofluids is increased, making the nanoencapsulated phase change material suitable for thermal energy storage applications.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARepositori Institucional de la Universitat Jaume IArticle . 2020License: CC BY NC NDData sources: Repositori Institucional de la Universitat Jaume ISolar Energy Materials and Solar CellsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2019.110322&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 43visibility views 43 download downloads 86 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARepositori Institucional de la Universitat Jaume IArticle . 2020License: CC BY NC NDData sources: Repositori Institucional de la Universitat Jaume ISolar Energy Materials and Solar CellsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2019.110322&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 SpainPublisher:Public Library of Science (PLoS) Rosa Mondragón; Daniel Sánchez; Ramón Cabello; Rodrigo Llopis; J. Enrique Juliá;Solar energy has become an important renewable energy source for reducing the use of fossil fuels and to mitigate global warming, for which solar collectors constitute a technology that is to be promoted. The use of nanofluids can increase the efficiency of solar into thermal energy conversion in solar collectors. Experimental values for the specific heat, thermal conductivity and viscosity of alumina/water nanofluids are needed to evaluate the influence of the solid content (from 0.25 to 5 v%) and the flow rate on the Reynolds, Nusselt and the heat transfer coefficient. In the laminar flow regime, thermal conductivity enhancement over specific heat decrement is key parameter, and a 2.34% increase in the heat transfer coefficient is theoretically obtained for 1 v% alumina nanofluid. To corroborate the results, experimental tests were run in a flat plate solar collector. A reduction in efficiency from 47% to 41.5% and a decrease in the heat removal factor were obtained using the nanofluid due to the formation of a nanoparticle deposition layer adding an addition thermal resistance to heat transfer. Nanofluids are recommended only if the nanoparticle concentration is high enough to enhance thermal conductivity, but no so high so as to avoid wall deposition.
PLoS ONE arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARepositori Institucional de la Universitat Jaume IArticle . 2019License: CC BY SAData sources: Repositori Institucional de la Universitat Jaume Iadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0212260&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 14visibility views 14 download downloads 34 Powered bymore_vert PLoS ONE arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARepositori Institucional de la Universitat Jaume IArticle . 2019License: CC BY SAData sources: Repositori Institucional de la Universitat Jaume Iadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0212260&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 SpainPublisher:Elsevier BV Authors: Josep Forner-Escrig; Rosa Mondragón; Leonor Hernández; Roberto Palma;handle: 10481/69704
This research was partially funded by Ministerio de Economia y Competitividad (MINECO) of Spain through the project ENE201677694R. Josep FornerEscrig thanks Ministerio de Economia, Industria y Competitividad of Spain and Fondo Social Europeo for a predoctoral fellowship through Grant Ref. BES-2017-080217 (FPI program) . This work has been developed by participants of the COST Action CA15119 Overcoming Barriers to Nanofluids Market Uptake (NANOUPTAKE) . Nanoencapsulated phase change materials (nePCMs) are one of the technologies currently under research for energy storage purposes. These nePCMs are composed of a phase change core surrounded by a shell which confines the core material when this one is in liquid phase. One of the problems experimentally encountered when applying thermal cycles to the nePCMs is that their shell fails mechanically and the thermal stresses arising may be one of the causes of this failure. In order to evaluate the impact of the uncertainties of material and geometrical parameters available for nePCMs, the present work presents a probabilistic numerical tool, which combines Monte Carlo techniques and a finite element thermomechanical model with phase change, to study two key magnitudes of nePCMs for energy storage applications of tin and aluminium nePCMs: the maximum Rankine's equivalent stress and the energy density capability. Then, both uncertainty and sensitivity analyses are performed to determine the physical parameters that have the most significant influence on the maximum Rankine's stress, which are found to be the melting temperature and the thermal expansion of the core. Finally, both a deterministic and a probabilistic failure criterion are considered to analyse its influence on the number of predicted failures, specially when dispersion on tensile strength measurements exists as well. Only 1.87% of tin nePCMs are expected to fail mechanically while aluminium ones are not likely to resist. Ministerio de Economia y Competitividad (MINECO) of Spain ENE201677694R Ministerio de Economia, Industria y Competitividad of Spain European Social Fund (ESF) European Commission BES-2017-080217 European Cooperation in Science and Technology (COST) CA15119
Mechanics of Materia... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTA2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARepositori Institucional de la Universitat Jaume IArticle . 2021License: CC BY SAData sources: Repositori Institucional de la Universitat Jaume IRepositorio Institucional Universidad de GranadaArticle . 2021License: CC BYData sources: Repositorio Institucional Universidad de Granadaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.mechmat.2021.103886&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 19visibility views 19 download downloads 28 Powered bymore_vert Mechanics of Materia... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTA2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARepositori Institucional de la Universitat Jaume IArticle . 2021License: CC BY SAData sources: Repositori Institucional de la Universitat Jaume IRepositorio Institucional Universidad de GranadaArticle . 2021License: CC BYData sources: Repositorio Institucional Universidad de Granadaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.mechmat.2021.103886&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2014 SpainPublisher:Springer Science and Business Media LLC Patricia Andreu-Cabedo; Rosa Mondragón; Raúl Martínez-Cuenca; J. Enrique Julia; Luis Cabedo; Leonor Hernández;Abstract Thermal energy storage (TES) is extremely important in concentrated solar power (CSP) plants since it represents the main difference and advantage of CSP plants with respect to other renewable energy sources such as wind, photovoltaic, etc. CSP represents a low-carbon emission renewable source of energy, and TES allows CSP plants to have energy availability and dispatchability using available industrial technologies. Molten salts are used in CSP plants as a TES material because of their high operational temperature and stability of up to 500°C. Their main drawbacks are their relative poor thermal properties and energy storage density. A simple cost-effective way to improve thermal properties of fluids is to dope them with nanoparticles, thus obtaining the so-called salt-based nanofluids. In this work, solar salt used in CSP plants (60% NaNO3 + 40% KNO3) was doped with silica nanoparticles at different solid mass concentrations (from 0.5% to 2%). Specific heat was measured by means of differential scanning calorimetry (DSC). A maximum increase of 25.03% was found at an optimal concentration of 1 wt.% of nanoparticles. The size distribution of nanoparticle clusters present in the salt at each concentration was evaluated by means of scanning electron microscopy (SEM) and image processing, as well as by means of dynamic light scattering (DLS). The cluster size and the specific surface available depended on the solid content, and a relationship between the specific heat increment and the available particle surface area was obtained. It was proved that the mechanism involved in the specific heat increment is based on a surface phenomenon. Stability of samples was tested for several thermal cycles and thermogravimetric analysis at high temperature was carried out, the samples being stable. PACS 65.: Thermal properties of condensed matter; 65.20.-w: Thermal properties of liquids; 65.20.Jk: Studies of thermodynamic properties of specific liquids
Nanoscale Research L... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2014Data sources: Recolector de Ciencia Abierta, RECOLECTARepositori Institucional de la Universitat Jaume IArticle . 2014License: CC BY SAData sources: Repositori Institucional de la Universitat Jaume Iadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/1556-276x-9-582&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 154 citations 154 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 32visibility views 32 download downloads 39 Powered bymore_vert Nanoscale Research L... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2014Data sources: Recolector de Ciencia Abierta, RECOLECTARepositori Institucional de la Universitat Jaume IArticle . 2014License: CC BY SAData sources: Repositori Institucional de la Universitat Jaume Iadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/1556-276x-9-582&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 SpainPublisher:Elsevier BV Authors: Navarrete Argilés, Nuria; Hernandez, Leonor; VELA GASULLA, ANTONIO FABIAN; Mondragon, Rosa;The potential use of molten salt-based nanofluids as thermal energy storage material in Concentrated Solar Power plants has gained attention over the last years due to their enhanced storage capacity. The possible effects of the salt-based nanofluid production at industrial scale have not been yet investigated, as this could influence the nanoparticles agglomeration and therefore their thermal and flow properties. Four methods were evaluated for the production of solar salt-based nanofluids containing 1 wt% of silica nanoparticles. The particle size distribution, the stability, the rheological behaviour and the specific heat of the samples were measured. Nanofluids prepared by means of a dry mixing method presented the lowest viscosity, trimodal particle size distribution and lack of stability. The commonly used dissolution method coupled with oven drying in a petri dish as well as the ball milling method presented non-Newtonian behaviour and intermediate values of particle size and stability. The new spray drying method proposed provided a monomodal particle size distribution with high stability but the highest viscosity and shear thickening behaviour. Results suggest that the four methods evaluated are appropriate for specific heat enhancement (up to 21.1%) but a commitment between stability and viscosity has to be achieved.
Journal of Molecular... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARepositori Institucional de la Universitat Jaume IArticle . 2020Data sources: Repositori Institucional de la Universitat Jaume IJournal of Molecular LiquidsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.molliq.2020.112570&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 38 citations 38 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 18visibility views 18 download downloads 66 Powered bymore_vert Journal of Molecular... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARepositori Institucional de la Universitat Jaume IArticle . 2020Data sources: Repositori Institucional de la Universitat Jaume IJournal of Molecular LiquidsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.molliq.2020.112570&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 SpainPublisher:Elsevier BV Authors: Forner Escrig, Josep; Mondragon, Rosa; Hernandez, Leonor; Palma Guerrero, Roberto;Nanoparticles (NPs) exhibit remarkable photothermal conversion efficiency under optical illumination. This light-induced heating on NPs is interesting in many different applications, such as solar radiation absorption in nanofluids, which the present work focuses on. Consequently, mastering the temperature increase undergone by NPs and the surrounding media is extremely relevant today. As nanothermometry measurements of a single NP are hard to obtain, numerical simulations can contribute to better understand the physical phenomena involved in light-induced heating. In this vein, the current work presents theoretical and numerical formulations to predict the heating of optically excited NPs. Theoretically, a thermodynamic approach is conducted to obtain balance and constitutive equations. These equations are numerically discretised in the finite element method and implemented into a research code. The main novelty of the present work lies in developing, from a multiphysics perspective, a time domain formulation capable of modelling instantaneous dissipation that can be easily extended to account for more physical phenomena. Finally, the numerical model is validated by comparing analytical and numerical results, and maximum values of 0.0014 (%) of relative error between them are reached. Then some different analysis are performed for gold, silver and graphite NPs of 20 (nm) in diameter to characterise the temperature increase they produce in the surrounding medium (water) when optically excited at a wavelength of 400 (nm) and a laser intensity of 5 × 104(W/cm2) –silver NPs exhibiting the most significant temperature increase. The influence of NP concentration on the increase of temperature in nanofluids is numerically assessed as well by testing values of NP concentration up to a maximum of 0.052 (%), which considerably enhances temperature increase. In conclusion, the present numerical tool could be used to predict light-induced heating in NPs, which could complement and reduce the number of experiments for optimising the photothermal efficiency of solar nanofluids.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARepositori Institucional de la Universitat Jaume IArticle . 2020Data sources: Repositori Institucional de la Universitat Jaume IInternational Journal of Mechanical SciencesArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijmecsci.2020.105952&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 33visibility views 33 download downloads 60 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARepositori Institucional de la Universitat Jaume IArticle . 2020Data sources: Repositori Institucional de la Universitat Jaume IInternational Journal of Mechanical SciencesArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijmecsci.2020.105952&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu