- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2018 ItalyPublisher:Elsevier BV Stefano Sfarra; Stefano Sfarra; Fabio Bisegna; Mirco Guerrini; Dario Ambrosini; Stefano Perilli;handle: 20.500.14243/370737 , 11573/1119253 , 11697/120124
[object Object]
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2017.11.048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2017.11.048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 ItalyPublisher:MDPI AG Authors: Perilli, S; Palumbo, D; Sfarra, S; Galietti, U;doi: 10.3390/en14227546
handle: 11589/244381 , 11697/204720
In building construction, it is very important to reduce energy consumption and provide thermal comfort. In this regard, defects in insulating panels can compromise the capability of these panels of reducing the heat flow by conduction with the surroundings. In recent years, both experimental techniques and numerical methods have been used for investigating the effect of defects on the thermal behavior of building panels. The main novelty of this work regards the application of both numerical and experimental approaches based on infrared thermography techniques for studying the effects of defects such as debonding on the insulation properties of cork panels. In particular, the effects of defects were investigated by using the Long Pulse Thermography technique and then by analyzing the thermal behavior of the panel during the cooling phase. Results show the capability of the proposed approaches in describing the effects of defects in cork panels such as detachments and the benefit effect of a shield coating in improving the insulation properties of the panel.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/22/7546/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio Istituzionale della Ricerca - Politecnico di BariArticle . 2021add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14227546&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/22/7546/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio Istituzionale della Ricerca - Politecnico di BariArticle . 2021add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14227546&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 ItalyPublisher:MDPI AG Chiwu Bu; Tao Liu; Tao Wang; Hai Zhang; Stefano Sfarra;doi: 10.3390/en16093749
handle: 11697/204981
Photovoltaic (PV) cells are a major part of solar power stations, and the inevitable faults of a cell affect its work efficiency and the safety of the power station. During manufacturing and service, it is necessary to carry out fault detection and classification. A convolutional-neural-network (CNN)-architecture-based PV cell fault classification method is proposed and trained on an infrared image data set. In order to overcome the problem of the original dataset’s scarcity, an offline data augmentation method is adopted to improve the generalization ability of the network. During the experiment, the effectiveness of the proposed model is evaluated by quantifying the obtained results with four deep learning models through evaluation indicators. The fault classification accuracy of the CNN model proposed here has been drawn by the experiment and reaches 97.42%, and it is superior to that of the models of AlexNet, VGG 16, ResNet 18 and existing models. In addition, the proposed model has faster calculation, prediction speed and the highest accuracy. This method can well-identify and classify PV cell faults and has high application potential in automatic fault identification and classification.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/9/3749/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16093749&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/9/3749/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16093749&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 ItalyPublisher:MDPI AG Giampaolo D’Alessandro; Michele Potenza; Sandra Corasaniti; Stefano Sfarra; Paolo Coppa; Gianluigi Bovesecchi; Filippo de Monte;doi: 10.3390/en15238807
handle: 2108/313369 , 11697/195715
The present review describes the up-to-date state of the evaluation of thermophysical properties (TP) of materials with three different procedures: modeling (also including inverse problems), measurements and analytical methods (e.g., through computing from other properties). Methods to measure specific heat and thermal conductivity are described in detail. Thermal diffusivity and thermal effusivity are a combination of the previously cited properties, but also for these properties, specific measurement and calculation methods are reported. Experiments can be carried out in steady-state, transient, and pulse regimes. For modeling, special focus is given to the inverse methods and parameter estimation procedures, because through them it is possible to evaluate the thermophysical property, assuring the best practices and supplying the measurement uncertainty. It is also cited when the most common data processing algorithms are used, e.g., the Gauss–Newton and Levenberg–Marquardt least squares minimization algorithms, and how it is possible to retrieve values of TP from other data. Optimization criteria for designing the experiments are also mentioned.
Archivio della Ricer... arrow_drop_down Archivio della Ricerca - Università di Roma Tor vergataArticle . 2022License: CC BYData sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della Ricerca - Università di Roma Tor vergataArticle . 2022Full-Text: https://hdl.handle.net/2108/313369Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15238807&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Archivio della Ricer... arrow_drop_down Archivio della Ricerca - Università di Roma Tor vergataArticle . 2022License: CC BYData sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della Ricerca - Università di Roma Tor vergataArticle . 2022Full-Text: https://hdl.handle.net/2108/313369Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15238807&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 ItalyPublisher:Elsevier BV Authors: Oh, Ju-Hong; Sfarra, Stefano; Kim, Eui-Jong;handle: 11697/249520
To achieve net zero emissions in the building and construction sector, there is a growing interest in how buildings can be digitalized to improve energy efficiency through optimal operational strategies to reduce energy consumption during the operational phase. The validity of the savings scenarios is highly dependent on the accuracy of the digitalized building model. However, considering the accuracy of the developed model determines the validity of the energy-saving scenarios, creating accurate models is difficult owing to the limited amount of physical data collected from buildings. Hence, in this study, a hybrid modeling method is proposed to improve the prediction accuracy by integrating the physical model results and operational data to improve the prediction accuracy for actual operating buildings where only partial data collection is provided, mainly for air conditioners. The hybrid model predicts the next day's room temperature by learning the difference between the simulated room temperature based on the laws of physics and historical measurement data. The results showing that the coefficient of variance of root mean squared error (CVRMSE) was 1.5% for the training period, a significant improvement compared to the existing RC model; moreover, the R2 was 0.93 for the hybrid model, indicating high explanatory power. In addition, an average CVRMSE of 3.8% in the period outside the training area was obtained, resulting in a model with improved prediction accuracy compared with the existing RC model. Similar results were obtained for design models without calibration.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2024.114898&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2024.114898&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2017 ItalyPublisher:IOP Publishing Nardi, I.; Ambrosini, D.; Rubeis, T. De; Paoletti, D.; Muttillo, M.; Sfarra, S.;handle: 11697/119894
In the last years, the importance of integrating the production of electricity with the production of sanitary hot water led to the development of new solutions, i.e. PV/T systems. It is well known that hybrid photovoltaic-thermal systems, able to produce electricity and thermal energy at the same time with better energetic performance in comparison with two separate systems, present many advantages for application in a residential building. A PV/T is constituted generally by a common PV panel with a metallic pipe, in which fluid flows. Pipe accomplishes two roles: it absorbs the heat from the PV panel, thus increasing, or at least maintaining its efficiency; furthermore, it stores the heat for sanitary uses. In this work, the thermal and electrical efficiencies of a commercial PV/T panel have been evaluated during the summer season in different days, to assess the effect of environmental conditions on the system total efficiency. Moreover, infrared thermographic diagnosis in real time has been effected during the operating mode in two conditions: with cooling and without cooling; cooling was obtained by natural flowing water. This analysis gave information about the impact of a non-uniform temperature distribution on the thermal and electrical performance. Furthermore, measurements have been performed in two different operating modes: 1) production of solely electrical energy and 2) simultaneous production of thermal and electrical energy. Finally, total efficiency is largely increased by using a simple solar concentrator nearby the panel.
Journal of Physics :... arrow_drop_down Journal of Physics : Conference SeriesArticle . 2017 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1742-6596/923/1/012040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Physics :... arrow_drop_down Journal of Physics : Conference SeriesArticle . 2017 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1742-6596/923/1/012040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Preprint 2018 ItalyPublisher:Open Engineering Inc Nardi, Iole; Perilli, Stefano; de Rubeis, Tullio; Sfarra, Stefano; Ambrosini, Dario;handle: 11697/130406
The addition of insulating layers on vertical walls of buildings is a common practice for providing a higher thermal insulation of the envelope. Workmanship defects, however, might influence the effectiveness of such insulation strategy. Damaged materials, incorrect installation, use of aged or weathered materials might alter the capability of reducing heat transfer through the envelope, whether vertical or sloped. In this work, drawbacks caused by the wrong installation of insulating material and by damaged material are assessed. A specimen wall was investigated by experimental and numerical approaches, the latter carried out by using COMSOL Multiphysics®. Results are compared and discussed.
engrXiv arrow_drop_down https://doi.org/10.31224/osf.i...Article . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefJournal of Building EngineeringArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.31224/osf.io/s5j7u&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert engrXiv arrow_drop_down https://doi.org/10.31224/osf.i...Article . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefJournal of Building EngineeringArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.31224/osf.io/s5j7u&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV Nardi, Iole; De Rubeis, Tullio; Taddei, Marilena; Ambrosini, Dario; Sfarra, Stefano;handle: 11697/118903
Abstract The renovation of historical buildings assumes a crucial role in the renovation processes of a historical city, and it is important to foresee appropriate interventions. A case study in L’Aquila city center is proposed in this work. The building, belonging to listed buildings for its historical value, being built in the 1930s, underwent to seismic and energy refurbishment, since it was damaged by the earthquake of 2009. The solution proposed aimed at improving the energy efficiency of the structure, by using an additional insulating layer, made of natural material (i.e. hemp), on the inside of the wall. The ceilings of the unheated spaces have been insulated, too, by using pure cellulose flocks. Moreover, an endothermic membrane has been employed on the external walls of the building. Analyses on the envelope were carried out by using thermographic inspections, performed both in summer and in winter seasons, and by measuring the total thermal transmittance of the wall assembly before and after the refurbishment with the help of a heat flow meter.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.09.357&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 2visibility views 2 download downloads 5 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.09.357&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 ItalyPublisher:Elsevier BV Sfarra, Stefano; Cicone, Antonio; Yousefi, Bardia; Ibarra-Castanedo, Clemente; Perilli, Stefano; Maldague, Xavier;handle: 11697/132812
Abstract The detection of thermal bridges in buildings is one of the key points to be taken into account in energy saving procedures during refurbishment works. Passive infrared thermography (IRT) has been applied for years to detect thermal bridges by referring to the International Organization for Standardization (ISO) 6781:1983. However, the successfulness of this norm is strongly affected by the detection accuracy of the thermal imprint produced on the facade by a conductive material called as “defect” in this work. The drop shadow effect, also produced by the surrounding environment on the facade under inspection, plays indeed an important role during the defect evaluation procedure since it can mask/modify the natural thermal evolution due to diffusion. Many real-life signals acting in the space physics domain exhibit variations across different temporal scales. This work presents an application of a new multiscale data analysis method, the Iterative Filtering (IF), which allows to describe the multiscale nature of an electromagnetic signal working in the long-wave infrared (LWIR) region. IF appears to be a promising method minimizing the influence of the shadows projected on the facade under inspection; subsequently, it allows the optimization of the detection of thermal bridges via sparse principal component thermography (SPCT) technique. The latter inherits the advantages of PCT allowing more flexibility by introducing a penalization term. Here is shown how the accuracy of the defect detection increases after the application of the IF mathematical procedure. Results are discussed on the basis of a couple of case studies referring to dissimilar buildings. Finally, a signal-to-noise-ratio (SNR) comparison with raw data is added to the discussion of the results.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2018.10.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu64 citations 64 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2018.10.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 CanadaPublisher:MDPI AG Funded by:NSERCNSERCYuxia Duan; Hai Zhang; Stefano Sfarra; Nicolas P. Avdelidis; Theodoros H. Loutas; George Sotiriadis; Vassilis Kostopoulos; Henrique Fernandes; Florian Ion Petrescu; Clemente Ibarra-Castanedo; Xavier P.V. Maldague;handle: 1807/95666
Ceramic-coated materials used in different engineering sectors are the focus of world-wide interest and have generated a need for inspection techniques that detect very small structural anomalies. Non-destructive testing is increasingly being used to evaluate coating thickness and to test for coating flaws. The main pros of non-destructive testing is that the tested object remains intact and available for continued use afterward. This paper reports on an integrated, non-destructive testing approach that combines infrared thermography and acousto-ultrasonics to evaluate advanced aerospace sandwich structure materials with the aim of exploring any potential for detecting defects of more than one type. Combined, these two techniques successfully detected fabrication defects, including inclusions and material loss.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/13/2537/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of Toronto: Research Repository T-SpaceArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/1807/95666Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12132537&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/13/2537/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of Toronto: Research Repository T-SpaceArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/1807/95666Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12132537&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2018 ItalyPublisher:Elsevier BV Stefano Sfarra; Stefano Sfarra; Fabio Bisegna; Mirco Guerrini; Dario Ambrosini; Stefano Perilli;handle: 20.500.14243/370737 , 11573/1119253 , 11697/120124
[object Object]
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2017.11.048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2017.11.048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 ItalyPublisher:MDPI AG Authors: Perilli, S; Palumbo, D; Sfarra, S; Galietti, U;doi: 10.3390/en14227546
handle: 11589/244381 , 11697/204720
In building construction, it is very important to reduce energy consumption and provide thermal comfort. In this regard, defects in insulating panels can compromise the capability of these panels of reducing the heat flow by conduction with the surroundings. In recent years, both experimental techniques and numerical methods have been used for investigating the effect of defects on the thermal behavior of building panels. The main novelty of this work regards the application of both numerical and experimental approaches based on infrared thermography techniques for studying the effects of defects such as debonding on the insulation properties of cork panels. In particular, the effects of defects were investigated by using the Long Pulse Thermography technique and then by analyzing the thermal behavior of the panel during the cooling phase. Results show the capability of the proposed approaches in describing the effects of defects in cork panels such as detachments and the benefit effect of a shield coating in improving the insulation properties of the panel.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/22/7546/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio Istituzionale della Ricerca - Politecnico di BariArticle . 2021add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14227546&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/22/7546/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio Istituzionale della Ricerca - Politecnico di BariArticle . 2021add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14227546&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 ItalyPublisher:MDPI AG Chiwu Bu; Tao Liu; Tao Wang; Hai Zhang; Stefano Sfarra;doi: 10.3390/en16093749
handle: 11697/204981
Photovoltaic (PV) cells are a major part of solar power stations, and the inevitable faults of a cell affect its work efficiency and the safety of the power station. During manufacturing and service, it is necessary to carry out fault detection and classification. A convolutional-neural-network (CNN)-architecture-based PV cell fault classification method is proposed and trained on an infrared image data set. In order to overcome the problem of the original dataset’s scarcity, an offline data augmentation method is adopted to improve the generalization ability of the network. During the experiment, the effectiveness of the proposed model is evaluated by quantifying the obtained results with four deep learning models through evaluation indicators. The fault classification accuracy of the CNN model proposed here has been drawn by the experiment and reaches 97.42%, and it is superior to that of the models of AlexNet, VGG 16, ResNet 18 and existing models. In addition, the proposed model has faster calculation, prediction speed and the highest accuracy. This method can well-identify and classify PV cell faults and has high application potential in automatic fault identification and classification.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/9/3749/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16093749&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/9/3749/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16093749&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 ItalyPublisher:MDPI AG Giampaolo D’Alessandro; Michele Potenza; Sandra Corasaniti; Stefano Sfarra; Paolo Coppa; Gianluigi Bovesecchi; Filippo de Monte;doi: 10.3390/en15238807
handle: 2108/313369 , 11697/195715
The present review describes the up-to-date state of the evaluation of thermophysical properties (TP) of materials with three different procedures: modeling (also including inverse problems), measurements and analytical methods (e.g., through computing from other properties). Methods to measure specific heat and thermal conductivity are described in detail. Thermal diffusivity and thermal effusivity are a combination of the previously cited properties, but also for these properties, specific measurement and calculation methods are reported. Experiments can be carried out in steady-state, transient, and pulse regimes. For modeling, special focus is given to the inverse methods and parameter estimation procedures, because through them it is possible to evaluate the thermophysical property, assuring the best practices and supplying the measurement uncertainty. It is also cited when the most common data processing algorithms are used, e.g., the Gauss–Newton and Levenberg–Marquardt least squares minimization algorithms, and how it is possible to retrieve values of TP from other data. Optimization criteria for designing the experiments are also mentioned.
Archivio della Ricer... arrow_drop_down Archivio della Ricerca - Università di Roma Tor vergataArticle . 2022License: CC BYData sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della Ricerca - Università di Roma Tor vergataArticle . 2022Full-Text: https://hdl.handle.net/2108/313369Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15238807&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Archivio della Ricer... arrow_drop_down Archivio della Ricerca - Università di Roma Tor vergataArticle . 2022License: CC BYData sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della Ricerca - Università di Roma Tor vergataArticle . 2022Full-Text: https://hdl.handle.net/2108/313369Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15238807&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 ItalyPublisher:Elsevier BV Authors: Oh, Ju-Hong; Sfarra, Stefano; Kim, Eui-Jong;handle: 11697/249520
To achieve net zero emissions in the building and construction sector, there is a growing interest in how buildings can be digitalized to improve energy efficiency through optimal operational strategies to reduce energy consumption during the operational phase. The validity of the savings scenarios is highly dependent on the accuracy of the digitalized building model. However, considering the accuracy of the developed model determines the validity of the energy-saving scenarios, creating accurate models is difficult owing to the limited amount of physical data collected from buildings. Hence, in this study, a hybrid modeling method is proposed to improve the prediction accuracy by integrating the physical model results and operational data to improve the prediction accuracy for actual operating buildings where only partial data collection is provided, mainly for air conditioners. The hybrid model predicts the next day's room temperature by learning the difference between the simulated room temperature based on the laws of physics and historical measurement data. The results showing that the coefficient of variance of root mean squared error (CVRMSE) was 1.5% for the training period, a significant improvement compared to the existing RC model; moreover, the R2 was 0.93 for the hybrid model, indicating high explanatory power. In addition, an average CVRMSE of 3.8% in the period outside the training area was obtained, resulting in a model with improved prediction accuracy compared with the existing RC model. Similar results were obtained for design models without calibration.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2024.114898&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2024.114898&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2017 ItalyPublisher:IOP Publishing Nardi, I.; Ambrosini, D.; Rubeis, T. De; Paoletti, D.; Muttillo, M.; Sfarra, S.;handle: 11697/119894
In the last years, the importance of integrating the production of electricity with the production of sanitary hot water led to the development of new solutions, i.e. PV/T systems. It is well known that hybrid photovoltaic-thermal systems, able to produce electricity and thermal energy at the same time with better energetic performance in comparison with two separate systems, present many advantages for application in a residential building. A PV/T is constituted generally by a common PV panel with a metallic pipe, in which fluid flows. Pipe accomplishes two roles: it absorbs the heat from the PV panel, thus increasing, or at least maintaining its efficiency; furthermore, it stores the heat for sanitary uses. In this work, the thermal and electrical efficiencies of a commercial PV/T panel have been evaluated during the summer season in different days, to assess the effect of environmental conditions on the system total efficiency. Moreover, infrared thermographic diagnosis in real time has been effected during the operating mode in two conditions: with cooling and without cooling; cooling was obtained by natural flowing water. This analysis gave information about the impact of a non-uniform temperature distribution on the thermal and electrical performance. Furthermore, measurements have been performed in two different operating modes: 1) production of solely electrical energy and 2) simultaneous production of thermal and electrical energy. Finally, total efficiency is largely increased by using a simple solar concentrator nearby the panel.
Journal of Physics :... arrow_drop_down Journal of Physics : Conference SeriesArticle . 2017 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1742-6596/923/1/012040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Physics :... arrow_drop_down Journal of Physics : Conference SeriesArticle . 2017 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1742-6596/923/1/012040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Preprint 2018 ItalyPublisher:Open Engineering Inc Nardi, Iole; Perilli, Stefano; de Rubeis, Tullio; Sfarra, Stefano; Ambrosini, Dario;handle: 11697/130406
The addition of insulating layers on vertical walls of buildings is a common practice for providing a higher thermal insulation of the envelope. Workmanship defects, however, might influence the effectiveness of such insulation strategy. Damaged materials, incorrect installation, use of aged or weathered materials might alter the capability of reducing heat transfer through the envelope, whether vertical or sloped. In this work, drawbacks caused by the wrong installation of insulating material and by damaged material are assessed. A specimen wall was investigated by experimental and numerical approaches, the latter carried out by using COMSOL Multiphysics®. Results are compared and discussed.
engrXiv arrow_drop_down https://doi.org/10.31224/osf.i...Article . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefJournal of Building EngineeringArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.31224/osf.io/s5j7u&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert engrXiv arrow_drop_down https://doi.org/10.31224/osf.i...Article . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefJournal of Building EngineeringArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.31224/osf.io/s5j7u&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV Nardi, Iole; De Rubeis, Tullio; Taddei, Marilena; Ambrosini, Dario; Sfarra, Stefano;handle: 11697/118903
Abstract The renovation of historical buildings assumes a crucial role in the renovation processes of a historical city, and it is important to foresee appropriate interventions. A case study in L’Aquila city center is proposed in this work. The building, belonging to listed buildings for its historical value, being built in the 1930s, underwent to seismic and energy refurbishment, since it was damaged by the earthquake of 2009. The solution proposed aimed at improving the energy efficiency of the structure, by using an additional insulating layer, made of natural material (i.e. hemp), on the inside of the wall. The ceilings of the unheated spaces have been insulated, too, by using pure cellulose flocks. Moreover, an endothermic membrane has been employed on the external walls of the building. Analyses on the envelope were carried out by using thermographic inspections, performed both in summer and in winter seasons, and by measuring the total thermal transmittance of the wall assembly before and after the refurbishment with the help of a heat flow meter.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.09.357&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 2visibility views 2 download downloads 5 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.09.357&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 ItalyPublisher:Elsevier BV Sfarra, Stefano; Cicone, Antonio; Yousefi, Bardia; Ibarra-Castanedo, Clemente; Perilli, Stefano; Maldague, Xavier;handle: 11697/132812
Abstract The detection of thermal bridges in buildings is one of the key points to be taken into account in energy saving procedures during refurbishment works. Passive infrared thermography (IRT) has been applied for years to detect thermal bridges by referring to the International Organization for Standardization (ISO) 6781:1983. However, the successfulness of this norm is strongly affected by the detection accuracy of the thermal imprint produced on the facade by a conductive material called as “defect” in this work. The drop shadow effect, also produced by the surrounding environment on the facade under inspection, plays indeed an important role during the defect evaluation procedure since it can mask/modify the natural thermal evolution due to diffusion. Many real-life signals acting in the space physics domain exhibit variations across different temporal scales. This work presents an application of a new multiscale data analysis method, the Iterative Filtering (IF), which allows to describe the multiscale nature of an electromagnetic signal working in the long-wave infrared (LWIR) region. IF appears to be a promising method minimizing the influence of the shadows projected on the facade under inspection; subsequently, it allows the optimization of the detection of thermal bridges via sparse principal component thermography (SPCT) technique. The latter inherits the advantages of PCT allowing more flexibility by introducing a penalization term. Here is shown how the accuracy of the defect detection increases after the application of the IF mathematical procedure. Results are discussed on the basis of a couple of case studies referring to dissimilar buildings. Finally, a signal-to-noise-ratio (SNR) comparison with raw data is added to the discussion of the results.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2018.10.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu64 citations 64 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2018.10.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 CanadaPublisher:MDPI AG Funded by:NSERCNSERCYuxia Duan; Hai Zhang; Stefano Sfarra; Nicolas P. Avdelidis; Theodoros H. Loutas; George Sotiriadis; Vassilis Kostopoulos; Henrique Fernandes; Florian Ion Petrescu; Clemente Ibarra-Castanedo; Xavier P.V. Maldague;handle: 1807/95666
Ceramic-coated materials used in different engineering sectors are the focus of world-wide interest and have generated a need for inspection techniques that detect very small structural anomalies. Non-destructive testing is increasingly being used to evaluate coating thickness and to test for coating flaws. The main pros of non-destructive testing is that the tested object remains intact and available for continued use afterward. This paper reports on an integrated, non-destructive testing approach that combines infrared thermography and acousto-ultrasonics to evaluate advanced aerospace sandwich structure materials with the aim of exploring any potential for detecting defects of more than one type. Combined, these two techniques successfully detected fabrication defects, including inclusions and material loss.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/13/2537/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of Toronto: Research Repository T-SpaceArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/1807/95666Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12132537&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/13/2537/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of Toronto: Research Repository T-SpaceArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/1807/95666Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12132537&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu