Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down

Filters

  • Access
  • Type
  • Year range
  • Field of Science
  • SDG [Beta]
  • Country
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
2 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research

  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Malolan Sundararaman; Balasubramanian Sambasivam;

    This study explores the intersection of two pivotal interventions aimed at achieving carbon neutrality: the electric vehicles (EVs) adoption and the renewable energy (RE) electricity generation. Focusing on a Renewable Energy-Dominated (RED) electricity system, the research examines the interdependence between these interventions and their collective impact on economic dispatch. The study's objective is to determine optimal economic dispatch strategies that meet hourly electricity demand, considering two distinct supply scenarios across eight supply options. The first scenario assesses the maximum possible supply, while the second contemplates the minimum possible supply from each option. Additionally, the study delves into the influence of social cost of emissions on these economic dispatches. Employing an experimental design, the study generates representative load curves that incorporate EV charging demands for varied levels of EV penetration, alongside regular electricity demand. Data from Karnataka's RED electricity system provides a basis for the supply-side analysis. The economic dispatch for each supply scenario is formulated as a Mixed Integer Linear Program (MILP), aiming to minimize both costs for generation and social costs of emissions, while adhering to operational constraints of the supply options. Key findings from this approach, highlight several critical insights: the significant role of incorporating social costs in economic dispatch decisions, the tangible impact of EV demand on supply shortages, and the importance of maintaining supply capacity to minimize these shortages.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Green Energy and Int...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Green Energy and Intelligent Transportation
    Article . 2025 . Peer-reviewed
    License: CC BY NC ND
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Green Energy and Int...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Green Energy and Intelligent Transportation
      Article . 2025 . Peer-reviewed
      License: CC BY NC ND
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Malolan Sundararaman; Balasubramanian Sambasivam;

    This study explores the intersection of two pivotal interventions aimed at achieving carbon neutrality: the electric vehicles (EVs) adoption and the renewable energy (RE) electricity generation. Focusing on a Renewable Energy-Dominated (RED) electricity system, the research examines the interdependence between these interventions and their collective impact on economic dispatch. The study's objective is to determine optimal economic dispatch strategies that meet hourly electricity demand, considering two distinct supply scenarios across eight supply options. The first scenario assesses the maximum possible supply, while the second contemplates the minimum possible supply from each option. Additionally, the study delves into the influence of social cost of emissions on these economic dispatches. Employing an experimental design, the study generates representative load curves that incorporate EV charging demands for varied levels of EV penetration, alongside regular electricity demand. Data from Karnataka's RED electricity system provides a basis for the supply-side analysis. The economic dispatch for each supply scenario is formulated as a Mixed Integer Linear Program (MILP), aiming to minimize both costs for generation and social costs of emissions, while adhering to operational constraints of the supply options. Key findings from this approach, highlight several critical insights: the significant role of incorporating social costs in economic dispatch decisions, the tangible impact of EV demand on supply shortages, and the importance of maintaining supply capacity to minimize these shortages.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Green Energy and Int...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Green Energy and Intelligent Transportation
    Article . 2025 . Peer-reviewed
    License: CC BY NC ND
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Green Energy and Int...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Green Energy and Intelligent Transportation
      Article . 2025 . Peer-reviewed
      License: CC BY NC ND
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • In this study, an OEM assembling a single product using multiple-components is considered. The components are obtained either by manufacturing from raw materials and or remanufacturing from returns and or procuring from external suppliers. The returns, product returned after use by the customer, are obtained after paying a return acquisition price. The return acquisition price is a fixed price paid based on the utilisation time of the return. The returns are dismantled into components: 1) which can be remanufactured; 2) which cannot be remanufactured (meant for disposal). The manufacturing, remanufacturing and assembly operations are integrated as a closed loop supply chain system and can be performed by any OEM. It appears from the literature review that the OEM-CLSC system, where components are remanufactured by OEM themselves, has not been considered in any of the previous research literature. This study addresses this research gap by considering a singleproduct multi-component remanufacturing of an OEM-CLSC problem. For addressing the research problem considered, a mathematical model is proposed to identify the optimal inventories and the production plan. Finally, an empirical analysis is carried out to determine the breakeven capacity for remanufacturing operation by suitably introducing a breakeven analysis model.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    3
    citations3
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • In this study, an OEM assembling a single product using multiple-components is considered. The components are obtained either by manufacturing from raw materials and or remanufacturing from returns and or procuring from external suppliers. The returns, product returned after use by the customer, are obtained after paying a return acquisition price. The return acquisition price is a fixed price paid based on the utilisation time of the return. The returns are dismantled into components: 1) which can be remanufactured; 2) which cannot be remanufactured (meant for disposal). The manufacturing, remanufacturing and assembly operations are integrated as a closed loop supply chain system and can be performed by any OEM. It appears from the literature review that the OEM-CLSC system, where components are remanufactured by OEM themselves, has not been considered in any of the previous research literature. This study addresses this research gap by considering a singleproduct multi-component remanufacturing of an OEM-CLSC problem. For addressing the research problem considered, a mathematical model is proposed to identify the optimal inventories and the production plan. Finally, an empirical analysis is carried out to determine the breakeven capacity for remanufacturing operation by suitably introducing a breakeven analysis model.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    3
    citations3
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
2 Research products
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Malolan Sundararaman; Balasubramanian Sambasivam;

    This study explores the intersection of two pivotal interventions aimed at achieving carbon neutrality: the electric vehicles (EVs) adoption and the renewable energy (RE) electricity generation. Focusing on a Renewable Energy-Dominated (RED) electricity system, the research examines the interdependence between these interventions and their collective impact on economic dispatch. The study's objective is to determine optimal economic dispatch strategies that meet hourly electricity demand, considering two distinct supply scenarios across eight supply options. The first scenario assesses the maximum possible supply, while the second contemplates the minimum possible supply from each option. Additionally, the study delves into the influence of social cost of emissions on these economic dispatches. Employing an experimental design, the study generates representative load curves that incorporate EV charging demands for varied levels of EV penetration, alongside regular electricity demand. Data from Karnataka's RED electricity system provides a basis for the supply-side analysis. The economic dispatch for each supply scenario is formulated as a Mixed Integer Linear Program (MILP), aiming to minimize both costs for generation and social costs of emissions, while adhering to operational constraints of the supply options. Key findings from this approach, highlight several critical insights: the significant role of incorporating social costs in economic dispatch decisions, the tangible impact of EV demand on supply shortages, and the importance of maintaining supply capacity to minimize these shortages.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Green Energy and Int...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Green Energy and Intelligent Transportation
    Article . 2025 . Peer-reviewed
    License: CC BY NC ND
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Green Energy and Int...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Green Energy and Intelligent Transportation
      Article . 2025 . Peer-reviewed
      License: CC BY NC ND
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Malolan Sundararaman; Balasubramanian Sambasivam;

    This study explores the intersection of two pivotal interventions aimed at achieving carbon neutrality: the electric vehicles (EVs) adoption and the renewable energy (RE) electricity generation. Focusing on a Renewable Energy-Dominated (RED) electricity system, the research examines the interdependence between these interventions and their collective impact on economic dispatch. The study's objective is to determine optimal economic dispatch strategies that meet hourly electricity demand, considering two distinct supply scenarios across eight supply options. The first scenario assesses the maximum possible supply, while the second contemplates the minimum possible supply from each option. Additionally, the study delves into the influence of social cost of emissions on these economic dispatches. Employing an experimental design, the study generates representative load curves that incorporate EV charging demands for varied levels of EV penetration, alongside regular electricity demand. Data from Karnataka's RED electricity system provides a basis for the supply-side analysis. The economic dispatch for each supply scenario is formulated as a Mixed Integer Linear Program (MILP), aiming to minimize both costs for generation and social costs of emissions, while adhering to operational constraints of the supply options. Key findings from this approach, highlight several critical insights: the significant role of incorporating social costs in economic dispatch decisions, the tangible impact of EV demand on supply shortages, and the importance of maintaining supply capacity to minimize these shortages.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Green Energy and Int...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Green Energy and Intelligent Transportation
    Article . 2025 . Peer-reviewed
    License: CC BY NC ND
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Green Energy and Int...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Green Energy and Intelligent Transportation
      Article . 2025 . Peer-reviewed
      License: CC BY NC ND
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • In this study, an OEM assembling a single product using multiple-components is considered. The components are obtained either by manufacturing from raw materials and or remanufacturing from returns and or procuring from external suppliers. The returns, product returned after use by the customer, are obtained after paying a return acquisition price. The return acquisition price is a fixed price paid based on the utilisation time of the return. The returns are dismantled into components: 1) which can be remanufactured; 2) which cannot be remanufactured (meant for disposal). The manufacturing, remanufacturing and assembly operations are integrated as a closed loop supply chain system and can be performed by any OEM. It appears from the literature review that the OEM-CLSC system, where components are remanufactured by OEM themselves, has not been considered in any of the previous research literature. This study addresses this research gap by considering a singleproduct multi-component remanufacturing of an OEM-CLSC problem. For addressing the research problem considered, a mathematical model is proposed to identify the optimal inventories and the production plan. Finally, an empirical analysis is carried out to determine the breakeven capacity for remanufacturing operation by suitably introducing a breakeven analysis model.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    3
    citations3
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • In this study, an OEM assembling a single product using multiple-components is considered. The components are obtained either by manufacturing from raw materials and or remanufacturing from returns and or procuring from external suppliers. The returns, product returned after use by the customer, are obtained after paying a return acquisition price. The return acquisition price is a fixed price paid based on the utilisation time of the return. The returns are dismantled into components: 1) which can be remanufactured; 2) which cannot be remanufactured (meant for disposal). The manufacturing, remanufacturing and assembly operations are integrated as a closed loop supply chain system and can be performed by any OEM. It appears from the literature review that the OEM-CLSC system, where components are remanufactured by OEM themselves, has not been considered in any of the previous research literature. This study addresses this research gap by considering a singleproduct multi-component remanufacturing of an OEM-CLSC problem. For addressing the research problem considered, a mathematical model is proposed to identify the optimal inventories and the production plan. Finally, an empirical analysis is carried out to determine the breakeven capacity for remanufacturing operation by suitably introducing a breakeven analysis model.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    3
    citations3
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
Powered by OpenAIRE graph