- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2024Publisher:Oxford University Press (OUP) Authors:Austin M Garner;
Austin M Garner
Austin M Garner in OpenAIREAndrew J Moura;
Andrew J Moura
Andrew J Moura in OpenAIRECarla A Narvaez;
Carla A Narvaez
Carla A Narvaez in OpenAIREAlyssa Y Stark;
+1 AuthorsAlyssa Y Stark
Alyssa Y Stark in OpenAIREAustin M Garner;
Austin M Garner
Austin M Garner in OpenAIREAndrew J Moura;
Andrew J Moura
Andrew J Moura in OpenAIRECarla A Narvaez;
Carla A Narvaez
Carla A Narvaez in OpenAIREAlyssa Y Stark;
Michael P Russell;Alyssa Y Stark
Alyssa Y Stark in OpenAIREdoi: 10.1093/icb/icae003
pmid: 38444171
Synopsis Climate change will increase the frequency and intensity of extreme climatic events (e.g., storms) that result in repeated pulses of hyposalinity in nearshore ecosystems. Sea urchins inhabit these ecosystems and are stenohaline (restricted to salinity levels ∼32‰), thus are particularly susceptible to hyposalinity events. As key benthic omnivores, sea urchins use hydrostatic adhesive tube feet for numerous functions, including attachment to and locomotion on the substratum as they graze for food. Hyposalinity severely impacts sea urchin locomotor and adhesive performance but several ecologically relevant and climate change-related questions remain. First, do sea urchin locomotion and adhesion acclimate to repeated pulses of hyposalinity? Second, how do tube feet respond to tensile forces during single and repeated hyposalinity events? Third, do the negative effects of hyposalinity exposure persist following a return to normal salinity levels? To answer these questions, we repeatedly exposed green sea urchins (Strongylocentrotus droebachiensis) to pulses of three different salinities (control: 32‰, moderate hyposalinity: 22‰, severe hyposalinity: 16‰) over the course of two months and measured locomotor performance, adhesive performance, and tube foot tensile behavior. We also measured these parameters 20 h after sea urchins returned to normal salinity levels. We found no evidence that tube feet performance and properties acclimate to repeated pulses of hyposalinity, at least over the timescale examined in this study. In contrast, hyposalinity has severe consequences on locomotion, adhesion, and tube foot tensile behavior, and these impacts are not limited to the hyposalinity exposure. Our results suggest both moderate and severe hyposalinity events have the potential to increase sea urchin dislodgment and reduce movement, which may impact sea urchin distribution and their role in marine communities.
Integrative and Comp... arrow_drop_down Integrative and Comparative BiologyArticle . 2024 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/icb/icae003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Integrative and Comp... arrow_drop_down Integrative and Comparative BiologyArticle . 2024 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/icb/icae003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Oxford University Press (OUP) Authors:Austin M Garner;
Austin M Garner
Austin M Garner in OpenAIREAndrew J Moura;
Andrew J Moura
Andrew J Moura in OpenAIRECarla A Narvaez;
Carla A Narvaez
Carla A Narvaez in OpenAIREAlyssa Y Stark;
+1 AuthorsAlyssa Y Stark
Alyssa Y Stark in OpenAIREAustin M Garner;
Austin M Garner
Austin M Garner in OpenAIREAndrew J Moura;
Andrew J Moura
Andrew J Moura in OpenAIRECarla A Narvaez;
Carla A Narvaez
Carla A Narvaez in OpenAIREAlyssa Y Stark;
Michael P Russell;Alyssa Y Stark
Alyssa Y Stark in OpenAIREdoi: 10.1093/icb/icae003
pmid: 38444171
Synopsis Climate change will increase the frequency and intensity of extreme climatic events (e.g., storms) that result in repeated pulses of hyposalinity in nearshore ecosystems. Sea urchins inhabit these ecosystems and are stenohaline (restricted to salinity levels ∼32‰), thus are particularly susceptible to hyposalinity events. As key benthic omnivores, sea urchins use hydrostatic adhesive tube feet for numerous functions, including attachment to and locomotion on the substratum as they graze for food. Hyposalinity severely impacts sea urchin locomotor and adhesive performance but several ecologically relevant and climate change-related questions remain. First, do sea urchin locomotion and adhesion acclimate to repeated pulses of hyposalinity? Second, how do tube feet respond to tensile forces during single and repeated hyposalinity events? Third, do the negative effects of hyposalinity exposure persist following a return to normal salinity levels? To answer these questions, we repeatedly exposed green sea urchins (Strongylocentrotus droebachiensis) to pulses of three different salinities (control: 32‰, moderate hyposalinity: 22‰, severe hyposalinity: 16‰) over the course of two months and measured locomotor performance, adhesive performance, and tube foot tensile behavior. We also measured these parameters 20 h after sea urchins returned to normal salinity levels. We found no evidence that tube feet performance and properties acclimate to repeated pulses of hyposalinity, at least over the timescale examined in this study. In contrast, hyposalinity has severe consequences on locomotion, adhesion, and tube foot tensile behavior, and these impacts are not limited to the hyposalinity exposure. Our results suggest both moderate and severe hyposalinity events have the potential to increase sea urchin dislodgment and reduce movement, which may impact sea urchin distribution and their role in marine communities.
Integrative and Comp... arrow_drop_down Integrative and Comparative BiologyArticle . 2024 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/icb/icae003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Integrative and Comp... arrow_drop_down Integrative and Comparative BiologyArticle . 2024 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/icb/icae003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019Publisher:Springer Science and Business Media LLC Authors:Colette J. Feehan;
Colette J. Feehan
Colette J. Feehan in OpenAIRESean P. Grace;
Sean P. Grace
Sean P. Grace in OpenAIRECarla A. Narvaez;
Carla A. Narvaez
Carla A. Narvaez in OpenAIREAbstractTemperate marine ecosystems globally are undergoing regime shifts from dominance by habitat-forming kelps to dominance by opportunistic algal turfs. While the environmental drivers of shifts to turf are generally well-documented, the feedback mechanisms that stabilize novel turf-dominated ecosystems remain poorly resolved. Here, we document a decline of kelp Saccharina latissima between 1980 and 2018 at sites at the southernmost extent of kelp forests in the Northwest Atlantic and their replacement by algal turf. We examined the drivers of a shift to turf and feedback mechanisms that stabilize turf reefs. Kelp replacement by turf was linked to a significant multi-decadal increase in sea temperature above an upper thermal threshold for kelp survival. In the turf-dominated ecosystem, 45% of S. latissima were attached to algal turf rather than rocky substrate due to preemption of space. Turf-attached kelp required significantly (2 to 4 times) less force to detach from the substrate, with an attendant pattern of lower survival following 2 major wave events as compared to rock-attached kelp. Turf-attached kelp allocated a significantly greater percentage of their biomass to the anchoring structure (holdfast), with a consequent energetic trade-off of slower growth. The results indicate a shift in community dominance from kelp to turf driven by thermal stress and stabilized by ecological feedbacks of lower survival and slower growth of kelp recruited to turf.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-019-43536-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-019-43536-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019Publisher:Springer Science and Business Media LLC Authors:Colette J. Feehan;
Colette J. Feehan
Colette J. Feehan in OpenAIRESean P. Grace;
Sean P. Grace
Sean P. Grace in OpenAIRECarla A. Narvaez;
Carla A. Narvaez
Carla A. Narvaez in OpenAIREAbstractTemperate marine ecosystems globally are undergoing regime shifts from dominance by habitat-forming kelps to dominance by opportunistic algal turfs. While the environmental drivers of shifts to turf are generally well-documented, the feedback mechanisms that stabilize novel turf-dominated ecosystems remain poorly resolved. Here, we document a decline of kelp Saccharina latissima between 1980 and 2018 at sites at the southernmost extent of kelp forests in the Northwest Atlantic and their replacement by algal turf. We examined the drivers of a shift to turf and feedback mechanisms that stabilize turf reefs. Kelp replacement by turf was linked to a significant multi-decadal increase in sea temperature above an upper thermal threshold for kelp survival. In the turf-dominated ecosystem, 45% of S. latissima were attached to algal turf rather than rocky substrate due to preemption of space. Turf-attached kelp required significantly (2 to 4 times) less force to detach from the substrate, with an attendant pattern of lower survival following 2 major wave events as compared to rock-attached kelp. Turf-attached kelp allocated a significantly greater percentage of their biomass to the anchoring structure (holdfast), with a consequent energetic trade-off of slower growth. The results indicate a shift in community dominance from kelp to turf driven by thermal stress and stabilized by ecological feedbacks of lower survival and slower growth of kelp recruited to turf.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-019-43536-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-019-43536-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Spain, NorwayPublisher:Wiley Funded by:ARC | Discovery Early Career Re..., ARC | Discovery Projects - Gran...ARC| Discovery Early Career Researcher Award - Grant ID: DE190100692 ,ARC| Discovery Projects - Grant ID: DP190100058Authors:Teresa Alcoverro;
Teresa Alcoverro;Teresa Alcoverro
Teresa Alcoverro in OpenAIREAlbert Pessarrodona;
Albert Pessarrodona
Albert Pessarrodona in OpenAIRECarla A. Narvaez;
+10 AuthorsCarla A. Narvaez
Carla A. Narvaez in OpenAIRETeresa Alcoverro;
Teresa Alcoverro;Teresa Alcoverro
Teresa Alcoverro in OpenAIREAlbert Pessarrodona;
Albert Pessarrodona
Albert Pessarrodona in OpenAIRECarla A. Narvaez;
Carla A. Narvaez
Carla A. Narvaez in OpenAIREKaren Filbee-Dexter;
Karen Filbee-Dexter
Karen Filbee-Dexter in OpenAIREKjell Magnus Norderhaug;
Kjell Magnus Norderhaug
Kjell Magnus Norderhaug in OpenAIREThomas Wernberg;
Thomas Wernberg;Thomas Wernberg
Thomas Wernberg in OpenAIRESean P. Grace;
Sean P. Grace
Sean P. Grace in OpenAIREStein Fredriksen;
Stein Fredriksen
Stein Fredriksen in OpenAIREColette J. Feehan;
Colette J. Feehan
Colette J. Feehan in OpenAIREJordi Boada;
Jordi Boada;Jordi Boada
Jordi Boada in OpenAIREYohei Nakamura;
Yohei Nakamura
Yohei Nakamura in OpenAIREAbstractHumans are rapidly transforming the structural configuration of the planet's ecosystems, but these changes and their ecological consequences remain poorly quantified in underwater habitats. Here, we show that the loss of forest‐forming seaweeds and the rise of ground‐covering ‘turfs’ across four continents consistently resulted in the miniaturization of underwater habitat structure, with seascapes converging towards flattened habitats with smaller habitable spaces. Globally, turf seascapes occupied a smaller architectural trait space and were structurally more similar across regions than marine forests, evidencing habitat homogenization. Surprisingly, such habitat convergence occurred despite turf seascapes consisting of vastly different species richness and with different taxa providing habitat architecture, as well as across disparate drivers of marine forest decline. Turf seascapes contained high sediment loads, with the miniaturization of habitat across 100s of km in mid‐Western Australia resulting in reefs retaining an additional ~242 million tons of sediment (four orders of magnitude more than the sediments delivered fluvially annually). Together, this work demonstrates that the replacement of marine forests by turfs is a generalizable phenomenon that has profound consequences for the ecology of temperate reefs.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAGlobal Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15759&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 54 citations 54 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 56visibility views 56 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAGlobal Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15759&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Spain, NorwayPublisher:Wiley Funded by:ARC | Discovery Early Career Re..., ARC | Discovery Projects - Gran...ARC| Discovery Early Career Researcher Award - Grant ID: DE190100692 ,ARC| Discovery Projects - Grant ID: DP190100058Authors:Teresa Alcoverro;
Teresa Alcoverro;Teresa Alcoverro
Teresa Alcoverro in OpenAIREAlbert Pessarrodona;
Albert Pessarrodona
Albert Pessarrodona in OpenAIRECarla A. Narvaez;
+10 AuthorsCarla A. Narvaez
Carla A. Narvaez in OpenAIRETeresa Alcoverro;
Teresa Alcoverro;Teresa Alcoverro
Teresa Alcoverro in OpenAIREAlbert Pessarrodona;
Albert Pessarrodona
Albert Pessarrodona in OpenAIRECarla A. Narvaez;
Carla A. Narvaez
Carla A. Narvaez in OpenAIREKaren Filbee-Dexter;
Karen Filbee-Dexter
Karen Filbee-Dexter in OpenAIREKjell Magnus Norderhaug;
Kjell Magnus Norderhaug
Kjell Magnus Norderhaug in OpenAIREThomas Wernberg;
Thomas Wernberg;Thomas Wernberg
Thomas Wernberg in OpenAIRESean P. Grace;
Sean P. Grace
Sean P. Grace in OpenAIREStein Fredriksen;
Stein Fredriksen
Stein Fredriksen in OpenAIREColette J. Feehan;
Colette J. Feehan
Colette J. Feehan in OpenAIREJordi Boada;
Jordi Boada;Jordi Boada
Jordi Boada in OpenAIREYohei Nakamura;
Yohei Nakamura
Yohei Nakamura in OpenAIREAbstractHumans are rapidly transforming the structural configuration of the planet's ecosystems, but these changes and their ecological consequences remain poorly quantified in underwater habitats. Here, we show that the loss of forest‐forming seaweeds and the rise of ground‐covering ‘turfs’ across four continents consistently resulted in the miniaturization of underwater habitat structure, with seascapes converging towards flattened habitats with smaller habitable spaces. Globally, turf seascapes occupied a smaller architectural trait space and were structurally more similar across regions than marine forests, evidencing habitat homogenization. Surprisingly, such habitat convergence occurred despite turf seascapes consisting of vastly different species richness and with different taxa providing habitat architecture, as well as across disparate drivers of marine forest decline. Turf seascapes contained high sediment loads, with the miniaturization of habitat across 100s of km in mid‐Western Australia resulting in reefs retaining an additional ~242 million tons of sediment (four orders of magnitude more than the sediments delivered fluvially annually). Together, this work demonstrates that the replacement of marine forests by turfs is a generalizable phenomenon that has profound consequences for the ecology of temperate reefs.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAGlobal Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15759&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 54 citations 54 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 56visibility views 56 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAGlobal Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15759&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu