Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down

Filters

  • Access
  • Type
  • Year range
  • Field of Science
  • Funder
  • SDG [Beta]
  • Country
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
2 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research

  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Owen, Nick A; Choncubhair, Órlaith Ní; Males, Jamie; Del Real Laborde, José Ignacio; +3 Authors

    AbstractMass and energy fluxes were measured over a field of Agave tequilana in Mexico using eddy covariance (EC) methodology. Data were gathered over 252 d, including the transition from wet to dry periods. Net ecosystem exchanges (FN,EC) displayed a crassulacean acid metabolism (CAM) rhythm that alternated from CO2 sink at night to CO2 source during the day, and partitioned canopy fluxes (FA,EC) showed a characteristic four‐phase CO2 exchange pattern. Results were cross‐validated against diel changes in titratable acidity, leaf‐unfurling rates, energy exchange fluxes and reported biomass yields. Projected carbon balance (g C m−2 year−1, mean ± 95% confidence interval) indicated the site was a net sink of −333 ± 24, of which contributions from soil respiration were +692 ± 7, and FA,EC was −1025 ± 25. EC estimated biomass yield was 20.1 Mg (dry) ha−1 year−1. Average integrated daily FA,EC was −234 ± 5 mmol CO2 m−2 d−1 and persisted almost unchanged after 70 d of drought conditions. Regression analyses were performed on the EC data to identify the best environmental predictors of FA. Results suggest that the carbon acquisition strategy of Agave offers productivity and drought resilience advantages over conventional semi‐arid C3 and C4 bioenergy candidates.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Apolloarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Apollo
    Article . 2016
    Data sources: Apollo
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Plant Cell & Environment
    Article . 2015 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    Apollo
    Article . 2019
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    19
    citations19
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Apolloarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Apollo
      Article . 2016
      Data sources: Apollo
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Plant Cell & Environment
      Article . 2015 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      Apollo
      Article . 2019
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: D.J. Krol; M.B. Jones; M. Williams; Ó. Ní Choncubhair; +1 Authors

    Abstract Bioenergy crop production can enhance greenhouse gas (GHG) mitigation, whilst producing feedstocks for energy generation. However, the GHG balance of these ecosystems is intimately linked to crop selection, previous and current land management and the effects of land conversion. This study aims to quantify nitrous oxide (N2O) emissions from the early stage of land-use change (LUC) from perennial grassland to two perennial rhizomatous grasses in a temperate climate: Miscanthus and reed canary grass (RCG) in the south of Ireland. Emissions of N2O were measured during the first two years of RCG and Miscanthus establishment. Miscanthus stands emitted 7.7 ± 1.6 and 2.3 ± 0.2 kg N2O-N ha−1 yr−1 in the first and the second year, respectively, while RCG produced 1.1 ± 0.2 kg N2O-N ha−1 yr−1 in the first year following LUC. Temporal fluxes of N2O were generally low, however peak emissions observed in the first year contributed approximately 83% of annual N2O in the Miscanthus treatment. This peak occurred in wet (50 mm rainfall in the week preceding the peak) and warm (>18.5 °C in the top 5 cm of soil) weather conditions and was significantly affected (R2 = 0.77) by the soil moisture deficit. However large, annual N2O losses from Miscanthus and RCG found in this study are well within the range of those from grassland soils in temperate climate, drawing conclusions that any short-term increases in N2O production will soon be offset by the reduced future fertilisation, carbon sequestration and produced bioenergy feedstock.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biomass and Bioenerg...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Biomass and Bioenergy
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    11
    citations11
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biomass and Bioenerg...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Biomass and Bioenergy
      Article . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
2 Research products
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Owen, Nick A; Choncubhair, Órlaith Ní; Males, Jamie; Del Real Laborde, José Ignacio; +3 Authors

    AbstractMass and energy fluxes were measured over a field of Agave tequilana in Mexico using eddy covariance (EC) methodology. Data were gathered over 252 d, including the transition from wet to dry periods. Net ecosystem exchanges (FN,EC) displayed a crassulacean acid metabolism (CAM) rhythm that alternated from CO2 sink at night to CO2 source during the day, and partitioned canopy fluxes (FA,EC) showed a characteristic four‐phase CO2 exchange pattern. Results were cross‐validated against diel changes in titratable acidity, leaf‐unfurling rates, energy exchange fluxes and reported biomass yields. Projected carbon balance (g C m−2 year−1, mean ± 95% confidence interval) indicated the site was a net sink of −333 ± 24, of which contributions from soil respiration were +692 ± 7, and FA,EC was −1025 ± 25. EC estimated biomass yield was 20.1 Mg (dry) ha−1 year−1. Average integrated daily FA,EC was −234 ± 5 mmol CO2 m−2 d−1 and persisted almost unchanged after 70 d of drought conditions. Regression analyses were performed on the EC data to identify the best environmental predictors of FA. Results suggest that the carbon acquisition strategy of Agave offers productivity and drought resilience advantages over conventional semi‐arid C3 and C4 bioenergy candidates.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Apolloarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Apollo
    Article . 2016
    Data sources: Apollo
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Plant Cell & Environment
    Article . 2015 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    Apollo
    Article . 2019
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    19
    citations19
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Apolloarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Apollo
      Article . 2016
      Data sources: Apollo
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Plant Cell & Environment
      Article . 2015 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      Apollo
      Article . 2019
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: D.J. Krol; M.B. Jones; M. Williams; Ó. Ní Choncubhair; +1 Authors

    Abstract Bioenergy crop production can enhance greenhouse gas (GHG) mitigation, whilst producing feedstocks for energy generation. However, the GHG balance of these ecosystems is intimately linked to crop selection, previous and current land management and the effects of land conversion. This study aims to quantify nitrous oxide (N2O) emissions from the early stage of land-use change (LUC) from perennial grassland to two perennial rhizomatous grasses in a temperate climate: Miscanthus and reed canary grass (RCG) in the south of Ireland. Emissions of N2O were measured during the first two years of RCG and Miscanthus establishment. Miscanthus stands emitted 7.7 ± 1.6 and 2.3 ± 0.2 kg N2O-N ha−1 yr−1 in the first and the second year, respectively, while RCG produced 1.1 ± 0.2 kg N2O-N ha−1 yr−1 in the first year following LUC. Temporal fluxes of N2O were generally low, however peak emissions observed in the first year contributed approximately 83% of annual N2O in the Miscanthus treatment. This peak occurred in wet (50 mm rainfall in the week preceding the peak) and warm (>18.5 °C in the top 5 cm of soil) weather conditions and was significantly affected (R2 = 0.77) by the soil moisture deficit. However large, annual N2O losses from Miscanthus and RCG found in this study are well within the range of those from grassland soils in temperate climate, drawing conclusions that any short-term increases in N2O production will soon be offset by the reduced future fertilisation, carbon sequestration and produced bioenergy feedstock.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biomass and Bioenerg...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Biomass and Bioenergy
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    11
    citations11
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biomass and Bioenerg...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Biomass and Bioenergy
      Article . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph