- home
- Advanced Search
Filters
Year range
-chevron_right GOSource
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:SAE International Gerco van Dijk; Martijn van Essen; Sander Gersen; Dai Liming; Howard Levinsky;SAE International Jo... arrow_drop_down SAE International Journal of Fuels and LubricantsArticle . 2020 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/04-13-03-0017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert SAE International Jo... arrow_drop_down SAE International Journal of Fuels and LubricantsArticle . 2020 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/04-13-03-0017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Liming Dai; Hamid Hashemi; Peter Glarborg; Sander Gersen; Paul Marshall; Anatoli Mokhov; Howard Levinsky;Abstract Autoignition delay times of ammonia/dimethyl ether (NH3/DME) mixtures were measured in a rapid compression machine with DME fractions of 0, 2 and 5 and 100% in the fuel. The measurements were performed at equivalence ratios φ =0.5, 1.0 and 2.0 and pressures in the range 10–70 bar; depending on the fuel composition, the temperatures after compression varied from 610 K to 1180 K. Admixture of DME is seen to have a dramatic effect on the ignition delay time, effectively shifting the curves of ignition delay vs. temperature to lower temperatures, up to ~250 K compared to pure ammonia. Two-stage ignition is observed at φ =1.0 and 2.0 with 2% and 5% DME in the fuel, despite the pressure being higher than that at which pure DME shows two-stage ignition. At φ =0.5, a reproducible pre-ignition pressure rise is observed for both DME fractions, which is not observed in the pure fuel components. A novel NH3/DME mechanism was developed, including modifications in the NH3 subset and addition of the NH2+CH3OCH3 reaction, with rate coefficients calculated from ab initio theory. Simulations faithfully reproduce the observed pre-ignition pressure rise. While the mechanism also exhibits two-stage ignition for NH3/DME mixtures, both qualitative and quantitative improvement is recommended. The overall ignition delay times for ammonia/DME mixtures are predicted well, generally being within 50% of the experimental values, although reduced performance is observed for pure ammonia at φ =2.0. Simulating the ignition process, we observe that the DME is oxidized much more rapidly than ammonia. Analysis of the mechanism indicates that this ‘early DME oxidation’ generates reactive species that initiate the oxidation of ammonia, which in turn begins heat release that raises the temperature and accelerates the oxidation process towards ignition. The reaction path analysis shows that the low-temperature chain-branching reactions of DME are important in the early oxidation of the fuel, while the sensitivity analysis indicates that several reactions in the oxidation of DME, including cross reactions between DME and NH3 species presented here, are critical to ignition, even at fractions of 2% DME in the fuel.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.combustflame.2020.12.048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 160 citations 160 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.combustflame.2020.12.048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Liming Dai; Sander Gersen; Peter Glarborg; Anatoli Mokhov; Howard Levinsky;Autoignition delay times of NH3/CH4 mixtures with CH4 fractions of 0%, 5%, 10% and 50% were measured in a rapid compression machine at equivalence ratio phi = 0.5, pressures from 20 to 70 bar and temperatures from 930 to 1140 K. In addition, measurements were performed for NH3 mixtures with 10% CH4 at phi = 1.0 and 2.0. Methane shows a strong ignition-enhancing effect on NH3, which levels off at higher CH4 fractions, as the ignition delay time approaches that of pure methane. Autoignition delay times at 10% CH4 at phi = 0.5 and 1.0 are indistinguishable, while an increase of ignition delay times by factor of 1.5 was observed upon increasing phi to 2.0. The experimental data were used to evaluate six NH3 oxidation mechanisms capable of simulating NH3/CH4 mixtures. The mechanism previously used by the authors shows the best performance: generally, it predicts the measured ignition delay times to better than 30% for all conditions, except for 50% CH4 addition for which the differences increase up to 50% at the highest temperature. Sensitivity analysis based on the mechanism used indicates that under lean conditions the reaction CH4 + NH2 = CH3 + NH3 significantly promotes ignition for modest CH4 addition (5% and 10%), but becomes modestly ignition-inhibiting at 50% CH4. Sensitivity and rate-of-production analyses indicate that the ignition-enhancing effect of 50% CH4 addition is closely related to the formation and decomposition of H2O2. Flux analysis for NH3/CH4 mixtures indicates that CH4 + NH2 = CH3 + NH3 contributes substantially to the decomposition of methane early in the oxidation process, while CH3 + NO2 (+M) = CH3 NO2 (+M) is a significant reservoir of NO2 at low temperature. Additionally, an anomalous pre-ignition pressure rise phenomenon, which is not reproduced by the simulations, was observed with high reproducibility for the NH3 mixture with 50% CH4 addition. (C) 2020 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.combustflame.2020.04.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 128 citations 128 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.combustflame.2020.04.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Liming Dai; Sander Gersen; Peter Glarborg; Howard Levinsky; Anatoli Mokhov;Measurements of autoignition delay times of NH3 and NH3/H2 mixtures in a rapid compression machine are reported at pressures from 20–75 bar and temperatures in the range 1040–1210 K. The equivalence ratio, using O2/N2/Ar mixtures as oxidizer, varied for pure NH3 from 0.5 to 3.0; NH3/H2 mixtures with H2 fraction between 0 and 10% were examined at equivalence ratios 0.5 and 1.0. In contrast to many hydrocarbon fuels, the results indicate that, for the conditions studied, autoignition of NH3 becomes slower with increasing equivalence ratio. Hydrogen is seen to have a strong ignition-enhancing effect on NH3. The experimental data, which show similar trends to those observed previously by He et al. (2019) [28], were used to evaluate four NH3 oxidation mechanisms: a new version of the mechanism described by Glarborg et al. (2018) [29], with an updated rate constant for the formation of hydrazine, NH2 + NH2 (+M) = N2H4 (+M), and the literature mechanisms from Klippenstein et al. (2011) [30], Mathieu and Petersen (2015) [25], and Shrestha et al. (2018) [31]. In general, the mechanism from this study has the best performance, yielding satisfactory prediction of ignition delay times both of pure NH3 and NH3/H2 mixtures at high pressures (40–60 bar). Kinetic analysis based on present mechanism indicates that the ignition enhancing effect of H2 on NH3 is closely related to the formation and decomposition of H2O2; even modest hydrogen addition changes the identity of the major reactions from those involving NHx radicals to those that dominate the H2/O2 mechanism. Flux analysis shows that the oxidation path of NH3 is not influenced by H2 addition. We also indicate the methodological importance of using a non-reactive mixture having the same heat capacity as the reactive mixture for determining the non-reactive volume trace for simulation purposes, as well as that of limiting the variation in temperature after compression, by limiting the uncertainty in the experimentally determined quantities that characterize the state of the mixture.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.combustflame.2020.01.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 177 citations 177 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.combustflame.2020.01.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:American Chemical Society (ACS) Authors: Liming Dai; Anatoli Mokhov; Howard Levinsky;The flame temperatures in flat, laminar premixed dimethyl ether (DME)/air flames with varying degrees of burner stabilization were measured by spontaneous Raman scattering in a range of equivalence ratio (phi) from 0.6 to 2.0. Three commonly used mechanisms to describe DME oxidation were evaluated by comparing the calculated variation of flame temperature derived from one-dimensional flame calculations as a function of DME/air exit velocity with those obtained from the measurements. The results showed the necessity of incorporating radiative heat losses in the flame calculations. The three mechanisms yield similar results at phi = 0.6 and 2.0, underpredicting the temperatures more than 30 K. Differences between the measured and predicted temperatures for burner-stabilized flames are seen to indicate whether a free-flame burning velocity (S-L) is too high or too low. The results suggest a free-flame burning velocity of similar to 14 cm/s at phi = 0.6, 2 cm/s lower than the mechanisms predicted, and burning velocities closer to 49 and 40 cm/s for phi = 1.0 and 1.4, respectively. Sensitivity analysis of the DME/air flame temperature as a function of exit velocity shows that the DME decomposition reaction and H abstraction from DME become important in the rich flames at phi = 1.7 and 2.0.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.energyfuels.9b03097&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.energyfuels.9b03097&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2023 GermanyPublisher:MDPI AG Yuanpu Zhang; Qian Wang; Liming Dai; Ming Zhang; Chunkan Yu;Ammonia (NH3) is considered a promising zero-carbon fuel and was extensively studied recently. Mixing high-reactivity oxygenated fuels such as dimethyl ether (DME) or dimethoxymethane (DMM) with ammonia is a realistic approach to overcome the low reactivity of NH3. To study the combustion characteristics of NH3/DMM and NH3/DME mixtures, we constructed a NH3/DMM chemical mechanism and tested its accuracy using measured laminar burning velocity (LBV) and ignition delay time (IDT) of both NH3/DMM and NH3/DME mixtures from the literature. The kinetic analysis of NH3/DMM flames using this mechanism reveals that the CH3 radicals generated from the oxidation of DMM substantially affects the oxidation pathway of NH3 at an early stage of flame propagation. We investigated the formation of nitrogen oxides (NOx) in NH3/DMM and NH3/DME flames and little difference can be found in the NOx emissions. Using NH3/DMM flames as an example, the peak NOx emissions are located at an equivalence ratio (φ) of 0.9 and a DMM fraction of 40% in the conditions studied. Kinetic analysis shows that NOx emission is dominated by NO, which primarily comes from fuel nitrogen of NH3. The addition of DMM at 40% significantly promotes the reactive radical pool (e.g., H, O, and OH) while the maintaining a high concentration of NO precursors (e.g., HNO, NO2, and N2O), which results in a high reaction rate of NO formation reaction and subsequently generates the highest NO emissions.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16196929&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16196929&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Hengsong Ji; Tianbei Luo; Liming Dai; Zhixia He; Qian Wang;Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4119218&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4119218&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:SAE International Gerco van Dijk; Martijn van Essen; Sander Gersen; Dai Liming; Howard Levinsky;SAE International Jo... arrow_drop_down SAE International Journal of Fuels and LubricantsArticle . 2020 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/04-13-03-0017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert SAE International Jo... arrow_drop_down SAE International Journal of Fuels and LubricantsArticle . 2020 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/04-13-03-0017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Liming Dai; Hamid Hashemi; Peter Glarborg; Sander Gersen; Paul Marshall; Anatoli Mokhov; Howard Levinsky;Abstract Autoignition delay times of ammonia/dimethyl ether (NH3/DME) mixtures were measured in a rapid compression machine with DME fractions of 0, 2 and 5 and 100% in the fuel. The measurements were performed at equivalence ratios φ =0.5, 1.0 and 2.0 and pressures in the range 10–70 bar; depending on the fuel composition, the temperatures after compression varied from 610 K to 1180 K. Admixture of DME is seen to have a dramatic effect on the ignition delay time, effectively shifting the curves of ignition delay vs. temperature to lower temperatures, up to ~250 K compared to pure ammonia. Two-stage ignition is observed at φ =1.0 and 2.0 with 2% and 5% DME in the fuel, despite the pressure being higher than that at which pure DME shows two-stage ignition. At φ =0.5, a reproducible pre-ignition pressure rise is observed for both DME fractions, which is not observed in the pure fuel components. A novel NH3/DME mechanism was developed, including modifications in the NH3 subset and addition of the NH2+CH3OCH3 reaction, with rate coefficients calculated from ab initio theory. Simulations faithfully reproduce the observed pre-ignition pressure rise. While the mechanism also exhibits two-stage ignition for NH3/DME mixtures, both qualitative and quantitative improvement is recommended. The overall ignition delay times for ammonia/DME mixtures are predicted well, generally being within 50% of the experimental values, although reduced performance is observed for pure ammonia at φ =2.0. Simulating the ignition process, we observe that the DME is oxidized much more rapidly than ammonia. Analysis of the mechanism indicates that this ‘early DME oxidation’ generates reactive species that initiate the oxidation of ammonia, which in turn begins heat release that raises the temperature and accelerates the oxidation process towards ignition. The reaction path analysis shows that the low-temperature chain-branching reactions of DME are important in the early oxidation of the fuel, while the sensitivity analysis indicates that several reactions in the oxidation of DME, including cross reactions between DME and NH3 species presented here, are critical to ignition, even at fractions of 2% DME in the fuel.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.combustflame.2020.12.048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 160 citations 160 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.combustflame.2020.12.048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Liming Dai; Sander Gersen; Peter Glarborg; Anatoli Mokhov; Howard Levinsky;Autoignition delay times of NH3/CH4 mixtures with CH4 fractions of 0%, 5%, 10% and 50% were measured in a rapid compression machine at equivalence ratio phi = 0.5, pressures from 20 to 70 bar and temperatures from 930 to 1140 K. In addition, measurements were performed for NH3 mixtures with 10% CH4 at phi = 1.0 and 2.0. Methane shows a strong ignition-enhancing effect on NH3, which levels off at higher CH4 fractions, as the ignition delay time approaches that of pure methane. Autoignition delay times at 10% CH4 at phi = 0.5 and 1.0 are indistinguishable, while an increase of ignition delay times by factor of 1.5 was observed upon increasing phi to 2.0. The experimental data were used to evaluate six NH3 oxidation mechanisms capable of simulating NH3/CH4 mixtures. The mechanism previously used by the authors shows the best performance: generally, it predicts the measured ignition delay times to better than 30% for all conditions, except for 50% CH4 addition for which the differences increase up to 50% at the highest temperature. Sensitivity analysis based on the mechanism used indicates that under lean conditions the reaction CH4 + NH2 = CH3 + NH3 significantly promotes ignition for modest CH4 addition (5% and 10%), but becomes modestly ignition-inhibiting at 50% CH4. Sensitivity and rate-of-production analyses indicate that the ignition-enhancing effect of 50% CH4 addition is closely related to the formation and decomposition of H2O2. Flux analysis for NH3/CH4 mixtures indicates that CH4 + NH2 = CH3 + NH3 contributes substantially to the decomposition of methane early in the oxidation process, while CH3 + NO2 (+M) = CH3 NO2 (+M) is a significant reservoir of NO2 at low temperature. Additionally, an anomalous pre-ignition pressure rise phenomenon, which is not reproduced by the simulations, was observed with high reproducibility for the NH3 mixture with 50% CH4 addition. (C) 2020 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.combustflame.2020.04.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 128 citations 128 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.combustflame.2020.04.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Liming Dai; Sander Gersen; Peter Glarborg; Howard Levinsky; Anatoli Mokhov;Measurements of autoignition delay times of NH3 and NH3/H2 mixtures in a rapid compression machine are reported at pressures from 20–75 bar and temperatures in the range 1040–1210 K. The equivalence ratio, using O2/N2/Ar mixtures as oxidizer, varied for pure NH3 from 0.5 to 3.0; NH3/H2 mixtures with H2 fraction between 0 and 10% were examined at equivalence ratios 0.5 and 1.0. In contrast to many hydrocarbon fuels, the results indicate that, for the conditions studied, autoignition of NH3 becomes slower with increasing equivalence ratio. Hydrogen is seen to have a strong ignition-enhancing effect on NH3. The experimental data, which show similar trends to those observed previously by He et al. (2019) [28], were used to evaluate four NH3 oxidation mechanisms: a new version of the mechanism described by Glarborg et al. (2018) [29], with an updated rate constant for the formation of hydrazine, NH2 + NH2 (+M) = N2H4 (+M), and the literature mechanisms from Klippenstein et al. (2011) [30], Mathieu and Petersen (2015) [25], and Shrestha et al. (2018) [31]. In general, the mechanism from this study has the best performance, yielding satisfactory prediction of ignition delay times both of pure NH3 and NH3/H2 mixtures at high pressures (40–60 bar). Kinetic analysis based on present mechanism indicates that the ignition enhancing effect of H2 on NH3 is closely related to the formation and decomposition of H2O2; even modest hydrogen addition changes the identity of the major reactions from those involving NHx radicals to those that dominate the H2/O2 mechanism. Flux analysis shows that the oxidation path of NH3 is not influenced by H2 addition. We also indicate the methodological importance of using a non-reactive mixture having the same heat capacity as the reactive mixture for determining the non-reactive volume trace for simulation purposes, as well as that of limiting the variation in temperature after compression, by limiting the uncertainty in the experimentally determined quantities that characterize the state of the mixture.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.combustflame.2020.01.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 177 citations 177 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.combustflame.2020.01.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:American Chemical Society (ACS) Authors: Liming Dai; Anatoli Mokhov; Howard Levinsky;The flame temperatures in flat, laminar premixed dimethyl ether (DME)/air flames with varying degrees of burner stabilization were measured by spontaneous Raman scattering in a range of equivalence ratio (phi) from 0.6 to 2.0. Three commonly used mechanisms to describe DME oxidation were evaluated by comparing the calculated variation of flame temperature derived from one-dimensional flame calculations as a function of DME/air exit velocity with those obtained from the measurements. The results showed the necessity of incorporating radiative heat losses in the flame calculations. The three mechanisms yield similar results at phi = 0.6 and 2.0, underpredicting the temperatures more than 30 K. Differences between the measured and predicted temperatures for burner-stabilized flames are seen to indicate whether a free-flame burning velocity (S-L) is too high or too low. The results suggest a free-flame burning velocity of similar to 14 cm/s at phi = 0.6, 2 cm/s lower than the mechanisms predicted, and burning velocities closer to 49 and 40 cm/s for phi = 1.0 and 1.4, respectively. Sensitivity analysis of the DME/air flame temperature as a function of exit velocity shows that the DME decomposition reaction and H abstraction from DME become important in the rich flames at phi = 1.7 and 2.0.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.energyfuels.9b03097&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.energyfuels.9b03097&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2023 GermanyPublisher:MDPI AG Yuanpu Zhang; Qian Wang; Liming Dai; Ming Zhang; Chunkan Yu;Ammonia (NH3) is considered a promising zero-carbon fuel and was extensively studied recently. Mixing high-reactivity oxygenated fuels such as dimethyl ether (DME) or dimethoxymethane (DMM) with ammonia is a realistic approach to overcome the low reactivity of NH3. To study the combustion characteristics of NH3/DMM and NH3/DME mixtures, we constructed a NH3/DMM chemical mechanism and tested its accuracy using measured laminar burning velocity (LBV) and ignition delay time (IDT) of both NH3/DMM and NH3/DME mixtures from the literature. The kinetic analysis of NH3/DMM flames using this mechanism reveals that the CH3 radicals generated from the oxidation of DMM substantially affects the oxidation pathway of NH3 at an early stage of flame propagation. We investigated the formation of nitrogen oxides (NOx) in NH3/DMM and NH3/DME flames and little difference can be found in the NOx emissions. Using NH3/DMM flames as an example, the peak NOx emissions are located at an equivalence ratio (φ) of 0.9 and a DMM fraction of 40% in the conditions studied. Kinetic analysis shows that NOx emission is dominated by NO, which primarily comes from fuel nitrogen of NH3. The addition of DMM at 40% significantly promotes the reactive radical pool (e.g., H, O, and OH) while the maintaining a high concentration of NO precursors (e.g., HNO, NO2, and N2O), which results in a high reaction rate of NO formation reaction and subsequently generates the highest NO emissions.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16196929&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16196929&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Hengsong Ji; Tianbei Luo; Liming Dai; Zhixia He; Qian Wang;Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4119218&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4119218&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu