- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type , Preprint 2020 AustriaPublisher:Cold Spring Harbor Laboratory Funded by:DFG | German Centre for Integra...DFG| German Centre for Integrative Biodiversity Research - iDivStefanie Hellweg; Kiyoshi Takahashi; Paul Leadley; HyeJin Kim; Shinichiro Fujimori; Shinichiro Fujimori; Andrew J. Hoskins; Elke Stehfest; Alexander Popp; Matthew V. Talluto; Aafke M. Schipper; Aafke M. Schipper; Cory Merow; Cory Merow; B.N.B. Strassburg; B.N.B. Strassburg; B.N.B. Strassburg; David Leclère; Tom Harwood; Carlo Rondinini; Richard Sharp; Akiko Hirata; George C. Hurtt; Simon Ferrier; Florian Wolf; Petr Havlik; Peter Anthoni; Louise Chini; Chris Ware; Daniele Baisero; Tetsuya Matsui; Wilfried Thuiller; Johan Meijer; Florian Humpenöder; Nicolas Titeux; Nicolas Titeux; Isabel M.D. Rosa; Isabel M.D. Rosa; Jelle P. Hilbers; Vanessa Haverd; Andy Purvis; Andy Purvis; Piero Visconti; Piero Visconti; Piero Visconti; Haruka Ohashi; D.P. van Vuuren; D.P. van Vuuren; Andreas Krause; Andreas Krause; Rob Alkemade; Rob Alkemade; Samantha L. L. Hill; Samantha L. L. Hill; Inês S. Martins; Justin A. Johnson; Tomoko Hasegawa; Tomoko Hasegawa; Walter Jetz; Josef Settele; Josef Settele; Jan H. Janse; Mike Harfoot; Almut Arneth; Rebecca Chaplin-Kramer; Benjamin Poulter; M. Di Marco; Carlos A. Guerra; Henrique M. Pereira; Henrique M. Pereira; Michael Obersteiner; F. Di Fulvio; Benjamin Quesada; Benjamin Quesada;AbstractDespite the scientific consensus on the extinction crisis and its anthropogenic origin, the quantification of historical trends and of future scenarios of biodiversity and ecosystem services has been limited, due to the lack of inter-model comparisons and harmonized scenarios. Here, we present a multi-model analysis to assess the impacts of land-use and climate change from 1900 to 2050. During the 20th century provisioning services increased, but biodiversity and regulating services decreased. Similar trade-offs are projected for the coming decades, but they may be attenuated in a sustainability scenario. Future biodiversity loss from land-use change is projected to keep up with historical rates or reduce slightly, whereas losses due to climate change are projected to increase greatly. Renewed efforts are needed by governments to meet the 2050 vision of the Convention on Biological Diversity.One Sentence SummaryDevelopment pathways exist that allow for a reduction of the rates of biodiversity loss from land-use change and improvement in regulating services but climate change poses an increasing challenge.
bioRxiv arrow_drop_down https://doi.org/10.1101/2020.0...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2020.04.14.031716&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert bioRxiv arrow_drop_down https://doi.org/10.1101/2020.0...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2020.04.14.031716&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 Germany, Netherlands, United Kingdom, Netherlands, Italy, Netherlands, Netherlands, France, Netherlands, Netherlands, United Kingdom, France, NetherlandsPublisher:American Association for the Advancement of Science (AAAS) Funded by:DFG | German Centre for Integra..., FCT | LA 1DFG| German Centre for Integrative Biodiversity Research - iDiv ,FCT| LA 1Henrique M. Pereira; Inês S. Martins; Isabel M. D. Rosa; HyeJin Kim; Paul Leadley; Alexander Popp; Detlef P. van Vuuren; George Hurtt; Luise Quoss; Almut Arneth; Daniele Baisero; Michel Bakkenes; Rebecca Chaplin-Kramer; Louise Chini; Moreno Di Marco; Simon Ferrier; Shinichiro Fujimori; Carlos A. Guerra; Michael Harfoot; Thomas D. Harwood; Tomoko Hasegawa; Vanessa Haverd; Petr Havlík; Stefanie Hellweg; Jelle P. Hilbers; Samantha L. L. Hill; Akiko Hirata; Andrew J. Hoskins; Florian Humpenöder; Jan H. Janse; Walter Jetz; Justin A. Johnson; Andreas Krause; David Leclère; Tetsuya Matsui; Johan R. Meijer; Cory Merow; Michael Obersteiner; Haruka Ohashi; Adriana De Palma; Benjamin Poulter; Andy Purvis; Benjamin Quesada; Carlo Rondinini; Aafke M. Schipper; Josef Settele; Richard Sharp; Elke Stehfest; Bernardo B. N. Strassburg; Kiyoshi Takahashi; Matthew V. Talluto; Wilfried Thuiller; Nicolas Titeux; Piero Visconti; Christopher Ware; Florian Wolf; Rob Alkemade;Based on an extensive model intercomparison, we assessed trends in biodiversity and ecosystem services from historical reconstructions and future scenarios of land-use and climate change. During the 20th century, biodiversity declined globally by 2 to 11%, as estimated by a range of indicators. Provisioning ecosystem services increased several fold, and regulating services decreased moderately. Going forward, policies toward sustainability have the potential to slow biodiversity loss resulting from land-use change and the demand for provisioning services while reducing or reversing declines in regulating services. However, negative impacts on biodiversity due to climate change appear poised to increase, particularly in the higher-emissions scenarios. Our assessment identifies remaining modeling uncertainties but also robustly shows that renewed policy efforts are needed to meet the goals of the Convention on Biological Diversity.
Science arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.adn3441&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 64 citations 64 popularity Average influence Top 10% impulse Top 1% Powered by BIP!
more_vert Science arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.adn3441&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 NetherlandsPublisher:Springer Science and Business Media LLC Funded by:NWO | Global environmental trad...NWO| Global environmental trade-offs of renewable energy technologiesKiane de Kleijne; Mark A. J. Huijbregts; Florian Knobloch; Rosalie van Zelm; Jelle P. Hilbers; Heleen de Coninck; Steef V. Hanssen;Large-scale introduction of green hydrogen is envisioned to play an important role in reaching net-zero greenhouse gas emissions. The production and transport of green hydrogen itself is, however, not free from emissions. Here we assess the life-cycle greenhouse gas emissions for 1,025 planned green hydrogen facilities, covering different electrolyser technologies and renewable electricity sources in 72 countries. We demonstrate that the current exclusion of life-cycle emissions of renewables, component manufacturing and hydrogen leakage in regulations gives a false impression that green hydrogen can easily meet emission thresholds. Evaluating different hydrogen production configurations, we find median production emissions in the most optimistic configuration of 2.9 kg CO2 equivalents (CO2e) kg H2−1 (0.8–4.6 kgCO2e kg H2−1, 95% confidence interval). Including 1,000 km transport via pipeline or liquid hydrogen shipping adds another 1.5 or 1.8 kgCO2e kg H2−1, respectively. We conclude that achieving low-emission green hydrogen at scale requires well-chosen production configurations with substantial emission reductions along the supply chain.
Nature Energy arrow_drop_down Nature EnergyArticle . 2024License: taverneData sources: Eindhoven University of Technology Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-024-01563-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Nature Energy arrow_drop_down Nature EnergyArticle . 2024License: taverneData sources: Eindhoven University of Technology Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-024-01563-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 Italy, Finland, Netherlands, Finland, Finland, AustriaPublisher:Wiley Yanjie Xu; Yanjie Xu; Yingying X. G. Wang; Yingying X. G. Wang; Piero Visconti; Piero Visconti; Luca Santini; Luca Santini; Luca Santini; Mark A. J. Huijbregts; Toph Allen; Kevin D. Matson; Willem F. de Boer; Zheng Y. X. Huang; Zheng Y. X. Huang; Herbert H. T. Prins; Jelle P. Hilbers;pmid: 34214237
pmc: PMC8518613
AbstractAs a source of emerging infectious diseases, wildlife assemblages (and related spatial patterns) must be quantitatively assessed to help identify high‐risk locations. Previous assessments have largely focussed on the distributions of individual species; however, transmission dynamics are expected to depend on assemblage composition. Moreover, disease–diversity relationships have mainly been studied in the context of species loss, but assemblage composition and disease risk (e.g. infection prevalence in wildlife assemblages) can change without extinction. Based on the predicted distributions and abundances of 4466 mammal species, we estimated global patterns of disease risk through the calculation of the community‐level basic reproductive ratio R0, an index of invasion potential, persistence, and maximum prevalence of a pathogen in a wildlife assemblage. For density‐dependent diseases, we found that, in addition to tropical areas which are commonly viewed as infectious disease hotspots, northern temperate latitudes included high‐risk areas. We also forecasted the effects of climate change and habitat loss from 2015 to 2035. Over this period, many local assemblages showed no net loss of species richness, but the assemblage composition (i.e. the mix of species and their abundances) changed considerably. Simultaneously, most areas experienced a decreased risk of density‐dependent diseases but an increased risk of frequency‐dependent diseases. We further explored the factors driving these changes in disease risk. Our results suggest that biodiversity and changes therein jointly influence disease risk. Understanding these changes and their drivers and ultimately identifying emerging infectious disease hotspots can help health officials prioritize resource distribution.
Archivio della ricer... arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2021License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaJyväskylä University Digital ArchiveArticle . 2021 . Peer-reviewedData sources: Jyväskylä University Digital ArchiveHELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiWageningen Staff PublicationsArticle . 2021License: CC BY NC NDData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15784&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Archivio della ricer... arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2021License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaJyväskylä University Digital ArchiveArticle . 2021 . Peer-reviewedData sources: Jyväskylä University Digital ArchiveHELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiWageningen Staff PublicationsArticle . 2021License: CC BY NC NDData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15784&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Springer Science and Business Media LLC Kiane de Kleijne; Mark A. J. Huijbregts; Florian Knobloch; Rosalie van Zelm; Jelle P. Hilbers; Heleen de Coninck; Steef V. Hanssen;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-024-01644-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu14 citations 14 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-024-01644-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Preprint 2020 AustriaPublisher:Cold Spring Harbor Laboratory Funded by:DFG | German Centre for Integra...DFG| German Centre for Integrative Biodiversity Research - iDivStefanie Hellweg; Kiyoshi Takahashi; Paul Leadley; HyeJin Kim; Shinichiro Fujimori; Shinichiro Fujimori; Andrew J. Hoskins; Elke Stehfest; Alexander Popp; Matthew V. Talluto; Aafke M. Schipper; Aafke M. Schipper; Cory Merow; Cory Merow; B.N.B. Strassburg; B.N.B. Strassburg; B.N.B. Strassburg; David Leclère; Tom Harwood; Carlo Rondinini; Richard Sharp; Akiko Hirata; George C. Hurtt; Simon Ferrier; Florian Wolf; Petr Havlik; Peter Anthoni; Louise Chini; Chris Ware; Daniele Baisero; Tetsuya Matsui; Wilfried Thuiller; Johan Meijer; Florian Humpenöder; Nicolas Titeux; Nicolas Titeux; Isabel M.D. Rosa; Isabel M.D. Rosa; Jelle P. Hilbers; Vanessa Haverd; Andy Purvis; Andy Purvis; Piero Visconti; Piero Visconti; Piero Visconti; Haruka Ohashi; D.P. van Vuuren; D.P. van Vuuren; Andreas Krause; Andreas Krause; Rob Alkemade; Rob Alkemade; Samantha L. L. Hill; Samantha L. L. Hill; Inês S. Martins; Justin A. Johnson; Tomoko Hasegawa; Tomoko Hasegawa; Walter Jetz; Josef Settele; Josef Settele; Jan H. Janse; Mike Harfoot; Almut Arneth; Rebecca Chaplin-Kramer; Benjamin Poulter; M. Di Marco; Carlos A. Guerra; Henrique M. Pereira; Henrique M. Pereira; Michael Obersteiner; F. Di Fulvio; Benjamin Quesada; Benjamin Quesada;AbstractDespite the scientific consensus on the extinction crisis and its anthropogenic origin, the quantification of historical trends and of future scenarios of biodiversity and ecosystem services has been limited, due to the lack of inter-model comparisons and harmonized scenarios. Here, we present a multi-model analysis to assess the impacts of land-use and climate change from 1900 to 2050. During the 20th century provisioning services increased, but biodiversity and regulating services decreased. Similar trade-offs are projected for the coming decades, but they may be attenuated in a sustainability scenario. Future biodiversity loss from land-use change is projected to keep up with historical rates or reduce slightly, whereas losses due to climate change are projected to increase greatly. Renewed efforts are needed by governments to meet the 2050 vision of the Convention on Biological Diversity.One Sentence SummaryDevelopment pathways exist that allow for a reduction of the rates of biodiversity loss from land-use change and improvement in regulating services but climate change poses an increasing challenge.
bioRxiv arrow_drop_down https://doi.org/10.1101/2020.0...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2020.04.14.031716&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert bioRxiv arrow_drop_down https://doi.org/10.1101/2020.0...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2020.04.14.031716&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 Germany, Netherlands, United Kingdom, Netherlands, Italy, Netherlands, Netherlands, France, Netherlands, Netherlands, United Kingdom, France, NetherlandsPublisher:American Association for the Advancement of Science (AAAS) Funded by:DFG | German Centre for Integra..., FCT | LA 1DFG| German Centre for Integrative Biodiversity Research - iDiv ,FCT| LA 1Henrique M. Pereira; Inês S. Martins; Isabel M. D. Rosa; HyeJin Kim; Paul Leadley; Alexander Popp; Detlef P. van Vuuren; George Hurtt; Luise Quoss; Almut Arneth; Daniele Baisero; Michel Bakkenes; Rebecca Chaplin-Kramer; Louise Chini; Moreno Di Marco; Simon Ferrier; Shinichiro Fujimori; Carlos A. Guerra; Michael Harfoot; Thomas D. Harwood; Tomoko Hasegawa; Vanessa Haverd; Petr Havlík; Stefanie Hellweg; Jelle P. Hilbers; Samantha L. L. Hill; Akiko Hirata; Andrew J. Hoskins; Florian Humpenöder; Jan H. Janse; Walter Jetz; Justin A. Johnson; Andreas Krause; David Leclère; Tetsuya Matsui; Johan R. Meijer; Cory Merow; Michael Obersteiner; Haruka Ohashi; Adriana De Palma; Benjamin Poulter; Andy Purvis; Benjamin Quesada; Carlo Rondinini; Aafke M. Schipper; Josef Settele; Richard Sharp; Elke Stehfest; Bernardo B. N. Strassburg; Kiyoshi Takahashi; Matthew V. Talluto; Wilfried Thuiller; Nicolas Titeux; Piero Visconti; Christopher Ware; Florian Wolf; Rob Alkemade;Based on an extensive model intercomparison, we assessed trends in biodiversity and ecosystem services from historical reconstructions and future scenarios of land-use and climate change. During the 20th century, biodiversity declined globally by 2 to 11%, as estimated by a range of indicators. Provisioning ecosystem services increased several fold, and regulating services decreased moderately. Going forward, policies toward sustainability have the potential to slow biodiversity loss resulting from land-use change and the demand for provisioning services while reducing or reversing declines in regulating services. However, negative impacts on biodiversity due to climate change appear poised to increase, particularly in the higher-emissions scenarios. Our assessment identifies remaining modeling uncertainties but also robustly shows that renewed policy efforts are needed to meet the goals of the Convention on Biological Diversity.
Science arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.adn3441&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 64 citations 64 popularity Average influence Top 10% impulse Top 1% Powered by BIP!
more_vert Science arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.adn3441&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 NetherlandsPublisher:Springer Science and Business Media LLC Funded by:NWO | Global environmental trad...NWO| Global environmental trade-offs of renewable energy technologiesKiane de Kleijne; Mark A. J. Huijbregts; Florian Knobloch; Rosalie van Zelm; Jelle P. Hilbers; Heleen de Coninck; Steef V. Hanssen;Large-scale introduction of green hydrogen is envisioned to play an important role in reaching net-zero greenhouse gas emissions. The production and transport of green hydrogen itself is, however, not free from emissions. Here we assess the life-cycle greenhouse gas emissions for 1,025 planned green hydrogen facilities, covering different electrolyser technologies and renewable electricity sources in 72 countries. We demonstrate that the current exclusion of life-cycle emissions of renewables, component manufacturing and hydrogen leakage in regulations gives a false impression that green hydrogen can easily meet emission thresholds. Evaluating different hydrogen production configurations, we find median production emissions in the most optimistic configuration of 2.9 kg CO2 equivalents (CO2e) kg H2−1 (0.8–4.6 kgCO2e kg H2−1, 95% confidence interval). Including 1,000 km transport via pipeline or liquid hydrogen shipping adds another 1.5 or 1.8 kgCO2e kg H2−1, respectively. We conclude that achieving low-emission green hydrogen at scale requires well-chosen production configurations with substantial emission reductions along the supply chain.
Nature Energy arrow_drop_down Nature EnergyArticle . 2024License: taverneData sources: Eindhoven University of Technology Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-024-01563-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Nature Energy arrow_drop_down Nature EnergyArticle . 2024License: taverneData sources: Eindhoven University of Technology Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-024-01563-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 Italy, Finland, Netherlands, Finland, Finland, AustriaPublisher:Wiley Yanjie Xu; Yanjie Xu; Yingying X. G. Wang; Yingying X. G. Wang; Piero Visconti; Piero Visconti; Luca Santini; Luca Santini; Luca Santini; Mark A. J. Huijbregts; Toph Allen; Kevin D. Matson; Willem F. de Boer; Zheng Y. X. Huang; Zheng Y. X. Huang; Herbert H. T. Prins; Jelle P. Hilbers;pmid: 34214237
pmc: PMC8518613
AbstractAs a source of emerging infectious diseases, wildlife assemblages (and related spatial patterns) must be quantitatively assessed to help identify high‐risk locations. Previous assessments have largely focussed on the distributions of individual species; however, transmission dynamics are expected to depend on assemblage composition. Moreover, disease–diversity relationships have mainly been studied in the context of species loss, but assemblage composition and disease risk (e.g. infection prevalence in wildlife assemblages) can change without extinction. Based on the predicted distributions and abundances of 4466 mammal species, we estimated global patterns of disease risk through the calculation of the community‐level basic reproductive ratio R0, an index of invasion potential, persistence, and maximum prevalence of a pathogen in a wildlife assemblage. For density‐dependent diseases, we found that, in addition to tropical areas which are commonly viewed as infectious disease hotspots, northern temperate latitudes included high‐risk areas. We also forecasted the effects of climate change and habitat loss from 2015 to 2035. Over this period, many local assemblages showed no net loss of species richness, but the assemblage composition (i.e. the mix of species and their abundances) changed considerably. Simultaneously, most areas experienced a decreased risk of density‐dependent diseases but an increased risk of frequency‐dependent diseases. We further explored the factors driving these changes in disease risk. Our results suggest that biodiversity and changes therein jointly influence disease risk. Understanding these changes and their drivers and ultimately identifying emerging infectious disease hotspots can help health officials prioritize resource distribution.
Archivio della ricer... arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2021License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaJyväskylä University Digital ArchiveArticle . 2021 . Peer-reviewedData sources: Jyväskylä University Digital ArchiveHELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiWageningen Staff PublicationsArticle . 2021License: CC BY NC NDData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15784&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Archivio della ricer... arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2021License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaJyväskylä University Digital ArchiveArticle . 2021 . Peer-reviewedData sources: Jyväskylä University Digital ArchiveHELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiWageningen Staff PublicationsArticle . 2021License: CC BY NC NDData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15784&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Springer Science and Business Media LLC Kiane de Kleijne; Mark A. J. Huijbregts; Florian Knobloch; Rosalie van Zelm; Jelle P. Hilbers; Heleen de Coninck; Steef V. Hanssen;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-024-01644-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu14 citations 14 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-024-01644-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu