- home
- Advanced Search
- Energy Research
- Energies
- Energy Research
- Energies
description Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:MDPI AG Authors: Rubén Martín; Jacobo Porteiro; J. Collazo; M.A. Gómez;doi: 10.3390/en11102513
A numerical model is proposed to perform CFD simulations of biomass boilers working in different operating conditions and analyse the results with low computational effort. The model is based on steady fluxes that represent the biomass thermal conversion stages through the conservation of mass, energy, and chemical species in the packed bed region. The conversion reactions are combined with heat and mass transfer submodels that release the combustion products to the gas flow. The gas flow is calculated through classical finite volume techniques to model the transport and reaction phenomena. The overall process is calculated in a steady state with a fast, efficient, and reasonably accurate method, which allows the results to converge without long computation times. The modelling is applied to the simulation of a 30 kW domestic boiler, and the results are compared with experimental tests with reasonably good results for such a simple model. The model is also applied to study the effect of air enrichment in boiler performance and gas emissions. The boiler operation is simulated using different oxygen concentrations that range from 21% to 90% in the feeding air, and parameters such as the heat transferred, fume temperatures, and emissions of CO, CO2, and NOx are analysed. The results show that with a moderated air enrichment of 40% oxygen, the energy performance can be increased by 8%, CO emissions are noticeably reduced, and NOx remains practically stable.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11102513&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11102513&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:MDPI AG Authors: Miguel A. Gómez; Roberto Comesaña; Miguel A. Álvarez Feijoo; Pablo Eguía;doi: 10.3390/en5041044
This paper presents a methodology to simulate the combustion of fixed beds of biomass particles using computational fluid dynamics (CFD) techniques. The models presented were used in the simulation of a domestic pellet boiler working under operating conditions and the model predictions were compared with measurements of heat transfer, temperature and species concentration. The same procedure was then used to simulate the same domestic boiler working with different values of water temperature and the influence of water temperature variations on the main variables was analyzed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en5041044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 19 citations 19 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
visibility 1visibility views 1 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en5041044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:MDPI AG Authors: Sergio Chapela; M.A. Gómez; José Luis Míguez; J. Collazo;doi: 10.3390/en12112162
This study analyzes a buffer tank simulated in both continuous operation mode and heating mode using CFD techniques. The analysis is focused in the thermal behavior of the tank, especially in parameters such as heat exchanged, heating time, and temperature distributions into the tank, in order to propose a better design. The results of the different simulations show that the tank heats water extremely slowly and extremely evenly when producing domestic hot water (DHW), which negatively affects the thermal stratification that is critical for rapidly reaching the DHW temperature. Therefore, the main problem of the tank is an inefficient heat exchange and a poor distribution of temperature. In order to overcome these operational limitations, a new design is proposed by installing a tube inside the tank that encloses the heating coil and sends hot water directly to the tank top region such that high-temperature DHW is rapidly provided, and thermal stratification is improved. Several simulations are performed with different open and closed configurations for the outlets of the inner tube. The different results show that the heating times significantly improve, and the time needed to reach the 45 °C set point temperature is reduced from 44 to 15 min. In addition, the simulations in which the opening and closing of the water outlets are regulated, the outlet DHW temperature is kept within 45–60 °C, which prevents overheating to unsafe use temperatures. Furthermore, the results of the simulation in continuous operation mode show a clear improvement of thermal stratification and an increase in the heat transmitted to the inside of the tank.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12112162&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12112162&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:MDPI AG Miguel A. Gómez; Miguel A. Álvarez Feijoo; Roberto Comesaña; Pablo Eguía; José L. Míguez; Jacobo Porteiro;doi: 10.3390/en5072093
In this work, a CFD-based model is proposed to analyse the effect of phase change materials (PCMs) on the thermal behaviour of the walls of a cubicle exposed to the environment and on the resistance of the walls to climate changes. The effect of several days of exposure to the environment was simulated using the proposed method. The results of the simulation are compared with experimental data to contrast the models. The effects of exposure on the same days were simulated for several walls of a cubicle made of a mixture of concrete and PCM. The results show that the PCM stabilizes temperatures within the cubicle and decreases energy consumption of refrigeration systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en5072093&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 21 citations 21 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en5072093&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:MDPI AG Authors: Natalia Cid; M. A. Gómez; Ana Ogando;doi: 10.3390/en10091254
Climate change and fossil fuel depletion foster interest in improving energy efficiency in buildings. There are different methods to achieve improved efficiency; one of them is the use of additives, such as phase change materials (PCMs). To prove this method’s effectiveness, a building’s behaviour should be monitored and analysed. This paper describes an acquisition system developed for monitoring buildings based on Supervisory Control and Data Acquisition (SCADA) and with a 1-wire bus network as the communication system. The system is empirically tested to prove that it works properly. With this purpose, two experimental cubicles are made of self-compacting concrete panels, one of which has a PCM as an additive to improve its energy storage properties. Both cubicles have the same dimensions and orientation, and they are separated by six feet to avoid shadows. The behaviour of the PCM was observed with the acquisition system, achieving results that illustrate the differences between the cubicles directly related to the PCM’s characteristics. Data collection devices included in the system were temperature sensors, some of which were embedded in the walls, as well as humidity sensors, heat flux density sensors, a weather station and energy counters. The analysis of the results shows agreement with previous studies of PCM addition; therefore, the acquisition system is suitable for this application.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10091254&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10091254&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Authors: Ana Larrañaga; Miguel A. Gómez; David Patiño; Jacobo Porteiro;doi: 10.3390/en14237920
Currently, the growing need for efficient refrigeration resources in the industrial sector has led to an increasing interest in finding technologies with a higher heat removal potential and better cooling performance. Along these lines, two-phase liquid cooling appears to be a very interesting solution, with the CLTPT (closed-loop two-phase thermosyphon) being one of the leading alternatives. Most works in the scientific literature study loop thermosyphons that work in flow boiling conditions in steady state. The present paper analyzes the transient thermal behavior of a pool boiling CLTPT gravitational channel as a passive cooling system using NOVEC 649 as working fluid. The evaporator works with two submerged cylindrical heaters that represent different heat sources located in different positions. The initial transient behavior and consequent instabilities of a laboratory-scale facility were studied, followed by a stability analysis for various power inputs. Parameters such as temperature and pressure along the experimental setup were monitored, and the effects of internal pressure and room conditions were also tested. The results show some instabilities in the process to start the flow circulation and a relative stability and quick adaptation to changes when circulation is reached. The temperature in the evaporator chamber was highly homogeneous during the whole process; however, the temperature changes in the riser and the loop top were delayed with respect to the evaporator zone. The analysis shows several pressure and temperature raises before the vapor flux reaches the condenser. When the flow circulation is established, the system becomes highly stable and thermally homogeneous, decreasing the thermal resistance when increasing the power input. The stability analysis also showed that, when the system reaches the steady state, the changes in the power input produce a transient increase in the pressure and temperature of the fluid, followed by a quick decrease of the previous steady state values. The heat transfer analysis in the evaporator shows a higher heat flux on the upper heater caused by the buoyancy flow that rises from the lower heater. It was also observed that the lower heater reaches the CHF point with a lower heat flux.
Energies arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14237920&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14237920&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:MDPI AG Authors: José Luis Míguez; Jacobo Porteiro; Raquel Pérez-Orozco; Miguel Ángel Gómez;doi: 10.3390/en11113153
In recent years, many CO2 capture technologies have been developed due to growing awareness about the importance of reducing greenhouse gas emissions. In this paper, publications from the last decade addressing this topic were analyzed, paying special attention to patent status to provide useful information for policymakers, industry, and businesses and to help determine the direction of future research. To show the most current patent activity related to carbon capture using membrane technology, we collected 2749 patent documents and 572 scientific papers. The results demonstrated that membranes are a developing field, with the number of applications growing at a steady pace, exceeding 100 applications per year in 2013 and 2014. North American assignees were the main contributors, with the greatest number of patents owned by companies such as UOP LLC, Kilimanjaro Energy Inc., and Membrane Technology and Research Inc., making up 26% of the total number of published patents. Asian countries (China, Japan, and Korea) and international offices were also important knowledge sources, providing 29% and 24% of the documents, respectively. Furthermore, this paper highlights 10 more valuable patents regarding their degree of innovation and citations, classified as Y02C 10/10 according to the Cooperative Patent Classification (CPC) criteria.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11113153&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11113153&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:MDPI AG Authors: Rubén Martín; Jacobo Porteiro; J. Collazo; M.A. Gómez;doi: 10.3390/en11102513
A numerical model is proposed to perform CFD simulations of biomass boilers working in different operating conditions and analyse the results with low computational effort. The model is based on steady fluxes that represent the biomass thermal conversion stages through the conservation of mass, energy, and chemical species in the packed bed region. The conversion reactions are combined with heat and mass transfer submodels that release the combustion products to the gas flow. The gas flow is calculated through classical finite volume techniques to model the transport and reaction phenomena. The overall process is calculated in a steady state with a fast, efficient, and reasonably accurate method, which allows the results to converge without long computation times. The modelling is applied to the simulation of a 30 kW domestic boiler, and the results are compared with experimental tests with reasonably good results for such a simple model. The model is also applied to study the effect of air enrichment in boiler performance and gas emissions. The boiler operation is simulated using different oxygen concentrations that range from 21% to 90% in the feeding air, and parameters such as the heat transferred, fume temperatures, and emissions of CO, CO2, and NOx are analysed. The results show that with a moderated air enrichment of 40% oxygen, the energy performance can be increased by 8%, CO emissions are noticeably reduced, and NOx remains practically stable.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11102513&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11102513&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:MDPI AG Authors: Miguel A. Gómez; Roberto Comesaña; Miguel A. Álvarez Feijoo; Pablo Eguía;doi: 10.3390/en5041044
This paper presents a methodology to simulate the combustion of fixed beds of biomass particles using computational fluid dynamics (CFD) techniques. The models presented were used in the simulation of a domestic pellet boiler working under operating conditions and the model predictions were compared with measurements of heat transfer, temperature and species concentration. The same procedure was then used to simulate the same domestic boiler working with different values of water temperature and the influence of water temperature variations on the main variables was analyzed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en5041044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 19 citations 19 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
visibility 1visibility views 1 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en5041044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:MDPI AG Authors: Sergio Chapela; M.A. Gómez; José Luis Míguez; J. Collazo;doi: 10.3390/en12112162
This study analyzes a buffer tank simulated in both continuous operation mode and heating mode using CFD techniques. The analysis is focused in the thermal behavior of the tank, especially in parameters such as heat exchanged, heating time, and temperature distributions into the tank, in order to propose a better design. The results of the different simulations show that the tank heats water extremely slowly and extremely evenly when producing domestic hot water (DHW), which negatively affects the thermal stratification that is critical for rapidly reaching the DHW temperature. Therefore, the main problem of the tank is an inefficient heat exchange and a poor distribution of temperature. In order to overcome these operational limitations, a new design is proposed by installing a tube inside the tank that encloses the heating coil and sends hot water directly to the tank top region such that high-temperature DHW is rapidly provided, and thermal stratification is improved. Several simulations are performed with different open and closed configurations for the outlets of the inner tube. The different results show that the heating times significantly improve, and the time needed to reach the 45 °C set point temperature is reduced from 44 to 15 min. In addition, the simulations in which the opening and closing of the water outlets are regulated, the outlet DHW temperature is kept within 45–60 °C, which prevents overheating to unsafe use temperatures. Furthermore, the results of the simulation in continuous operation mode show a clear improvement of thermal stratification and an increase in the heat transmitted to the inside of the tank.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12112162&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12112162&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:MDPI AG Miguel A. Gómez; Miguel A. Álvarez Feijoo; Roberto Comesaña; Pablo Eguía; José L. Míguez; Jacobo Porteiro;doi: 10.3390/en5072093
In this work, a CFD-based model is proposed to analyse the effect of phase change materials (PCMs) on the thermal behaviour of the walls of a cubicle exposed to the environment and on the resistance of the walls to climate changes. The effect of several days of exposure to the environment was simulated using the proposed method. The results of the simulation are compared with experimental data to contrast the models. The effects of exposure on the same days were simulated for several walls of a cubicle made of a mixture of concrete and PCM. The results show that the PCM stabilizes temperatures within the cubicle and decreases energy consumption of refrigeration systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en5072093&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 21 citations 21 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en5072093&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:MDPI AG Authors: Natalia Cid; M. A. Gómez; Ana Ogando;doi: 10.3390/en10091254
Climate change and fossil fuel depletion foster interest in improving energy efficiency in buildings. There are different methods to achieve improved efficiency; one of them is the use of additives, such as phase change materials (PCMs). To prove this method’s effectiveness, a building’s behaviour should be monitored and analysed. This paper describes an acquisition system developed for monitoring buildings based on Supervisory Control and Data Acquisition (SCADA) and with a 1-wire bus network as the communication system. The system is empirically tested to prove that it works properly. With this purpose, two experimental cubicles are made of self-compacting concrete panels, one of which has a PCM as an additive to improve its energy storage properties. Both cubicles have the same dimensions and orientation, and they are separated by six feet to avoid shadows. The behaviour of the PCM was observed with the acquisition system, achieving results that illustrate the differences between the cubicles directly related to the PCM’s characteristics. Data collection devices included in the system were temperature sensors, some of which were embedded in the walls, as well as humidity sensors, heat flux density sensors, a weather station and energy counters. The analysis of the results shows agreement with previous studies of PCM addition; therefore, the acquisition system is suitable for this application.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10091254&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10091254&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Authors: Ana Larrañaga; Miguel A. Gómez; David Patiño; Jacobo Porteiro;doi: 10.3390/en14237920
Currently, the growing need for efficient refrigeration resources in the industrial sector has led to an increasing interest in finding technologies with a higher heat removal potential and better cooling performance. Along these lines, two-phase liquid cooling appears to be a very interesting solution, with the CLTPT (closed-loop two-phase thermosyphon) being one of the leading alternatives. Most works in the scientific literature study loop thermosyphons that work in flow boiling conditions in steady state. The present paper analyzes the transient thermal behavior of a pool boiling CLTPT gravitational channel as a passive cooling system using NOVEC 649 as working fluid. The evaporator works with two submerged cylindrical heaters that represent different heat sources located in different positions. The initial transient behavior and consequent instabilities of a laboratory-scale facility were studied, followed by a stability analysis for various power inputs. Parameters such as temperature and pressure along the experimental setup were monitored, and the effects of internal pressure and room conditions were also tested. The results show some instabilities in the process to start the flow circulation and a relative stability and quick adaptation to changes when circulation is reached. The temperature in the evaporator chamber was highly homogeneous during the whole process; however, the temperature changes in the riser and the loop top were delayed with respect to the evaporator zone. The analysis shows several pressure and temperature raises before the vapor flux reaches the condenser. When the flow circulation is established, the system becomes highly stable and thermally homogeneous, decreasing the thermal resistance when increasing the power input. The stability analysis also showed that, when the system reaches the steady state, the changes in the power input produce a transient increase in the pressure and temperature of the fluid, followed by a quick decrease of the previous steady state values. The heat transfer analysis in the evaporator shows a higher heat flux on the upper heater caused by the buoyancy flow that rises from the lower heater. It was also observed that the lower heater reaches the CHF point with a lower heat flux.
Energies arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14237920&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14237920&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:MDPI AG Authors: José Luis Míguez; Jacobo Porteiro; Raquel Pérez-Orozco; Miguel Ángel Gómez;doi: 10.3390/en11113153
In recent years, many CO2 capture technologies have been developed due to growing awareness about the importance of reducing greenhouse gas emissions. In this paper, publications from the last decade addressing this topic were analyzed, paying special attention to patent status to provide useful information for policymakers, industry, and businesses and to help determine the direction of future research. To show the most current patent activity related to carbon capture using membrane technology, we collected 2749 patent documents and 572 scientific papers. The results demonstrated that membranes are a developing field, with the number of applications growing at a steady pace, exceeding 100 applications per year in 2013 and 2014. North American assignees were the main contributors, with the greatest number of patents owned by companies such as UOP LLC, Kilimanjaro Energy Inc., and Membrane Technology and Research Inc., making up 26% of the total number of published patents. Asian countries (China, Japan, and Korea) and international offices were also important knowledge sources, providing 29% and 24% of the documents, respectively. Furthermore, this paper highlights 10 more valuable patents regarding their degree of innovation and citations, classified as Y02C 10/10 according to the Cooperative Patent Classification (CPC) criteria.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11113153&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11113153&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu