Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down

Filters

  • Access
  • Type
  • Year range
  • Field of Science
  • SDG [Beta]
  • Country
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
5 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Eiman Tamah Al-Shammari;
    Eiman Tamah Al-Shammari
    ORCID
    Harvested from ORCID Public Data File

    Eiman Tamah Al-Shammari in OpenAIRE
    orcid Afram Keivani;
    Afram Keivani
    ORCID
    Harvested from ORCID Public Data File

    Afram Keivani in OpenAIRE
    Shahaboddin Shamshirband; Ali Mostafaeipour; +3 Authors

    District heating systems operation can be improved by control strategies. One of the options is the introduction of predictive control model. Predictive models of heat load can be applied to improve district heating system performances. In this article, short-term multistep-ahead predictive models of heat load for consumers connected to district heating system were developed using SVMs (Support Vector Machines) with FFA (Firefly Algorithm). Firefly algorithm was used to optimize SVM parameters. Seven SVM-FFA predictive models for different time horizons were developed. Obtained results of the SVM-FFA models were compared with GP (genetic programming), ANNs (artificial neural networks), and SVMs models with grid search algorithm. The experimental results show that the developed SVM-FFA models can be used with certainty for further work on formulating novel model predictive strategies in district heating systems.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy
    Article . 2016 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    110
    citations110
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy
      Article . 2016 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Eiman Tamah Al-Shammari;
    Eiman Tamah Al-Shammari
    ORCID
    Harvested from ORCID Public Data File

    Eiman Tamah Al-Shammari in OpenAIRE
    orcid Afram Keivani;
    Afram Keivani
    ORCID
    Harvested from ORCID Public Data File

    Afram Keivani in OpenAIRE
    Shahaboddin Shamshirband; Ali Mostafaeipour; +3 Authors

    District heating systems operation can be improved by control strategies. One of the options is the introduction of predictive control model. Predictive models of heat load can be applied to improve district heating system performances. In this article, short-term multistep-ahead predictive models of heat load for consumers connected to district heating system were developed using SVMs (Support Vector Machines) with FFA (Firefly Algorithm). Firefly algorithm was used to optimize SVM parameters. Seven SVM-FFA predictive models for different time horizons were developed. Obtained results of the SVM-FFA models were compared with GP (genetic programming), ANNs (artificial neural networks), and SVMs models with grid search algorithm. The experimental results show that the developed SVM-FFA models can be used with certainty for further work on formulating novel model predictive strategies in district heating systems.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy
    Article . 2016 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    110
    citations110
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy
      Article . 2016 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Sareh Naji;
    Sareh Naji
    ORCID
    Harvested from ORCID Public Data File

    Sareh Naji in OpenAIRE
    orcid bw Shahaboddin Shamshirband;
    Shahaboddin Shamshirband
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Shahaboddin Shamshirband in OpenAIRE
    Hossein Basser; orcid Afram Keivani;
    Afram Keivani
    ORCID
    Harvested from ORCID Public Data File

    Afram Keivani in OpenAIRE
    +3 Authors

    Abstract The huge demand for energy and construction materials has become an issue of great concern recently. The energy usage of buildings accounts for a large percentage of the total primary energy consumption. The total energy requirement of buildings is influenced by various factors, including environmental and climatic conditions, building envelope materials, insulation, etc. In this respect, estimating the operational energy of buildings is potentially helpful for architects and engineers in the early design and construction stages. In this study, the adaptive neuro-fuzzy inference system (ANFIS) is designed and adapted to estimate the energy consumption of buildings according to the main building envelope parameters, namely material thickness and insulation K-value. Up to 180 simulations using different material thickness values and insulation properties are carried out in EnergyPlus software in order to use for estimation. This soft computing methodology is implemented with Matlab/Simulink and the performance is investigated.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable and Sustainable Energy Reviews
    Article . 2016 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    55
    citations55
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable and Sustainable Energy Reviews
      Article . 2016 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Sareh Naji;
    Sareh Naji
    ORCID
    Harvested from ORCID Public Data File

    Sareh Naji in OpenAIRE
    orcid bw Shahaboddin Shamshirband;
    Shahaboddin Shamshirband
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Shahaboddin Shamshirband in OpenAIRE
    Hossein Basser; orcid Afram Keivani;
    Afram Keivani
    ORCID
    Harvested from ORCID Public Data File

    Afram Keivani in OpenAIRE
    +3 Authors

    Abstract The huge demand for energy and construction materials has become an issue of great concern recently. The energy usage of buildings accounts for a large percentage of the total primary energy consumption. The total energy requirement of buildings is influenced by various factors, including environmental and climatic conditions, building envelope materials, insulation, etc. In this respect, estimating the operational energy of buildings is potentially helpful for architects and engineers in the early design and construction stages. In this study, the adaptive neuro-fuzzy inference system (ANFIS) is designed and adapted to estimate the energy consumption of buildings according to the main building envelope parameters, namely material thickness and insulation K-value. Up to 180 simulations using different material thickness values and insulation properties are carried out in EnergyPlus software in order to use for estimation. This soft computing methodology is implemented with Matlab/Simulink and the performance is investigated.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable and Sustainable Energy Reviews
    Article . 2016 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    55
    citations55
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable and Sustainable Energy Reviews
      Article . 2016 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Dalibor Petković; Malrey Lee; orcid Afram Keivani;
    Afram Keivani
    ORCID
    Harvested from ORCID Public Data File

    Afram Keivani in OpenAIRE
    Kasra Mohammadi; +2 Authors

    Abstract The prime aim of this study is appraising the suitability of adaptive neuro-fuzzy inference framework (ANFIS) to compute the monthly wind power density. On this account, the extracted wind power from Weibull functions are utilized for training and testing the developed ANFIS model. The proficiency of the ANFIS model is certified by providing thorough statistical comparisons with artificial neural network (ANN) and genetic programming (GP) techniques. The computed wind power by all models are compared with those obtained using measured data. The study results clearly indicate that the proposed ANFIS model enjoys high capability and reliability to estimate wind power density so that it presents high superiority over the developed ANN and GP models. Based upon relative percentage error (RPE) values, all estimated wind power values via ANFIS model are within the acceptable range of −10% to 10%. Additionally, relative root mean square error (RRMSE) analysis shows that ANFIS model has an excellent performance for estimation of wind power density.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable and Sustainable Energy Reviews
    Article . 2016 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    14
    citations14
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable and Sustainable Energy Reviews
      Article . 2016 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Dalibor Petković; Malrey Lee; orcid Afram Keivani;
    Afram Keivani
    ORCID
    Harvested from ORCID Public Data File

    Afram Keivani in OpenAIRE
    Kasra Mohammadi; +2 Authors

    Abstract The prime aim of this study is appraising the suitability of adaptive neuro-fuzzy inference framework (ANFIS) to compute the monthly wind power density. On this account, the extracted wind power from Weibull functions are utilized for training and testing the developed ANFIS model. The proficiency of the ANFIS model is certified by providing thorough statistical comparisons with artificial neural network (ANN) and genetic programming (GP) techniques. The computed wind power by all models are compared with those obtained using measured data. The study results clearly indicate that the proposed ANFIS model enjoys high capability and reliability to estimate wind power density so that it presents high superiority over the developed ANN and GP models. Based upon relative percentage error (RPE) values, all estimated wind power values via ANFIS model are within the acceptable range of −10% to 10%. Additionally, relative root mean square error (RRMSE) analysis shows that ANFIS model has an excellent performance for estimation of wind power density.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable and Sustainable Energy Reviews
    Article . 2016 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    14
    citations14
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable and Sustainable Energy Reviews
      Article . 2016 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Milad Baghalzadeh Shishehgarkhaneh;
    Milad Baghalzadeh Shishehgarkhaneh
    ORCID
    Harvested from ORCID Public Data File

    Milad Baghalzadeh Shishehgarkhaneh in OpenAIRE
    orcid Sina Fard Moradinia;
    Sina Fard Moradinia
    ORCID
    Harvested from ORCID Public Data File

    Sina Fard Moradinia in OpenAIRE
    orcid Afram Keivani;
    Afram Keivani
    ORCID
    Harvested from ORCID Public Data File

    Afram Keivani in OpenAIRE
    orcid Mahdi Azizi;
    Mahdi Azizi
    ORCID
    Harvested from ORCID Public Data File

    Mahdi Azizi in OpenAIRE

    In recent years, dam construction has become more complex, requiring an effective project management method. Building Information Modeling (BIM) affects how construction projects are planned, designed, executed, and operated. Therefore, reducing execution time, cost, and risk and increasing quality are the primary goals of organizations. In this paper, first, the time and cost of the project were obtained via the BIM process. Subsequently, optimization between the components of the survival pyramid (time, cost, quality, and risk) in construction projects was completed in a case study of the Ghocham storage dam in five different modes, including contractor’s offers, BIM, actual, and two other modes based on the expert’s opinions. For this aim, five different meta-heuristic optimization algorithms were utilized, including two classical algorithms (Genetic and Simulated Annealing) and three novel algorithms (Black Widow Optimization, Battle Royale Optimization, and Black Hole Mechanics Optimization). In four cases, once each element of the survival pyramid was optimized separately, all four cases were traded off simultaneously. Moreover, the results were obtained from all the mentioned algorithms in five scenarios based on the number of function evaluation (Nfe), Standard Deviation (SD), Computation Time (CT), and Best Cost (BC). MATLAB software completed the coding related to the objective functions and optimization algorithms. The results indicated the appropriate performance of GA and BHMO algorithms in some scenarios. However, only the GAs should be considered effective algorithms in a dam construction projects’ time–cost–quality–risk (TCQR) tradeoff.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Smart Citiesarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Smart Cities
    Article . 2022 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Smart Cities
    Article . 2022
    Data sources: DOAJ
    addClaim
    10
    citations10
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Smart Citiesarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Smart Cities
      Article . 2022 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Smart Cities
      Article . 2022
      Data sources: DOAJ
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Milad Baghalzadeh Shishehgarkhaneh;
    Milad Baghalzadeh Shishehgarkhaneh
    ORCID
    Harvested from ORCID Public Data File

    Milad Baghalzadeh Shishehgarkhaneh in OpenAIRE
    orcid Sina Fard Moradinia;
    Sina Fard Moradinia
    ORCID
    Harvested from ORCID Public Data File

    Sina Fard Moradinia in OpenAIRE
    orcid Afram Keivani;
    Afram Keivani
    ORCID
    Harvested from ORCID Public Data File

    Afram Keivani in OpenAIRE
    orcid Mahdi Azizi;
    Mahdi Azizi
    ORCID
    Harvested from ORCID Public Data File

    Mahdi Azizi in OpenAIRE

    In recent years, dam construction has become more complex, requiring an effective project management method. Building Information Modeling (BIM) affects how construction projects are planned, designed, executed, and operated. Therefore, reducing execution time, cost, and risk and increasing quality are the primary goals of organizations. In this paper, first, the time and cost of the project were obtained via the BIM process. Subsequently, optimization between the components of the survival pyramid (time, cost, quality, and risk) in construction projects was completed in a case study of the Ghocham storage dam in five different modes, including contractor’s offers, BIM, actual, and two other modes based on the expert’s opinions. For this aim, five different meta-heuristic optimization algorithms were utilized, including two classical algorithms (Genetic and Simulated Annealing) and three novel algorithms (Black Widow Optimization, Battle Royale Optimization, and Black Hole Mechanics Optimization). In four cases, once each element of the survival pyramid was optimized separately, all four cases were traded off simultaneously. Moreover, the results were obtained from all the mentioned algorithms in five scenarios based on the number of function evaluation (Nfe), Standard Deviation (SD), Computation Time (CT), and Best Cost (BC). MATLAB software completed the coding related to the objective functions and optimization algorithms. The results indicated the appropriate performance of GA and BHMO algorithms in some scenarios. However, only the GAs should be considered effective algorithms in a dam construction projects’ time–cost–quality–risk (TCQR) tradeoff.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Smart Citiesarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Smart Cities
    Article . 2022 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Smart Cities
    Article . 2022
    Data sources: DOAJ
    addClaim
    10
    citations10
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Smart Citiesarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Smart Cities
      Article . 2022 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Smart Cities
      Article . 2022
      Data sources: DOAJ
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Sareh Naji;
    Sareh Naji
    ORCID
    Harvested from ORCID Public Data File

    Sareh Naji in OpenAIRE
    orcid Afram Keivani;
    Afram Keivani
    ORCID
    Harvested from ORCID Public Data File

    Afram Keivani in OpenAIRE
    orcid bw Shahaboddin Shamshirband;
    Shahaboddin Shamshirband
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Shahaboddin Shamshirband in OpenAIRE
    orcid U. Johnson Alengaram;
    U. Johnson Alengaram
    ORCID
    Harvested from ORCID Public Data File

    U. Johnson Alengaram in OpenAIRE
    +3 Authors

    Abstract The current energy requirements of buildings comprise a large percentage of the total energy consumed around the world. The demand of energy, as well as the construction materials used in buildings, are becoming increasingly problematic for the earth's sustainable future, and thus have led to alarming concern. The energy efficiency of buildings can be improved, and in order to do so, their operational energy usage should be estimated early in the design phase, so that buildings are as sustainable as possible. An early energy estimate can greatly help architects and engineers create sustainable structures. This study proposes a novel method to estimate building energy consumption based on the ELM (Extreme Learning Machine) method. This method is applied to building material thicknesses and their thermal insulation capability (K-value). For this purpose up to 180 simulations are carried out for different material thicknesses and insulation properties, using the EnergyPlus software application. The estimation and prediction obtained by the ELM model are compared with GP (genetic programming) and ANNs (artificial neural network) models for accuracy. The simulation results indicate that an improvement in predictive accuracy is achievable with the ELM approach in comparison with GP and ANN.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy
    Article . 2016 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    173
    citations173
    popularityTop 1%
    influenceTop 1%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy
      Article . 2016 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Sareh Naji;
    Sareh Naji
    ORCID
    Harvested from ORCID Public Data File

    Sareh Naji in OpenAIRE
    orcid Afram Keivani;
    Afram Keivani
    ORCID
    Harvested from ORCID Public Data File

    Afram Keivani in OpenAIRE
    orcid bw Shahaboddin Shamshirband;
    Shahaboddin Shamshirband
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Shahaboddin Shamshirband in OpenAIRE
    orcid U. Johnson Alengaram;
    U. Johnson Alengaram
    ORCID
    Harvested from ORCID Public Data File

    U. Johnson Alengaram in OpenAIRE
    +3 Authors

    Abstract The current energy requirements of buildings comprise a large percentage of the total energy consumed around the world. The demand of energy, as well as the construction materials used in buildings, are becoming increasingly problematic for the earth's sustainable future, and thus have led to alarming concern. The energy efficiency of buildings can be improved, and in order to do so, their operational energy usage should be estimated early in the design phase, so that buildings are as sustainable as possible. An early energy estimate can greatly help architects and engineers create sustainable structures. This study proposes a novel method to estimate building energy consumption based on the ELM (Extreme Learning Machine) method. This method is applied to building material thicknesses and their thermal insulation capability (K-value). For this purpose up to 180 simulations are carried out for different material thicknesses and insulation properties, using the EnergyPlus software application. The estimation and prediction obtained by the ELM model are compared with GP (genetic programming) and ANNs (artificial neural network) models for accuracy. The simulation results indicate that an improvement in predictive accuracy is achievable with the ELM approach in comparison with GP and ANN.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy
    Article . 2016 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    173
    citations173
    popularityTop 1%
    influenceTop 1%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy
      Article . 2016 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
Powered by OpenAIRE graph