- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2014 AustraliaPublisher:Elsevier BV Authors: Rahman, Md Mahmudur; Pourkhesalian, Ali Mohammad; Islam, Md Jahirul; Stevanovic, Svetlana; +5 AuthorsRahman, Md Mahmudur; Pourkhesalian, Ali Mohammad; Islam, Md Jahirul; Stevanovic, Svetlana; Pham, P.X.; Wang, Hao; Masri, Assaad; Brown, Richard; Ristovski, Zoran;Biodiesels produced from different feedstocks usually have wide variations in their fatty acid methyl ester (FAME) so that their physical properties and chemical composition are also different. The aim of this study is to investigate the effect of the physical properties and chemical composition of biodiesels on engine exhaust particle emissions. Alongside with neat diesel, four biodiesels with variations in carbon chain length and degree of unsaturation have been used at three blending ratios (B100, B50, B20) in a common rail engine. It is found that particle emission increased with the increase of carbon chain length. However, for similar carbon chain length, particle emissions from biodiesel having relatively high average unsaturation are found to be slightly less than that of low average unsaturation. Particle size is also found to be dependent on fuel type. The fuel or fuel mix responsible for higher particle mass (PM) and particle number (PN) emissions is also found responsible for larger particle median size. Particle emissions reduced consistently with fuel oxygen content regardless of the proportion of biodiesel in the blends, whereas it increased with fuel viscosity and surface tension only for higher diesel–biodiesel blend percentages (B100, B50). However, since fuel oxygen content increases with the decreasing carbon chain length, it is not clear which of these factors drives the lower particle emission. Overall, it is evident from the results presented here that chemical composition of biodiesel is more important than its physical properties in controlling exhaust particle emissions.
Fuel arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2014.05.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu88 citations 88 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Fuel arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2014.05.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 AustraliaPublisher:Elsevier BV Funded by:ARC | Optimising gaseous and pa...ARC| Optimising gaseous and particulate emissions from diesel enginesAli Zare; Meisam Babaie; Alireza Shirneshan; Puneet Verma; Liping Yang; Zoran D. Ristovski; Richard J. Brown; Timothy A. Bodisco; Svetlana Stevanovic;pmid: 37703733
The increasing share of using biofuels in vehicles (mandated by current regulations) leads to a reduction in particle size, resulting in increased particle toxicity. However, existing regulations disregarded small particles (sub-23 nm) that are more toxic. This impact is more significant during vehicle cold-start operation, which is an inevitable frequent daily driving norm where after-treatment systems prove ineffective. This study investigates the impact of biofuel and lubricating oil (as a source of nanoparticles) on the concentration, size distribution, median diameter of PN and PM, and their proportion at size ranges within accumulation and nucleation modes during four phases of cold-start and warm-up engine operation (diesel-trucks/busses application). The fuels used were 10% and 15% biofuel and with the addition of 5% lubricating oil to the fuel. Results show that as the engine warms up, PN for all the fuels increases and the size of particles decreases. PN concentration with a fully warmed-up engine was up to 132% higher than the cold-start. Sub-23 nm particles accounted for a significant proportion of PN (9%) but a smaller proportion of PM (0.1%). The fuel blend with 5% lubricating oil showed a significant increase in PN concentration and a decrease in particle size during cold-start.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhazmat.2023.132516&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhazmat.2023.132516&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 AustraliaPublisher:American Chemical Society (ACS) Surawski, Nicholas; Miljevic, Branka; Ayoko, Godwin; Elbagir, Sohair; Stevanovic, Svetlana; Fairfull-Smith, Kathryn; Bottle, Steven; Ristovski, Zoran;doi: 10.1021/es2018797
pmid: 22039912
This study undertook a physicochemical characterization of particle emissions from a single compression ignition engine operated at one test mode with 3 biodiesel fuels made from 3 different feedstocks (i.e., soy, tallow, and canola) at 4 different blend percentages (20%, 40%, 60%, and 80%) to gain insights into their particle-related health effects. Particle physical properties were inferred by measuring particle number size distributions both with and without heating within a thermodenuder (TD) and also by measuring particulate matter (PM) emission factors with an aerodynamic diameter less than 10 μm (PM(10)). The chemical properties of particulates were investigated by measuring particle and vapor phase Polycyclic Aromatic Hydrocarbons (PAHs) and also Reactive Oxygen Species (ROS) concentrations. The particle number size distributions showed strong dependency on feedstock and blend percentage with some fuel types showing increased particle number emissions, while others showed particle number reductions. In addition, the median particle diameter decreased as the blend percentage was increased. Particle and vapor phase PAHs were generally reduced with biodiesel, with the results being relatively independent of the blend percentage. The ROS concentrations increased monotonically with biodiesel blend percentage but did not exhibit strong feedstock variability. Furthermore, the ROS concentrations correlated quite well with the organic volume percentage of particles - a quantity which increased with increasing blend percentage. At higher blend percentages, the particle surface area was significantly reduced, but the particles were internally mixed with a greater organic volume percentage (containing ROS) which has implications for using surface area as a regulatory metric for diesel particulate matter (DPM) emissions.
Queensland Universit... arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2011Full-Text: https://eprints.qut.edu.au/47975/2/47975.pdfData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/es2018797&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 57 citations 57 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Queensland Universit... arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2011Full-Text: https://eprints.qut.edu.au/47975/2/47975.pdfData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/es2018797&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 AustraliaPublisher:American Chemical Society (ACS) Funded by:ARC | A Fundamental study into ..., ARC | Discovery Projects - Gran..., ARC | Discovery Projects - Gran... +2 projectsARC| A Fundamental study into the role of the organic fraction on the toxicity of combustion generated airborne particles ,ARC| Discovery Projects - Grant ID: DP130104904 ,ARC| Discovery Projects - Grant ID: DP110105535 ,ARC| Strongly Transient Processes in Turbulent Combustion ,ARC| Optimising gaseous and particulate emissions from diesel enginesAuthors: Pourkhesalian, Ali Mohammad; Stevanovic, Svetlana; Salimi, Farhad; Rahman, Mustafizur; +6 AuthorsPourkhesalian, Ali Mohammad; Stevanovic, Svetlana; Salimi, Farhad; Rahman, Mustafizur; Wang, Hao; Pham, P.X.; Bottle, Steven; Masri, Assaad; Brown, Richard; Ristovski, Zoran;doi: 10.1021/es503160m
pmid: 25322332
We have studied the effect of chemical composition of biodiesel fuel on the physical (volatility) and chemical (reactive oxygenated species concentration) properties of nano particles emitted from a modern common-rail diesel engine. Particle emissions from the combustion of four biodiesels with controlled chemical compositions and different varying unsaturation degrees and carbon-chain lengths, together with a commercial diesel, were tested and compared in terms of volatility of particles and the amount of reactive oxygenated species carried by particles. Different blends of biodiesel and petro diesel were tested at several engine loads and speeds. We have observed that more saturated fuels with shorter carbon chain lengths result in lower particle mass but produce particles that are more volatile and also have higher levels of Reactive Oxygen Species. This highlights the importance of taking into account metrics that are relevant from the health effects point of view when assessing emissions from new fuel types.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/es503160m&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/es503160m&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 AustraliaPublisher:Elsevier BV Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP180102632Mohammad Jafari; Puneet Verma; Timothy A. Bodisco; Ali Zare; Nicholas C. Surawski; Pietro Borghesani; Svetlana Stevanovic; Yi Guo; Joel Alroe; Chiemeriwo Osuagwu; Andelija Milic; Branka Miljevic; Zoran D. Ristovski; Richard J. Brown;Rising concerns over environmental and health issues of internal combustion engines, along with growing energy demands, have motivated investigation into alternative fuels derived from biomasses, such as biodiesel. Investigating engine and exhaust emission behaviour of such alternative fuels is vital in order to assess suitability for further utilisation. Since many parameters are relevant, an effective multivariate analysis tool is required to identify the underlying factors that affect the engine performance and exhaust emissions. This study utilises principal component analysis (PCA) to present a comprehensive correlation of various engine performance and emission parameters in a compression ignition engine using diesel, biodiesel and triacetin. The results show that structure-borne acoustic emission is strongly correlated with engine parameters. Brake specific NOx, primary particle diameter and fringe length increases by increasing the rate of pressure rise. Longer ignition delay and higher engine speeds can increase the nucleation particle emissions. Higher air-fuel equivalence ratio can increase the oxidative potential of the soot by increasing fringe distance and tortuosity. The availability of oxygen in the cylinder, from the intake air or fuel, can increase soot aggregate compactness. Fuel oxygen content reduces particle mass and particle number in the accumulation mode; however, they increase the proportion of oxygenated organic species. PCA results for particle chemical and physical characteristics show that soot particles reactivity increases with fuel oxygen content.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefQueensland University of Technology: QUT ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2019.112183&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu37 citations 37 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefQueensland University of Technology: QUT ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2019.112183&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 AustraliaPublisher:Elsevier BV Funded by:ARC | Optimising gaseous and pa...ARC| Optimising gaseous and particulate emissions from diesel enginesZare, A; Bodisco, T; Verma, P; Jafari, M; Babaie, M; Yang, L; Rahman, MM; Banks, APW; Ristovski, ZD; Brown, RJ; Stevanovic, S;The share of biofuels in the transportation sector is increasing. Previous studies revealed that the use of biofuels decreases the size of particles (which is linked to an increase in particulate toxicity). Current emission regulations do not consider small particles (sub-23 nm); however, there is a focus in future emissions regulations on small particles. These and the fact that within cold-start emissions are higher than during the warmed-up operation highlight the importance of a research that studies particulate matter emissions during cold-start. This research investigates the influence of biofuel on PN and PM concentration, size distribution, median diameter and cumulative share at different size ranges (including sub-23 nm and nucleation mode) during cold-start and warm-up operations using diesel and 10, 15 and 20% mixture (coconut biofuel blended with diesel). During cold-start, between 19 and 29% of total PN and less than 0.8% of total PM were related to the nucleation mode (sub-50 nm). Out of that, the share of sub-23 nm was up to 9% for PN while less than 0.02% for PM. By using biofuel, PN increased between 27 and 57% at cold-start; while, the increase was between 4 and 19% during hot-operation. The median diameter also decreased at cold-start and the nucleation mode particles (including sub-23 nm particles) significantly increased. This is an important observation because using biofuel can have a more adverse impact within cold-start period which is inevitable in most vehicles’ daily driving schedules.
CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2022License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)Sustainable Energy Technologies and AssessmentsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefQueensland University of Technology: QUT ePrintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2022.101953&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2022License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)Sustainable Energy Technologies and AssessmentsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefQueensland University of Technology: QUT ePrintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2022.101953&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 AustraliaPublisher:MDPI AG Puneet Verma; Svetlana Stevanovic; Ali Zare; Gaurav Dwivedi; Thuy Chu Van; Morgan Davidson; Thomas Rainey; Richard J. Brown; Zoran D. Ristovski;doi: 10.3390/en12101987
Rising pollution levels resulting from vehicular emissions and the depletion of petroleum-based fuels have left mankind in pursuit of alternatives. There are stringent regulations around the world to control the particulate matter (PM) emissions from internal combustion engines. To this end, researchers have been exploring different measures to reduce PM emissions such as using modern combustion techniques, after-treatment systems such as diesel particulate filter (DPF) and gasoline particulate filter (GPF), and alternative fuels. Alternative fuels such as biodiesel (derived from edible, nonedible, and waste resources), alcohol fuels (ethanol, n-butanol, and n-pentanol), and fuel additives have been investigated over the last decade. PM characterization and toxicity analysis is still growing as researchers are developing methodologies to reduce particle emissions using various approaches such as fuel modification and after-treatment devices. To address these aspects, this review paper studies the PM characteristics, health issues, PM physical and chemical properties, and the effect of alternative fuels such as biodiesel, alcohol fuels, and oxygenated additives on PM emissions from diesel engines. In addition, the correlation between physical and chemical properties of alternate fuels and the characteristics of PM emissions is explored.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/10/1987/pdfData sources: Multidisciplinary Digital Publishing InstituteQueensland University of Technology: QUT ePrintsArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12101987&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 63 citations 63 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/10/1987/pdfData sources: Multidisciplinary Digital Publishing InstituteQueensland University of Technology: QUT ePrintsArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12101987&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Elsevier BV S.M. Ashrafur Rahman; Yi Guo; Farhad M. Hossain; Richard J. C. Brown; Thuy Chu-Van; Thuy Chu-Van; Zoran Ristovski; Thomas J. Rainey; Nicholas C. Surawski; Svetlana Stevanovic; Chung-Shin Yuan;Abstract Metallic composition of diesel particulate matter, even though a relatively small proportion of total mass, can reveal important information regarding engine conditions, fuel/lubricating oil characteristics and for health impacts. In this study, a detailed investigation into the metallic elemental composition at different particle diameter sizes has been undertaken. A bivariate statistical analysis was performed in order to investigate the correlation between the metallic element, measured engine performance and engine emission variables. Major sources of metallic elements in the emitted particles are considered in this study, including the fuel and lubricating oil compositions, engine wear emissions and metal-containing dust in the ambient air. Metallic solid ultrafine-particles (Dp 100 nm). Calculated correlation matrices show a clear effect of engine load conditions and fuel S contents on particle number and mass emissions.
Queensland Universit... arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2019.116437&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Queensland Universit... arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2019.116437&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 AustraliaPublisher:MDPI AG Faisal Lodi; Ali Zare; Priyanka Arora; Svetlana Stevanovic; Mohammad Jafari; Zoran Ristovski; Richard J. Brown; Timothy Bodisco;doi: 10.3390/en13153931
A comprehensive analysis of combustion behaviour during cold, intermediately cold, warm and hot start stages of a diesel engine are presented. Experiments were conducted at 1500 rpm and 2000 rpm, and the discretisation of engine warm up into stages was facilitated by designing a custom drive cycle. Advanced injection timing, observed during the cold start period, led to longer ignition delay, shorter combustion duration, higher peak pressure and a higher peak apparent heat release rate (AHRR). The peak pressure was ~30% and 20% and the AHRR was ~2 to 5% and ±1% higher at 1500 rpm and 2000 rpm, respectively, during cold start, compared to the intermediate cold start. A retarded injection strategy during the intermediate cold start phase led to shorter ignition delay, longer combustion duration, lower peak pressure and lower peak AHRR. At 2000 rpm, an exceptional combustion behaviour led to a ~27% reduction in the AHRR at 25% load. Longer ignition delays and shorter combustion durations at 25% load were observed during the intermediately cold, warm and hot start segments. The mass fraction burned (MFB) was calculated using a single zone combustion model to analyse combustion parameters such as crank angle (CA) at 50% MFB, AHRR@CA50 and CA duration for 10–90% MFB.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/15/3931/pdfData sources: Multidisciplinary Digital Publishing InstituteQueensland University of Technology: QUT ePrintsArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13153931&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/15/3931/pdfData sources: Multidisciplinary Digital Publishing InstituteQueensland University of Technology: QUT ePrintsArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13153931&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 AustraliaPublisher:Elsevier BV Funded by:ARC | A Fundamental study into ...ARC| A Fundamental study into the role of the organic fraction on the toxicity of combustion generated airborne particlesHedayat, Farzaneh; Stevanovic, Svetlana; Milic, Andelija; Miljevic, Branka; Nabi, Nurun; Zare, Ali; Bottle, Steven; Brown, Richard; Ristovski, Zoran;pmid: 26748002
Oxidative potential (OP) is related to the organic phase, specifically to its oxygenated organic fraction (OOA). Furthermore, the oxygen content of fuel molecules has significant influence on particulate OP. Thus, this study aimed to explore the actual dependency of the OOA and ROS to the oxygen content of the fuel. In order to reach the goal, different biodiesels blends, with various ranges of oxygen content; have been employed. The compact time of flight aerosol mass spectrometer (c-ToF AMS) enabled better identification of OOA. ROS monitored by using two assays: DTT and BPEA-nit. Despite emitting lower mass, both assays agreed that oxygen content of a biodiesel is directly correlated with its OOA, and highly related to its OP. Hence, the more oxygen included in the considered biodiesels, the higher the OP of PM emissions. This highlights the importance of taking oxygen content into account while assessing emissions from new fuel types, which is relevant from a health effects standpoint.
Queensland Universit... arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2016License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2015.12.036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 59 citations 59 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Queensland Universit... arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2016License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2015.12.036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2014 AustraliaPublisher:Elsevier BV Authors: Rahman, Md Mahmudur; Pourkhesalian, Ali Mohammad; Islam, Md Jahirul; Stevanovic, Svetlana; +5 AuthorsRahman, Md Mahmudur; Pourkhesalian, Ali Mohammad; Islam, Md Jahirul; Stevanovic, Svetlana; Pham, P.X.; Wang, Hao; Masri, Assaad; Brown, Richard; Ristovski, Zoran;Biodiesels produced from different feedstocks usually have wide variations in their fatty acid methyl ester (FAME) so that their physical properties and chemical composition are also different. The aim of this study is to investigate the effect of the physical properties and chemical composition of biodiesels on engine exhaust particle emissions. Alongside with neat diesel, four biodiesels with variations in carbon chain length and degree of unsaturation have been used at three blending ratios (B100, B50, B20) in a common rail engine. It is found that particle emission increased with the increase of carbon chain length. However, for similar carbon chain length, particle emissions from biodiesel having relatively high average unsaturation are found to be slightly less than that of low average unsaturation. Particle size is also found to be dependent on fuel type. The fuel or fuel mix responsible for higher particle mass (PM) and particle number (PN) emissions is also found responsible for larger particle median size. Particle emissions reduced consistently with fuel oxygen content regardless of the proportion of biodiesel in the blends, whereas it increased with fuel viscosity and surface tension only for higher diesel–biodiesel blend percentages (B100, B50). However, since fuel oxygen content increases with the decreasing carbon chain length, it is not clear which of these factors drives the lower particle emission. Overall, it is evident from the results presented here that chemical composition of biodiesel is more important than its physical properties in controlling exhaust particle emissions.
Fuel arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2014.05.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu88 citations 88 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Fuel arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2014.05.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 AustraliaPublisher:Elsevier BV Funded by:ARC | Optimising gaseous and pa...ARC| Optimising gaseous and particulate emissions from diesel enginesAli Zare; Meisam Babaie; Alireza Shirneshan; Puneet Verma; Liping Yang; Zoran D. Ristovski; Richard J. Brown; Timothy A. Bodisco; Svetlana Stevanovic;pmid: 37703733
The increasing share of using biofuels in vehicles (mandated by current regulations) leads to a reduction in particle size, resulting in increased particle toxicity. However, existing regulations disregarded small particles (sub-23 nm) that are more toxic. This impact is more significant during vehicle cold-start operation, which is an inevitable frequent daily driving norm where after-treatment systems prove ineffective. This study investigates the impact of biofuel and lubricating oil (as a source of nanoparticles) on the concentration, size distribution, median diameter of PN and PM, and their proportion at size ranges within accumulation and nucleation modes during four phases of cold-start and warm-up engine operation (diesel-trucks/busses application). The fuels used were 10% and 15% biofuel and with the addition of 5% lubricating oil to the fuel. Results show that as the engine warms up, PN for all the fuels increases and the size of particles decreases. PN concentration with a fully warmed-up engine was up to 132% higher than the cold-start. Sub-23 nm particles accounted for a significant proportion of PN (9%) but a smaller proportion of PM (0.1%). The fuel blend with 5% lubricating oil showed a significant increase in PN concentration and a decrease in particle size during cold-start.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhazmat.2023.132516&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhazmat.2023.132516&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 AustraliaPublisher:American Chemical Society (ACS) Surawski, Nicholas; Miljevic, Branka; Ayoko, Godwin; Elbagir, Sohair; Stevanovic, Svetlana; Fairfull-Smith, Kathryn; Bottle, Steven; Ristovski, Zoran;doi: 10.1021/es2018797
pmid: 22039912
This study undertook a physicochemical characterization of particle emissions from a single compression ignition engine operated at one test mode with 3 biodiesel fuels made from 3 different feedstocks (i.e., soy, tallow, and canola) at 4 different blend percentages (20%, 40%, 60%, and 80%) to gain insights into their particle-related health effects. Particle physical properties were inferred by measuring particle number size distributions both with and without heating within a thermodenuder (TD) and also by measuring particulate matter (PM) emission factors with an aerodynamic diameter less than 10 μm (PM(10)). The chemical properties of particulates were investigated by measuring particle and vapor phase Polycyclic Aromatic Hydrocarbons (PAHs) and also Reactive Oxygen Species (ROS) concentrations. The particle number size distributions showed strong dependency on feedstock and blend percentage with some fuel types showing increased particle number emissions, while others showed particle number reductions. In addition, the median particle diameter decreased as the blend percentage was increased. Particle and vapor phase PAHs were generally reduced with biodiesel, with the results being relatively independent of the blend percentage. The ROS concentrations increased monotonically with biodiesel blend percentage but did not exhibit strong feedstock variability. Furthermore, the ROS concentrations correlated quite well with the organic volume percentage of particles - a quantity which increased with increasing blend percentage. At higher blend percentages, the particle surface area was significantly reduced, but the particles were internally mixed with a greater organic volume percentage (containing ROS) which has implications for using surface area as a regulatory metric for diesel particulate matter (DPM) emissions.
Queensland Universit... arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2011Full-Text: https://eprints.qut.edu.au/47975/2/47975.pdfData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/es2018797&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 57 citations 57 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Queensland Universit... arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2011Full-Text: https://eprints.qut.edu.au/47975/2/47975.pdfData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/es2018797&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 AustraliaPublisher:American Chemical Society (ACS) Funded by:ARC | A Fundamental study into ..., ARC | Discovery Projects - Gran..., ARC | Discovery Projects - Gran... +2 projectsARC| A Fundamental study into the role of the organic fraction on the toxicity of combustion generated airborne particles ,ARC| Discovery Projects - Grant ID: DP130104904 ,ARC| Discovery Projects - Grant ID: DP110105535 ,ARC| Strongly Transient Processes in Turbulent Combustion ,ARC| Optimising gaseous and particulate emissions from diesel enginesAuthors: Pourkhesalian, Ali Mohammad; Stevanovic, Svetlana; Salimi, Farhad; Rahman, Mustafizur; +6 AuthorsPourkhesalian, Ali Mohammad; Stevanovic, Svetlana; Salimi, Farhad; Rahman, Mustafizur; Wang, Hao; Pham, P.X.; Bottle, Steven; Masri, Assaad; Brown, Richard; Ristovski, Zoran;doi: 10.1021/es503160m
pmid: 25322332
We have studied the effect of chemical composition of biodiesel fuel on the physical (volatility) and chemical (reactive oxygenated species concentration) properties of nano particles emitted from a modern common-rail diesel engine. Particle emissions from the combustion of four biodiesels with controlled chemical compositions and different varying unsaturation degrees and carbon-chain lengths, together with a commercial diesel, were tested and compared in terms of volatility of particles and the amount of reactive oxygenated species carried by particles. Different blends of biodiesel and petro diesel were tested at several engine loads and speeds. We have observed that more saturated fuels with shorter carbon chain lengths result in lower particle mass but produce particles that are more volatile and also have higher levels of Reactive Oxygen Species. This highlights the importance of taking into account metrics that are relevant from the health effects point of view when assessing emissions from new fuel types.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/es503160m&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/es503160m&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 AustraliaPublisher:Elsevier BV Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP180102632Mohammad Jafari; Puneet Verma; Timothy A. Bodisco; Ali Zare; Nicholas C. Surawski; Pietro Borghesani; Svetlana Stevanovic; Yi Guo; Joel Alroe; Chiemeriwo Osuagwu; Andelija Milic; Branka Miljevic; Zoran D. Ristovski; Richard J. Brown;Rising concerns over environmental and health issues of internal combustion engines, along with growing energy demands, have motivated investigation into alternative fuels derived from biomasses, such as biodiesel. Investigating engine and exhaust emission behaviour of such alternative fuels is vital in order to assess suitability for further utilisation. Since many parameters are relevant, an effective multivariate analysis tool is required to identify the underlying factors that affect the engine performance and exhaust emissions. This study utilises principal component analysis (PCA) to present a comprehensive correlation of various engine performance and emission parameters in a compression ignition engine using diesel, biodiesel and triacetin. The results show that structure-borne acoustic emission is strongly correlated with engine parameters. Brake specific NOx, primary particle diameter and fringe length increases by increasing the rate of pressure rise. Longer ignition delay and higher engine speeds can increase the nucleation particle emissions. Higher air-fuel equivalence ratio can increase the oxidative potential of the soot by increasing fringe distance and tortuosity. The availability of oxygen in the cylinder, from the intake air or fuel, can increase soot aggregate compactness. Fuel oxygen content reduces particle mass and particle number in the accumulation mode; however, they increase the proportion of oxygenated organic species. PCA results for particle chemical and physical characteristics show that soot particles reactivity increases with fuel oxygen content.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefQueensland University of Technology: QUT ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2019.112183&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu37 citations 37 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefQueensland University of Technology: QUT ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2019.112183&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 AustraliaPublisher:Elsevier BV Funded by:ARC | Optimising gaseous and pa...ARC| Optimising gaseous and particulate emissions from diesel enginesZare, A; Bodisco, T; Verma, P; Jafari, M; Babaie, M; Yang, L; Rahman, MM; Banks, APW; Ristovski, ZD; Brown, RJ; Stevanovic, S;The share of biofuels in the transportation sector is increasing. Previous studies revealed that the use of biofuels decreases the size of particles (which is linked to an increase in particulate toxicity). Current emission regulations do not consider small particles (sub-23 nm); however, there is a focus in future emissions regulations on small particles. These and the fact that within cold-start emissions are higher than during the warmed-up operation highlight the importance of a research that studies particulate matter emissions during cold-start. This research investigates the influence of biofuel on PN and PM concentration, size distribution, median diameter and cumulative share at different size ranges (including sub-23 nm and nucleation mode) during cold-start and warm-up operations using diesel and 10, 15 and 20% mixture (coconut biofuel blended with diesel). During cold-start, between 19 and 29% of total PN and less than 0.8% of total PM were related to the nucleation mode (sub-50 nm). Out of that, the share of sub-23 nm was up to 9% for PN while less than 0.02% for PM. By using biofuel, PN increased between 27 and 57% at cold-start; while, the increase was between 4 and 19% during hot-operation. The median diameter also decreased at cold-start and the nucleation mode particles (including sub-23 nm particles) significantly increased. This is an important observation because using biofuel can have a more adverse impact within cold-start period which is inevitable in most vehicles’ daily driving schedules.
CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2022License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)Sustainable Energy Technologies and AssessmentsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefQueensland University of Technology: QUT ePrintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2022.101953&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2022License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)Sustainable Energy Technologies and AssessmentsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefQueensland University of Technology: QUT ePrintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2022.101953&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 AustraliaPublisher:MDPI AG Puneet Verma; Svetlana Stevanovic; Ali Zare; Gaurav Dwivedi; Thuy Chu Van; Morgan Davidson; Thomas Rainey; Richard J. Brown; Zoran D. Ristovski;doi: 10.3390/en12101987
Rising pollution levels resulting from vehicular emissions and the depletion of petroleum-based fuels have left mankind in pursuit of alternatives. There are stringent regulations around the world to control the particulate matter (PM) emissions from internal combustion engines. To this end, researchers have been exploring different measures to reduce PM emissions such as using modern combustion techniques, after-treatment systems such as diesel particulate filter (DPF) and gasoline particulate filter (GPF), and alternative fuels. Alternative fuels such as biodiesel (derived from edible, nonedible, and waste resources), alcohol fuels (ethanol, n-butanol, and n-pentanol), and fuel additives have been investigated over the last decade. PM characterization and toxicity analysis is still growing as researchers are developing methodologies to reduce particle emissions using various approaches such as fuel modification and after-treatment devices. To address these aspects, this review paper studies the PM characteristics, health issues, PM physical and chemical properties, and the effect of alternative fuels such as biodiesel, alcohol fuels, and oxygenated additives on PM emissions from diesel engines. In addition, the correlation between physical and chemical properties of alternate fuels and the characteristics of PM emissions is explored.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/10/1987/pdfData sources: Multidisciplinary Digital Publishing InstituteQueensland University of Technology: QUT ePrintsArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12101987&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 63 citations 63 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/10/1987/pdfData sources: Multidisciplinary Digital Publishing InstituteQueensland University of Technology: QUT ePrintsArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12101987&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Elsevier BV S.M. Ashrafur Rahman; Yi Guo; Farhad M. Hossain; Richard J. C. Brown; Thuy Chu-Van; Thuy Chu-Van; Zoran Ristovski; Thomas J. Rainey; Nicholas C. Surawski; Svetlana Stevanovic; Chung-Shin Yuan;Abstract Metallic composition of diesel particulate matter, even though a relatively small proportion of total mass, can reveal important information regarding engine conditions, fuel/lubricating oil characteristics and for health impacts. In this study, a detailed investigation into the metallic elemental composition at different particle diameter sizes has been undertaken. A bivariate statistical analysis was performed in order to investigate the correlation between the metallic element, measured engine performance and engine emission variables. Major sources of metallic elements in the emitted particles are considered in this study, including the fuel and lubricating oil compositions, engine wear emissions and metal-containing dust in the ambient air. Metallic solid ultrafine-particles (Dp 100 nm). Calculated correlation matrices show a clear effect of engine load conditions and fuel S contents on particle number and mass emissions.
Queensland Universit... arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2019.116437&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Queensland Universit... arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2019.116437&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 AustraliaPublisher:MDPI AG Faisal Lodi; Ali Zare; Priyanka Arora; Svetlana Stevanovic; Mohammad Jafari; Zoran Ristovski; Richard J. Brown; Timothy Bodisco;doi: 10.3390/en13153931
A comprehensive analysis of combustion behaviour during cold, intermediately cold, warm and hot start stages of a diesel engine are presented. Experiments were conducted at 1500 rpm and 2000 rpm, and the discretisation of engine warm up into stages was facilitated by designing a custom drive cycle. Advanced injection timing, observed during the cold start period, led to longer ignition delay, shorter combustion duration, higher peak pressure and a higher peak apparent heat release rate (AHRR). The peak pressure was ~30% and 20% and the AHRR was ~2 to 5% and ±1% higher at 1500 rpm and 2000 rpm, respectively, during cold start, compared to the intermediate cold start. A retarded injection strategy during the intermediate cold start phase led to shorter ignition delay, longer combustion duration, lower peak pressure and lower peak AHRR. At 2000 rpm, an exceptional combustion behaviour led to a ~27% reduction in the AHRR at 25% load. Longer ignition delays and shorter combustion durations at 25% load were observed during the intermediately cold, warm and hot start segments. The mass fraction burned (MFB) was calculated using a single zone combustion model to analyse combustion parameters such as crank angle (CA) at 50% MFB, AHRR@CA50 and CA duration for 10–90% MFB.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/15/3931/pdfData sources: Multidisciplinary Digital Publishing InstituteQueensland University of Technology: QUT ePrintsArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13153931&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/15/3931/pdfData sources: Multidisciplinary Digital Publishing InstituteQueensland University of Technology: QUT ePrintsArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13153931&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 AustraliaPublisher:Elsevier BV Funded by:ARC | A Fundamental study into ...ARC| A Fundamental study into the role of the organic fraction on the toxicity of combustion generated airborne particlesHedayat, Farzaneh; Stevanovic, Svetlana; Milic, Andelija; Miljevic, Branka; Nabi, Nurun; Zare, Ali; Bottle, Steven; Brown, Richard; Ristovski, Zoran;pmid: 26748002
Oxidative potential (OP) is related to the organic phase, specifically to its oxygenated organic fraction (OOA). Furthermore, the oxygen content of fuel molecules has significant influence on particulate OP. Thus, this study aimed to explore the actual dependency of the OOA and ROS to the oxygen content of the fuel. In order to reach the goal, different biodiesels blends, with various ranges of oxygen content; have been employed. The compact time of flight aerosol mass spectrometer (c-ToF AMS) enabled better identification of OOA. ROS monitored by using two assays: DTT and BPEA-nit. Despite emitting lower mass, both assays agreed that oxygen content of a biodiesel is directly correlated with its OOA, and highly related to its OP. Hence, the more oxygen included in the considered biodiesels, the higher the OP of PM emissions. This highlights the importance of taking oxygen content into account while assessing emissions from new fuel types, which is relevant from a health effects standpoint.
Queensland Universit... arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2016License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2015.12.036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 59 citations 59 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Queensland Universit... arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2016License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2015.12.036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu