- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017 DenmarkPublisher:Springer Science and Business Media LLC Funded by:RSF | Zonal differentiation of ...RSF| Zonal differentiation of soil biota ecosystem services in forests after firesTeis Nørgaard Mikkelsen; Mette Vestergård; Kim Pilegaard; Slavka Georgieva; Slavka Georgieva; Merian Skouw Haugwitz; Klaus Steenberg Larsen; Per Ambus; Marie Dam; Anders Priemé; Andrey S. Zaitsev; M.F. Arndal; Martin Holmstrup; Anders Michelsen; Inger Kappel Schmidt; Christian Damgaard; Lasse Bergmark; Soren Christensen; Claus Beier; Louise C. Andresen;AbstractIn a dry heathland ecosystem we manipulated temperature (warming), precipitation (drought) and atmospheric concentration of CO2in a full-factorial experiment in order to investigate changes in below-ground biodiversity as a result of future climate change. We investigated the responses in community diversity of nematodes, enchytraeids, collembolans and oribatid mites at two and eight years of manipulations. We used a structural equation modelling (SEM) approach analyzing the three manipulations, soil moisture and temperature, and seven soil biological and chemical variables. The analysis revealed a persistent and positive effect of elevated CO2on litter C:N ratio. After two years of treatment, the fungi to bacteria ratio was increased by warming, and the diversities within oribatid mites, collembolans and nematode groups were all affected by elevated CO2mediated through increased litter C:N ratio. After eight years of treatment, however, the CO2-increased litter C:N ratio did not influence the diversity in any of the four fauna groups. The number of significant correlations between treatments, food source quality, and soil biota diversities was reduced from six to three after two and eight years, respectively. These results suggest a remarkable resilience within the soil biota against global climate change treatments in the long term.
Scientific Reports arrow_drop_down Online Research Database In TechnologyArticle . 2017Data sources: Online Research Database In TechnologyCopenhagen University Research Information SystemArticle . 2017Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep41388&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Scientific Reports arrow_drop_down Online Research Database In TechnologyArticle . 2017Data sources: Online Research Database In TechnologyCopenhagen University Research Information SystemArticle . 2017Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep41388&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 DenmarkPublisher:Wiley Funded by:NSERCNSERCKathrin Rousk; Jefferson Degboe; Anders Michelsen; Robert Bradley; Jean‐Philippe Bellenger;doi: 10.1111/nph.14331
pmid: 27883187
Summary Biological nitrogen fixation (BNF) performed by moss‐associated cyanobacteria is one of the main sources of new nitrogen (N) input in pristine, high‐latitude ecosystems. Yet, the nutrients that limit BNF remain elusive. Here, we tested whether this important ecosystem function is limited by the availability of molybdenum (Mo), phosphorus (P), or both. BNF in dominant mosses was measured with the acetylene reduction assay (ARA) at different time intervals following Mo and P additions, in both laboratory microcosms with mosses from a boreal spruce forest and field plots in subarctic tundra. We further used a 15N2 tracer technique to assess the ARA to N2 fixation conversion ratios at our subarctic site. BNF was up to four‐fold higher shortly after the addition of Mo, in both the laboratory and field experiments. A similar positive response to Mo was found in moss colonizing cyanobacterial biomass. As the growing season progressed, nitrogenase activity became progressively more P limited. The ARA : 15N2 ratios increased with increasing Mo additions. These findings show that N2 fixation activity as well as cyanobacterial biomass in dominant feather mosses from boreal forests and subarctic tundra are limited by Mo availability.
New Phytologist arrow_drop_down New PhytologistArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.14331&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu82 citations 82 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert New Phytologist arrow_drop_down New PhytologistArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.14331&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Denmark, SpainPublisher:Wiley Diego Salazar‐Tortosa; Jorge Castro; Pedro Villar‐Salvador; Benjamín Viñegla; Luis Matías; Anders Michelsen; Rafael Rubio de Casas; José I. Querejeta;AbstractClimatic dryness imposes limitations on vascular plant growth by reducing stomatal conductance, thereby decreasing CO2 uptake and transpiration. Given that transpiration‐driven water flow is required for nutrient uptake, climatic stress‐induced nutrient deficit could be a key mechanism for decreased plant performance under prolonged drought. We propose the existence of an “isohydric trap,” a dryness‐induced detrimental feedback leading to nutrient deficit and stoichiometry imbalance in strict isohydric species. We tested this framework in a common garden experiment with 840 individuals of four ecologically contrasting European pines (Pinus halepensis, P. nigra, P. sylvestris, and P. uncinata) at a site with high temperature and low soil water availability. We measured growth, survival, photochemical efficiency, stem water potentials, leaf isotopic composition (δ13C, δ18O), and nutrient concentrations (C, N, P, K, Zn, Cu). After 2 years, the Mediterranean species Pinus halepensis showed lower δ18O and higher δ13C values than the other species, indicating higher time‐integrated transpiration and water‐use efficiency (WUE), along with lower predawn and midday water potentials, higher photochemical efficiency, higher leaf P, and K concentrations, more balanced N:P and N:K ratios, and much greater dry‐biomass (up to 63‐fold) and survival (100%). Conversely, the more mesic mountain pine species showed higher leaf δ18O and lower δ13C, indicating lower transpiration and WUE, higher water potentials, severe P and K deficiencies and N:P and N:K imbalances, and poorer photochemical efficiency, growth, and survival. These results support our hypothesis that vascular plant species with tight stomatal regulation of transpiration can become trapped in a feedback cycle of nutrient deficit and imbalance that exacerbates the detrimental impacts of climatic dryness on performance. This overlooked feedback mechanism may hamper the ability of isohydric species to respond to ongoing global change, by aggravating the interactive impacts of stoichiometric imbalance and water stress caused by anthropogenic N deposition and hotter droughts, respectively.
Global Change Biolog... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTABiblioteca Digital de la Universidad de AlcaláArticle . 2018License: CC BY NC NDData sources: Biblioteca Digital de la Universidad de AlcaláGlobal Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14311&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 79 citations 79 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 154visibility views 154 download downloads 160 Powered bymore_vert Global Change Biolog... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTABiblioteca Digital de la Universidad de AlcaláArticle . 2018License: CC BY NC NDData sources: Biblioteca Digital de la Universidad de AlcaláGlobal Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14311&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017 Finland, DenmarkPublisher:Springer Science and Business Media LLC Funded by:EC | INTERACTEC| INTERACTSchmidt, Niels M.; Hardwick, Bess; Gilg, Olivier; Høye, Toke Thomas; Krogh, Paul Henning; Meltofte, Hans; Michelsen, Anders; Mosbacher, Jesper B.; Raundrup, Katrine; Reneerkens, Jeroen; Stewart, Lærke; Wirta, Helena; Roslin, Tomas;pmid: 28116681
pmc: PMC5258656
How species interact modulate their dynamics, their response to environmental change, and ultimately the functioning and stability of entire communities. Work conducted at Zackenberg, Northeast Greenland, has changed our view on how networks of arctic biotic interactions are structured, how they vary in time, and how they are changing with current environmental change: firstly, the high arctic interaction webs are much more complex than previously envisaged, and with a structure mainly dictated by its arthropod component. Secondly, the dynamics of species within these webs reflect changes in environmental conditions. Thirdly, biotic interactions within a trophic level may affect other trophic levels, in some cases ultimately affecting land-atmosphere feedbacks. Finally, differential responses to environmental change may decouple interacting species. These insights form Zackenberg emphasize that the combination of long-term, ecosystem-based monitoring, and targeted research projects offers the most fruitful basis for understanding and predicting the future of arctic ecosystems.
AMBIO arrow_drop_down Copenhagen University Research Information SystemArticle . 2017Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2017 . Peer-reviewedData sources: HELDA - Digital Repository of the University of Helsinkiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13280-016-0862-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 65 citations 65 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert AMBIO arrow_drop_down Copenhagen University Research Information SystemArticle . 2017Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2017 . Peer-reviewedData sources: HELDA - Digital Repository of the University of Helsinkiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13280-016-0862-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 DenmarkPublisher:Wiley Funded by:EC | HIVOL, EC | TUVOLUEC| HIVOL ,EC| TUVOLUAuthors: Rieksta, Jolanta; Li, Tao; Michelsen, Anders; Rinnan, Riikka;AbstractClimate change increases the insect abundance, especially in Arctic ecosystems. Insect herbivory also significantly increases plant emissions of volatile organic compounds (VOCs), which are highly reactive in the atmosphere and play a crucial role in atmospheric chemistry and physics. However, it is unclear how the effects of insect herbivory on VOC emissions interact with climatic changes, such as warming and increased cloudiness. We assessed how experimental manipulations of temperature and light availability in subarctic tundra, that had been maintained for 30 years at the time of the measurements, affect the VOC emissions from a widespread dwarf birch (Betula nana) when subjected to herbivory by local geometrid moth larvae, the autumnal moth (Epirrita autumnata) and the winter moth (Operophtera brumata). Warming and insect herbivory on B. nana stimulated VOC emission rates and altered the VOC blend. The herbivory‐induced increase in sesquiterpene and homoterpene emissions were climate‐treatment‐dependent. Many herbivory‐associated VOCs were more strongly induced in the shading treatment than in other treatments. We showed generally enhanced tundra VOC emissions upon insect herbivory and synergistic effects on the emissions of some VOC groups in a changing climate, which can have positive feedbacks on cloud formation. Furthermore, the acclimation of plants to long‐term climate treatments affects VOC emissions and strongly interacts with plant responses to herbivory. Such acclimation complicates predictions of how climate change, together with interacting biotic stresses, affects VOC emissions in the high latitudes.
Global Change Biolog... arrow_drop_down Copenhagen University Research Information SystemArticle . 2021Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15773&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Copenhagen University Research Information SystemArticle . 2021Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15773&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 Italy, Denmark, Norway, Sweden, Norway, NetherlandsPublisher:Wiley Funded by:NSERC, RCN | Effects of herbivory and ..., RCN | The role of Functional gr... +3 projectsNSERC ,RCN| Effects of herbivory and warming on tundra plant communities ,RCN| The role of Functional group interactions in mediating climate change impacts on the Carbon dynamics and Biodiversity of alpine ecosystems ,UKRI| Climate as a driver of shrub expansion and tundra greening ,NSF| Collaborative Research: Using the ITEX-AON network to document and understand terrestrial ecosystem change in the Arctic ,NSF| Collaborative Research: Climate-induced sea-level rise, warming and herbivory effects on vegetation and greenhouse gas emission in coastal western AlaskaSarah Schwieger; Ellen Dorrepaal; Matteo Petit Bon; Vigdis Vandvik; Elizabeth le Roux; Maria Strack; Yan Yang; Susanna Venn; Johan van den Hoogen; Fernando Valiño; Haydn J. D. Thomas; Mariska te Beest; Satoshi Suzuki; Alessandro Petraglia; Isla H. Myers‐Smith; Tariq Muhammad Munir; Anders Michelsen; Jørn Olav Løkken; Qi Li; Takayoshi Koike; Kari Klanderud; Ellen Haakonsen Karr; Ingibjörg Svala Jónsdóttir; Robert D. Hollister; Annika Hofgaard; Ibrahim A. Hassan; Wang Genxu; Nina Filippova; Thomas W. Crowther; Karin Clark; Casper T. Christiansen; Angelica Casanova‐Katny; Michele Carbognani; Stef Bokhorst; Katrín Björnsdóttir; Johan Asplund; Inge Althuizen; Rocío Alonso; Juha Alatalo; Evgenios Agathokleous; Rien Aerts; Judith M. Sarneel;ABSTRACTEmpirical studies worldwide show that warming has variable effects on plant litter decomposition, leaving the overall impact of climate change on decomposition uncertain. We conducted a meta‐analysis of 109 experimental warming studies across seven continents, using natural and standardised plant material, to assess the overarching effect of warming on litter decomposition and identify potential moderating factors. We determined that at least 5.2° of warming is required for a significant increase in decomposition. Overall, warming did not have a significant effect on decomposition at a global scale. However, we found that warming reduced decomposition in warmer, low‐moisture areas, while it slightly increased decomposition in colder regions, although this increase was not significant. This is particularly relevant given the past decade's global warming trend at higher latitudes where a large proportion of terrestrial carbon is stored. Future changes in vegetation towards plants with lower litter quality, which we show were likely to be more sensitive to warming, could increase carbon release and reduce the amount of organic matter building up in the soil. Our findings highlight how the interplay between warming, environmental conditions, and litter characteristics improves predictions of warming's impact on ecosystem processes, emphasising the importance of considering context‐specific factors.
Ecology Letters arrow_drop_down Copenhagen University Research Information SystemArticle . 2025Data sources: Copenhagen University Research Information SystemPublikationer från Umeå universitetArticle . 2025 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2025 . Peer-reviewedMunin - Open Research ArchiveArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Munin - Open Research ArchiveUniversity of Copenhagen: ResearchArticle . 2025Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2025Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.70026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Ecology Letters arrow_drop_down Copenhagen University Research Information SystemArticle . 2025Data sources: Copenhagen University Research Information SystemPublikationer från Umeå universitetArticle . 2025 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2025 . Peer-reviewedMunin - Open Research ArchiveArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Munin - Open Research ArchiveUniversity of Copenhagen: ResearchArticle . 2025Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2025Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.70026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 DenmarkPublisher:American Geophysical Union (AGU) Cecilie Skov Nielsen; Anders Michelsen; Bjarne W. Strobel; Katrine Wulff; Imre Banyasz; Bo Elberling;doi: 10.1002/2016jg003511
AbstractThe Arctic is warming which may potentially affect substrate availability, organic matter decomposition, plant growth, and plant species composition. This may lead to changes in the exchange of methane (CH4) and carbon dioxide (CO2) between the soil system and the atmosphere. Yet the correlations among substrate availability, CH4 production, and net emissions of CH4 have been scarcely studied in arctic wetlands. Presently, the impact of increasing temperatures on CH4 exchange is uncertain as the two existing reports on field warming in arctic wetlands present opposite results. We here report results on how summer warming and shrub removal affect soil water substrate (acetate, formate, oxalate, and dissolved organic carbon) concentrations as well as dissolved CH4 and CH4 emissions in a fen at Disko Island (West Greenland). The peak in dissolved CH4 followed the peak in acetate concentration, and appeared after the peak in CH4 emissions, which indicates a lack of correlation between CH4 production and emissions. The peak in CH4 emissions coincided with maximum gross ecosystem production suggesting that CH4 emissions are closely linked to photosynthesis. This was supported by an experiment with removal of the sedge Carex aquatilis ssp. stans which contributed with up to 77% of the CH4 emitted from the ecosystem. By contrast, shrub removal and summer warming did not significantly affect CH4 emissions, possibly due to the treatments impacting CH4 production more than emissions. This implies that such wetlands may be less sensitive to moderate warming and changes in shrub cover than previously assumed.
Journal of Geophysic... arrow_drop_down Journal of Geophysical Research BiogeosciencesArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2016jg003511&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu32 citations 32 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Geophysic... arrow_drop_down Journal of Geophysical Research BiogeosciencesArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2016jg003511&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Denmark, GermanyPublisher:Wiley Funded by:EC | TUVOLUEC| TUVOLUGhirardo, Andrea; Lindstein, Frida; Koch, Kerstin; Buegger, Franz; Schloter, Michael; Albert, Andreas; Michelsen, Anders; Winkler, J. Barbro; Schnitzler, Jörg‐Peter; Rinnan, Riikka;AbstractWarming occurs in the Arctic twice as fast as the global average, which in turn leads to a large enhancement in terpenoid emissions from vegetation. Volatile terpenoids are the main class of biogenic volatile organic compounds (VOCs) that play crucial roles in atmospheric chemistry and climate. However, the biochemical mechanisms behind the temperature‐dependent increase in VOC emissions from subarctic ecosystems are largely unexplored. Using 13CO2‐labeling, we studied the origin of VOCs and the carbon (C) allocation under global warming in the soil–plant–atmosphere system of contrasting subarctic heath tundra vegetation communities characterized by dwarf shrubs of the genera Salix or Betula. The projected temperature rise of the subarctic summer by 5°C was realistically simulated in sophisticated climate chambers. VOC emissions strongly depended on the plant species composition of the heath tundra. Warming caused increased VOC emissions and significant changes in the pattern of volatiles toward more reactive hydrocarbons. The 13C was incorporated to varying degrees in different monoterpene and sesquiterpene isomers. We found that de novo monoterpene biosynthesis contributed to 40%–44% (Salix) and 60%–68% (Betula) of total monoterpene emissions under the current climate, and that warming increased the contribution to 50%–58% (Salix) and 87%–95% (Betula). Analyses of above‐ and belowground 12/13C showed shifts of C allocation in the plant–soil systems and negative effects of warming on C sequestration by lowering net ecosystem exchange of CO2 and increasing C loss as VOCs. This comprehensive analysis provides the scientific basis for mechanistically understanding the processes controlling terpenoid emissions, required for modeling VOC emissions from terrestrial ecosystems and predicting the future chemistry of the arctic atmosphere. By changing the chemical composition and loads of VOCs into the atmosphere, the current data indicate that global warming in the Arctic may have implications for regional and global climate and for the delicate tundra ecosystems.
Global Change Biolog... arrow_drop_down Copenhagen University Research Information SystemArticle . 2020Data sources: Copenhagen University Research Information SystemPublication Server of Helmholtz Zentrum München (PuSH)Article . 2020Data sources: Publication Server of Helmholtz Zentrum München (PuSH)University of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14935&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 51 citations 51 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Copenhagen University Research Information SystemArticle . 2020Data sources: Copenhagen University Research Information SystemPublication Server of Helmholtz Zentrum München (PuSH)Article . 2020Data sources: Publication Server of Helmholtz Zentrum München (PuSH)University of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14935&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 Canada, Canada, Denmark, Finland, SwedenPublisher:Springer Science and Business Media LLC Funded by:NSF | LTER: Changing Disturbanc..., AKA | Towards mechanistic under..., NSERC +5 projectsNSF| LTER: Changing Disturbances, Ecological Legacies, and the Future of the Alaskan Boreal Forest ,AKA| Towards mechanistic understanding of reindeer impacts on wetland carbon balance (ReindeerPaths) ,NSERC ,NSF| Collaborative Research: Vegetation And Ecosystem Impacts On Permafrost Vulnerability ,AKA| Land use as a modulator of land cover transitions and the ecosystem–atmosphere carbon balance (LANDMOD) ,AKA| RESILIENCE IN SOCIAL-ECOLOGICAL SYSTEMS IN IN NORTHWEST EURASIA (RISES) ,EC| CHARTER ,NSF| NNA Research: Collaborative Research: Fate of the Caribou: from local knowledge to range-wide dynamics in the changing ArcticLogan T. Berner; Kathleen M. Orndahl; Melissa Rose; Mikkel Tamstorf; Marie F. Arndal; Heather D. Alexander; Elyn R. Humphreys; Michael M. Loranty; Sarah M. Ludwig; Johanna Nyman; Sari Juutinen; Mika Aurela; Konsta Happonen; Juha Mikola; Michelle C. Mack; Mathew R. Vankoughnett; Colleen M. Iversen; Verity G. Salmon; Dedi Yang; Jitendra Kumar; Paul Grogan; Ryan K. Danby; Neal A. Scott; Johan Olofsson; Matthias B. Siewert; Lucas Deschamps; Esther Lévesque; Vincent Maire; Amélie Morneault; Gilles Gauthier; Charles Gignac; Stéphane Boudreau; Anna Gaspard; Alexander Kholodov; M. Syndonia Bret-Harte; Heather E. Greaves; Donald Walker; Fiona M. Gregory; Anders Michelsen; Timo Kumpula; Miguel Villoslada; Henni Ylänne; Miska Luoto; Tarmo Virtanen; Bruce C. Forbes; Norbert Hölzel; Howard Epstein; Ramona J. Heim; Andrew Bunn; Robert M. Holmes; Jacqueline K. Y. Hung; Susan M. Natali; Anna-Maria Virkkala; Scott J. Goetz;AbstractPlant biomass is a fundamental ecosystem attribute that is sensitive to rapid climatic changes occurring in the Arctic. Nevertheless, measuring plant biomass in the Arctic is logistically challenging and resource intensive. Lack of accessible field data hinders efforts to understand the amount, composition, distribution, and changes in plant biomass in these northern ecosystems. Here, we present The Arctic plant aboveground biomass synthesis dataset, which includes field measurements of lichen, bryophyte, herb, shrub, and/or tree aboveground biomass (g m−2) on 2,327 sample plots from 636 field sites in seven countries. We created the synthesis dataset by assembling and harmonizing 32 individual datasets. Aboveground biomass was primarily quantified by harvesting sample plots during mid- to late-summer, though tree and often tall shrub biomass were quantified using surveys and allometric models. Each biomass measurement is associated with metadata including sample date, location, method, data source, and other information. This unique dataset can be leveraged to monitor, map, and model plant biomass across the rapidly warming Arctic.
Natural Resources In... arrow_drop_down Natural Resources Institute Finland: JukuriArticleLicense: CC BYFull-Text: https://jukuri.luke.fi/handle/10024/555088Data sources: Bielefeld Academic Search Engine (BASE)Université du Québec à Trois-Rivières: Dépôt numérique de UQTRArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2024 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiCopenhagen University Research Information SystemArticle . 2024Data sources: Copenhagen University Research Information SystemPublikationer från Umeå universitetArticle . 2024 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2024 . Peer-reviewedUniversity of Copenhagen: ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-024-03139-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Natural Resources In... arrow_drop_down Natural Resources Institute Finland: JukuriArticleLicense: CC BYFull-Text: https://jukuri.luke.fi/handle/10024/555088Data sources: Bielefeld Academic Search Engine (BASE)Université du Québec à Trois-Rivières: Dépôt numérique de UQTRArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2024 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiCopenhagen University Research Information SystemArticle . 2024Data sources: Copenhagen University Research Information SystemPublikationer från Umeå universitetArticle . 2024 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2024 . Peer-reviewedUniversity of Copenhagen: ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-024-03139-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Finland, Finland, Netherlands, DenmarkPublisher:Oxford University Press (OUP) Ndah, Flobert; Valolahti, Hanna; Schollert, Michelle; Michelsen, Anders; Rinnan, Riikka; Kivimäenpää; Minna;AbstractBackground and AimsClimate change is subjecting subarctic ecosystems to elevated temperature, increased nutrient availability and reduced light availability (due to increasing cloud cover). This may affect subarctic vegetation by altering the emissions of biogenic volatile organic compounds (BVOCs) and leaf anatomy. We investigated the effects of increased nutrient availability on BVOC emissions and leaf anatomy of three subarctic dwarf shrub species, Empetrum hermaphroditum, Cassiope tetragona and Betula nana, and if increased nutrient availability modifies the responses to warming and shading.MethodsMeasurements of BVOCs were performed in situ in long-term field experiments in the Subarctic using a dynamic enclosure system and collection of BVOCs into adsorbent cartridges analysed by gas chromatography–mass spectrometry. Leaf anatomy was studied using light microscopy and scanning electron microscopy.Key ResultsIncreased nutrient availability increased monoterpene emission rates and altered the emission profile of B. nana, and increased sesquiterpene and oxygenated monoterpene emissions of C. tetragona. Increased nutrient availability increased leaf tissue thicknesses of B. nana and C. tetragona, while it caused thinner epidermis and the highest fraction of functional (intact) glandular trichomes for E. hermaphroditum. Increased nutrient availability and warming synergistically increased mesophyll intercellular space of B. nana and glandular trichome density of C. tetragona, while treatments combining increased nutrient availability and shading had an opposite effect in C. tetragona.ConclusionsIncreased nutrient availability may enhance the protection capacity against biotic and abiotic stresses (especially heat and drought) in subarctic shrubs under future warming conditions as opposed to increased cloudiness, which could lead to decreased resistance. The study emphasizes the importance of changes in nutrient availability in the Subarctic, which can interact with climate warming and increased cloudiness effects.
Annals of Botany arrow_drop_down Copenhagen University Research Information SystemArticle . 2022Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Annals of BotanyArticle . 2022add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/aob/mcac004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Annals of Botany arrow_drop_down Copenhagen University Research Information SystemArticle . 2022Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Annals of BotanyArticle . 2022add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/aob/mcac004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017 DenmarkPublisher:Springer Science and Business Media LLC Funded by:RSF | Zonal differentiation of ...RSF| Zonal differentiation of soil biota ecosystem services in forests after firesTeis Nørgaard Mikkelsen; Mette Vestergård; Kim Pilegaard; Slavka Georgieva; Slavka Georgieva; Merian Skouw Haugwitz; Klaus Steenberg Larsen; Per Ambus; Marie Dam; Anders Priemé; Andrey S. Zaitsev; M.F. Arndal; Martin Holmstrup; Anders Michelsen; Inger Kappel Schmidt; Christian Damgaard; Lasse Bergmark; Soren Christensen; Claus Beier; Louise C. Andresen;AbstractIn a dry heathland ecosystem we manipulated temperature (warming), precipitation (drought) and atmospheric concentration of CO2in a full-factorial experiment in order to investigate changes in below-ground biodiversity as a result of future climate change. We investigated the responses in community diversity of nematodes, enchytraeids, collembolans and oribatid mites at two and eight years of manipulations. We used a structural equation modelling (SEM) approach analyzing the three manipulations, soil moisture and temperature, and seven soil biological and chemical variables. The analysis revealed a persistent and positive effect of elevated CO2on litter C:N ratio. After two years of treatment, the fungi to bacteria ratio was increased by warming, and the diversities within oribatid mites, collembolans and nematode groups were all affected by elevated CO2mediated through increased litter C:N ratio. After eight years of treatment, however, the CO2-increased litter C:N ratio did not influence the diversity in any of the four fauna groups. The number of significant correlations between treatments, food source quality, and soil biota diversities was reduced from six to three after two and eight years, respectively. These results suggest a remarkable resilience within the soil biota against global climate change treatments in the long term.
Scientific Reports arrow_drop_down Online Research Database In TechnologyArticle . 2017Data sources: Online Research Database In TechnologyCopenhagen University Research Information SystemArticle . 2017Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep41388&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Scientific Reports arrow_drop_down Online Research Database In TechnologyArticle . 2017Data sources: Online Research Database In TechnologyCopenhagen University Research Information SystemArticle . 2017Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep41388&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 DenmarkPublisher:Wiley Funded by:NSERCNSERCKathrin Rousk; Jefferson Degboe; Anders Michelsen; Robert Bradley; Jean‐Philippe Bellenger;doi: 10.1111/nph.14331
pmid: 27883187
Summary Biological nitrogen fixation (BNF) performed by moss‐associated cyanobacteria is one of the main sources of new nitrogen (N) input in pristine, high‐latitude ecosystems. Yet, the nutrients that limit BNF remain elusive. Here, we tested whether this important ecosystem function is limited by the availability of molybdenum (Mo), phosphorus (P), or both. BNF in dominant mosses was measured with the acetylene reduction assay (ARA) at different time intervals following Mo and P additions, in both laboratory microcosms with mosses from a boreal spruce forest and field plots in subarctic tundra. We further used a 15N2 tracer technique to assess the ARA to N2 fixation conversion ratios at our subarctic site. BNF was up to four‐fold higher shortly after the addition of Mo, in both the laboratory and field experiments. A similar positive response to Mo was found in moss colonizing cyanobacterial biomass. As the growing season progressed, nitrogenase activity became progressively more P limited. The ARA : 15N2 ratios increased with increasing Mo additions. These findings show that N2 fixation activity as well as cyanobacterial biomass in dominant feather mosses from boreal forests and subarctic tundra are limited by Mo availability.
New Phytologist arrow_drop_down New PhytologistArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.14331&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu82 citations 82 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert New Phytologist arrow_drop_down New PhytologistArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.14331&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Denmark, SpainPublisher:Wiley Diego Salazar‐Tortosa; Jorge Castro; Pedro Villar‐Salvador; Benjamín Viñegla; Luis Matías; Anders Michelsen; Rafael Rubio de Casas; José I. Querejeta;AbstractClimatic dryness imposes limitations on vascular plant growth by reducing stomatal conductance, thereby decreasing CO2 uptake and transpiration. Given that transpiration‐driven water flow is required for nutrient uptake, climatic stress‐induced nutrient deficit could be a key mechanism for decreased plant performance under prolonged drought. We propose the existence of an “isohydric trap,” a dryness‐induced detrimental feedback leading to nutrient deficit and stoichiometry imbalance in strict isohydric species. We tested this framework in a common garden experiment with 840 individuals of four ecologically contrasting European pines (Pinus halepensis, P. nigra, P. sylvestris, and P. uncinata) at a site with high temperature and low soil water availability. We measured growth, survival, photochemical efficiency, stem water potentials, leaf isotopic composition (δ13C, δ18O), and nutrient concentrations (C, N, P, K, Zn, Cu). After 2 years, the Mediterranean species Pinus halepensis showed lower δ18O and higher δ13C values than the other species, indicating higher time‐integrated transpiration and water‐use efficiency (WUE), along with lower predawn and midday water potentials, higher photochemical efficiency, higher leaf P, and K concentrations, more balanced N:P and N:K ratios, and much greater dry‐biomass (up to 63‐fold) and survival (100%). Conversely, the more mesic mountain pine species showed higher leaf δ18O and lower δ13C, indicating lower transpiration and WUE, higher water potentials, severe P and K deficiencies and N:P and N:K imbalances, and poorer photochemical efficiency, growth, and survival. These results support our hypothesis that vascular plant species with tight stomatal regulation of transpiration can become trapped in a feedback cycle of nutrient deficit and imbalance that exacerbates the detrimental impacts of climatic dryness on performance. This overlooked feedback mechanism may hamper the ability of isohydric species to respond to ongoing global change, by aggravating the interactive impacts of stoichiometric imbalance and water stress caused by anthropogenic N deposition and hotter droughts, respectively.
Global Change Biolog... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTABiblioteca Digital de la Universidad de AlcaláArticle . 2018License: CC BY NC NDData sources: Biblioteca Digital de la Universidad de AlcaláGlobal Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14311&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 79 citations 79 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 154visibility views 154 download downloads 160 Powered bymore_vert Global Change Biolog... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTABiblioteca Digital de la Universidad de AlcaláArticle . 2018License: CC BY NC NDData sources: Biblioteca Digital de la Universidad de AlcaláGlobal Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14311&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017 Finland, DenmarkPublisher:Springer Science and Business Media LLC Funded by:EC | INTERACTEC| INTERACTSchmidt, Niels M.; Hardwick, Bess; Gilg, Olivier; Høye, Toke Thomas; Krogh, Paul Henning; Meltofte, Hans; Michelsen, Anders; Mosbacher, Jesper B.; Raundrup, Katrine; Reneerkens, Jeroen; Stewart, Lærke; Wirta, Helena; Roslin, Tomas;pmid: 28116681
pmc: PMC5258656
How species interact modulate their dynamics, their response to environmental change, and ultimately the functioning and stability of entire communities. Work conducted at Zackenberg, Northeast Greenland, has changed our view on how networks of arctic biotic interactions are structured, how they vary in time, and how they are changing with current environmental change: firstly, the high arctic interaction webs are much more complex than previously envisaged, and with a structure mainly dictated by its arthropod component. Secondly, the dynamics of species within these webs reflect changes in environmental conditions. Thirdly, biotic interactions within a trophic level may affect other trophic levels, in some cases ultimately affecting land-atmosphere feedbacks. Finally, differential responses to environmental change may decouple interacting species. These insights form Zackenberg emphasize that the combination of long-term, ecosystem-based monitoring, and targeted research projects offers the most fruitful basis for understanding and predicting the future of arctic ecosystems.
AMBIO arrow_drop_down Copenhagen University Research Information SystemArticle . 2017Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2017 . Peer-reviewedData sources: HELDA - Digital Repository of the University of Helsinkiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13280-016-0862-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 65 citations 65 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert AMBIO arrow_drop_down Copenhagen University Research Information SystemArticle . 2017Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2017 . Peer-reviewedData sources: HELDA - Digital Repository of the University of Helsinkiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13280-016-0862-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 DenmarkPublisher:Wiley Funded by:EC | HIVOL, EC | TUVOLUEC| HIVOL ,EC| TUVOLUAuthors: Rieksta, Jolanta; Li, Tao; Michelsen, Anders; Rinnan, Riikka;AbstractClimate change increases the insect abundance, especially in Arctic ecosystems. Insect herbivory also significantly increases plant emissions of volatile organic compounds (VOCs), which are highly reactive in the atmosphere and play a crucial role in atmospheric chemistry and physics. However, it is unclear how the effects of insect herbivory on VOC emissions interact with climatic changes, such as warming and increased cloudiness. We assessed how experimental manipulations of temperature and light availability in subarctic tundra, that had been maintained for 30 years at the time of the measurements, affect the VOC emissions from a widespread dwarf birch (Betula nana) when subjected to herbivory by local geometrid moth larvae, the autumnal moth (Epirrita autumnata) and the winter moth (Operophtera brumata). Warming and insect herbivory on B. nana stimulated VOC emission rates and altered the VOC blend. The herbivory‐induced increase in sesquiterpene and homoterpene emissions were climate‐treatment‐dependent. Many herbivory‐associated VOCs were more strongly induced in the shading treatment than in other treatments. We showed generally enhanced tundra VOC emissions upon insect herbivory and synergistic effects on the emissions of some VOC groups in a changing climate, which can have positive feedbacks on cloud formation. Furthermore, the acclimation of plants to long‐term climate treatments affects VOC emissions and strongly interacts with plant responses to herbivory. Such acclimation complicates predictions of how climate change, together with interacting biotic stresses, affects VOC emissions in the high latitudes.
Global Change Biolog... arrow_drop_down Copenhagen University Research Information SystemArticle . 2021Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15773&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Copenhagen University Research Information SystemArticle . 2021Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15773&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 Italy, Denmark, Norway, Sweden, Norway, NetherlandsPublisher:Wiley Funded by:NSERC, RCN | Effects of herbivory and ..., RCN | The role of Functional gr... +3 projectsNSERC ,RCN| Effects of herbivory and warming on tundra plant communities ,RCN| The role of Functional group interactions in mediating climate change impacts on the Carbon dynamics and Biodiversity of alpine ecosystems ,UKRI| Climate as a driver of shrub expansion and tundra greening ,NSF| Collaborative Research: Using the ITEX-AON network to document and understand terrestrial ecosystem change in the Arctic ,NSF| Collaborative Research: Climate-induced sea-level rise, warming and herbivory effects on vegetation and greenhouse gas emission in coastal western AlaskaSarah Schwieger; Ellen Dorrepaal; Matteo Petit Bon; Vigdis Vandvik; Elizabeth le Roux; Maria Strack; Yan Yang; Susanna Venn; Johan van den Hoogen; Fernando Valiño; Haydn J. D. Thomas; Mariska te Beest; Satoshi Suzuki; Alessandro Petraglia; Isla H. Myers‐Smith; Tariq Muhammad Munir; Anders Michelsen; Jørn Olav Løkken; Qi Li; Takayoshi Koike; Kari Klanderud; Ellen Haakonsen Karr; Ingibjörg Svala Jónsdóttir; Robert D. Hollister; Annika Hofgaard; Ibrahim A. Hassan; Wang Genxu; Nina Filippova; Thomas W. Crowther; Karin Clark; Casper T. Christiansen; Angelica Casanova‐Katny; Michele Carbognani; Stef Bokhorst; Katrín Björnsdóttir; Johan Asplund; Inge Althuizen; Rocío Alonso; Juha Alatalo; Evgenios Agathokleous; Rien Aerts; Judith M. Sarneel;ABSTRACTEmpirical studies worldwide show that warming has variable effects on plant litter decomposition, leaving the overall impact of climate change on decomposition uncertain. We conducted a meta‐analysis of 109 experimental warming studies across seven continents, using natural and standardised plant material, to assess the overarching effect of warming on litter decomposition and identify potential moderating factors. We determined that at least 5.2° of warming is required for a significant increase in decomposition. Overall, warming did not have a significant effect on decomposition at a global scale. However, we found that warming reduced decomposition in warmer, low‐moisture areas, while it slightly increased decomposition in colder regions, although this increase was not significant. This is particularly relevant given the past decade's global warming trend at higher latitudes where a large proportion of terrestrial carbon is stored. Future changes in vegetation towards plants with lower litter quality, which we show were likely to be more sensitive to warming, could increase carbon release and reduce the amount of organic matter building up in the soil. Our findings highlight how the interplay between warming, environmental conditions, and litter characteristics improves predictions of warming's impact on ecosystem processes, emphasising the importance of considering context‐specific factors.
Ecology Letters arrow_drop_down Copenhagen University Research Information SystemArticle . 2025Data sources: Copenhagen University Research Information SystemPublikationer från Umeå universitetArticle . 2025 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2025 . Peer-reviewedMunin - Open Research ArchiveArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Munin - Open Research ArchiveUniversity of Copenhagen: ResearchArticle . 2025Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2025Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.70026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Ecology Letters arrow_drop_down Copenhagen University Research Information SystemArticle . 2025Data sources: Copenhagen University Research Information SystemPublikationer från Umeå universitetArticle . 2025 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2025 . Peer-reviewedMunin - Open Research ArchiveArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Munin - Open Research ArchiveUniversity of Copenhagen: ResearchArticle . 2025Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2025Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.70026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 DenmarkPublisher:American Geophysical Union (AGU) Cecilie Skov Nielsen; Anders Michelsen; Bjarne W. Strobel; Katrine Wulff; Imre Banyasz; Bo Elberling;doi: 10.1002/2016jg003511
AbstractThe Arctic is warming which may potentially affect substrate availability, organic matter decomposition, plant growth, and plant species composition. This may lead to changes in the exchange of methane (CH4) and carbon dioxide (CO2) between the soil system and the atmosphere. Yet the correlations among substrate availability, CH4 production, and net emissions of CH4 have been scarcely studied in arctic wetlands. Presently, the impact of increasing temperatures on CH4 exchange is uncertain as the two existing reports on field warming in arctic wetlands present opposite results. We here report results on how summer warming and shrub removal affect soil water substrate (acetate, formate, oxalate, and dissolved organic carbon) concentrations as well as dissolved CH4 and CH4 emissions in a fen at Disko Island (West Greenland). The peak in dissolved CH4 followed the peak in acetate concentration, and appeared after the peak in CH4 emissions, which indicates a lack of correlation between CH4 production and emissions. The peak in CH4 emissions coincided with maximum gross ecosystem production suggesting that CH4 emissions are closely linked to photosynthesis. This was supported by an experiment with removal of the sedge Carex aquatilis ssp. stans which contributed with up to 77% of the CH4 emitted from the ecosystem. By contrast, shrub removal and summer warming did not significantly affect CH4 emissions, possibly due to the treatments impacting CH4 production more than emissions. This implies that such wetlands may be less sensitive to moderate warming and changes in shrub cover than previously assumed.
Journal of Geophysic... arrow_drop_down Journal of Geophysical Research BiogeosciencesArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2016jg003511&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu32 citations 32 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Geophysic... arrow_drop_down Journal of Geophysical Research BiogeosciencesArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2016jg003511&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Denmark, GermanyPublisher:Wiley Funded by:EC | TUVOLUEC| TUVOLUGhirardo, Andrea; Lindstein, Frida; Koch, Kerstin; Buegger, Franz; Schloter, Michael; Albert, Andreas; Michelsen, Anders; Winkler, J. Barbro; Schnitzler, Jörg‐Peter; Rinnan, Riikka;AbstractWarming occurs in the Arctic twice as fast as the global average, which in turn leads to a large enhancement in terpenoid emissions from vegetation. Volatile terpenoids are the main class of biogenic volatile organic compounds (VOCs) that play crucial roles in atmospheric chemistry and climate. However, the biochemical mechanisms behind the temperature‐dependent increase in VOC emissions from subarctic ecosystems are largely unexplored. Using 13CO2‐labeling, we studied the origin of VOCs and the carbon (C) allocation under global warming in the soil–plant–atmosphere system of contrasting subarctic heath tundra vegetation communities characterized by dwarf shrubs of the genera Salix or Betula. The projected temperature rise of the subarctic summer by 5°C was realistically simulated in sophisticated climate chambers. VOC emissions strongly depended on the plant species composition of the heath tundra. Warming caused increased VOC emissions and significant changes in the pattern of volatiles toward more reactive hydrocarbons. The 13C was incorporated to varying degrees in different monoterpene and sesquiterpene isomers. We found that de novo monoterpene biosynthesis contributed to 40%–44% (Salix) and 60%–68% (Betula) of total monoterpene emissions under the current climate, and that warming increased the contribution to 50%–58% (Salix) and 87%–95% (Betula). Analyses of above‐ and belowground 12/13C showed shifts of C allocation in the plant–soil systems and negative effects of warming on C sequestration by lowering net ecosystem exchange of CO2 and increasing C loss as VOCs. This comprehensive analysis provides the scientific basis for mechanistically understanding the processes controlling terpenoid emissions, required for modeling VOC emissions from terrestrial ecosystems and predicting the future chemistry of the arctic atmosphere. By changing the chemical composition and loads of VOCs into the atmosphere, the current data indicate that global warming in the Arctic may have implications for regional and global climate and for the delicate tundra ecosystems.
Global Change Biolog... arrow_drop_down Copenhagen University Research Information SystemArticle . 2020Data sources: Copenhagen University Research Information SystemPublication Server of Helmholtz Zentrum München (PuSH)Article . 2020Data sources: Publication Server of Helmholtz Zentrum München (PuSH)University of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14935&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 51 citations 51 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Copenhagen University Research Information SystemArticle . 2020Data sources: Copenhagen University Research Information SystemPublication Server of Helmholtz Zentrum München (PuSH)Article . 2020Data sources: Publication Server of Helmholtz Zentrum München (PuSH)University of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14935&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 Canada, Canada, Denmark, Finland, SwedenPublisher:Springer Science and Business Media LLC Funded by:NSF | LTER: Changing Disturbanc..., AKA | Towards mechanistic under..., NSERC +5 projectsNSF| LTER: Changing Disturbances, Ecological Legacies, and the Future of the Alaskan Boreal Forest ,AKA| Towards mechanistic understanding of reindeer impacts on wetland carbon balance (ReindeerPaths) ,NSERC ,NSF| Collaborative Research: Vegetation And Ecosystem Impacts On Permafrost Vulnerability ,AKA| Land use as a modulator of land cover transitions and the ecosystem–atmosphere carbon balance (LANDMOD) ,AKA| RESILIENCE IN SOCIAL-ECOLOGICAL SYSTEMS IN IN NORTHWEST EURASIA (RISES) ,EC| CHARTER ,NSF| NNA Research: Collaborative Research: Fate of the Caribou: from local knowledge to range-wide dynamics in the changing ArcticLogan T. Berner; Kathleen M. Orndahl; Melissa Rose; Mikkel Tamstorf; Marie F. Arndal; Heather D. Alexander; Elyn R. Humphreys; Michael M. Loranty; Sarah M. Ludwig; Johanna Nyman; Sari Juutinen; Mika Aurela; Konsta Happonen; Juha Mikola; Michelle C. Mack; Mathew R. Vankoughnett; Colleen M. Iversen; Verity G. Salmon; Dedi Yang; Jitendra Kumar; Paul Grogan; Ryan K. Danby; Neal A. Scott; Johan Olofsson; Matthias B. Siewert; Lucas Deschamps; Esther Lévesque; Vincent Maire; Amélie Morneault; Gilles Gauthier; Charles Gignac; Stéphane Boudreau; Anna Gaspard; Alexander Kholodov; M. Syndonia Bret-Harte; Heather E. Greaves; Donald Walker; Fiona M. Gregory; Anders Michelsen; Timo Kumpula; Miguel Villoslada; Henni Ylänne; Miska Luoto; Tarmo Virtanen; Bruce C. Forbes; Norbert Hölzel; Howard Epstein; Ramona J. Heim; Andrew Bunn; Robert M. Holmes; Jacqueline K. Y. Hung; Susan M. Natali; Anna-Maria Virkkala; Scott J. Goetz;AbstractPlant biomass is a fundamental ecosystem attribute that is sensitive to rapid climatic changes occurring in the Arctic. Nevertheless, measuring plant biomass in the Arctic is logistically challenging and resource intensive. Lack of accessible field data hinders efforts to understand the amount, composition, distribution, and changes in plant biomass in these northern ecosystems. Here, we present The Arctic plant aboveground biomass synthesis dataset, which includes field measurements of lichen, bryophyte, herb, shrub, and/or tree aboveground biomass (g m−2) on 2,327 sample plots from 636 field sites in seven countries. We created the synthesis dataset by assembling and harmonizing 32 individual datasets. Aboveground biomass was primarily quantified by harvesting sample plots during mid- to late-summer, though tree and often tall shrub biomass were quantified using surveys and allometric models. Each biomass measurement is associated with metadata including sample date, location, method, data source, and other information. This unique dataset can be leveraged to monitor, map, and model plant biomass across the rapidly warming Arctic.
Natural Resources In... arrow_drop_down Natural Resources Institute Finland: JukuriArticleLicense: CC BYFull-Text: https://jukuri.luke.fi/handle/10024/555088Data sources: Bielefeld Academic Search Engine (BASE)Université du Québec à Trois-Rivières: Dépôt numérique de UQTRArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2024 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiCopenhagen University Research Information SystemArticle . 2024Data sources: Copenhagen University Research Information SystemPublikationer från Umeå universitetArticle . 2024 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2024 . Peer-reviewedUniversity of Copenhagen: ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-024-03139-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Natural Resources In... arrow_drop_down Natural Resources Institute Finland: JukuriArticleLicense: CC BYFull-Text: https://jukuri.luke.fi/handle/10024/555088Data sources: Bielefeld Academic Search Engine (BASE)Université du Québec à Trois-Rivières: Dépôt numérique de UQTRArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2024 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiCopenhagen University Research Information SystemArticle . 2024Data sources: Copenhagen University Research Information SystemPublikationer från Umeå universitetArticle . 2024 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2024 . Peer-reviewedUniversity of Copenhagen: ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-024-03139-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Finland, Finland, Netherlands, DenmarkPublisher:Oxford University Press (OUP) Ndah, Flobert; Valolahti, Hanna; Schollert, Michelle; Michelsen, Anders; Rinnan, Riikka; Kivimäenpää; Minna;AbstractBackground and AimsClimate change is subjecting subarctic ecosystems to elevated temperature, increased nutrient availability and reduced light availability (due to increasing cloud cover). This may affect subarctic vegetation by altering the emissions of biogenic volatile organic compounds (BVOCs) and leaf anatomy. We investigated the effects of increased nutrient availability on BVOC emissions and leaf anatomy of three subarctic dwarf shrub species, Empetrum hermaphroditum, Cassiope tetragona and Betula nana, and if increased nutrient availability modifies the responses to warming and shading.MethodsMeasurements of BVOCs were performed in situ in long-term field experiments in the Subarctic using a dynamic enclosure system and collection of BVOCs into adsorbent cartridges analysed by gas chromatography–mass spectrometry. Leaf anatomy was studied using light microscopy and scanning electron microscopy.Key ResultsIncreased nutrient availability increased monoterpene emission rates and altered the emission profile of B. nana, and increased sesquiterpene and oxygenated monoterpene emissions of C. tetragona. Increased nutrient availability increased leaf tissue thicknesses of B. nana and C. tetragona, while it caused thinner epidermis and the highest fraction of functional (intact) glandular trichomes for E. hermaphroditum. Increased nutrient availability and warming synergistically increased mesophyll intercellular space of B. nana and glandular trichome density of C. tetragona, while treatments combining increased nutrient availability and shading had an opposite effect in C. tetragona.ConclusionsIncreased nutrient availability may enhance the protection capacity against biotic and abiotic stresses (especially heat and drought) in subarctic shrubs under future warming conditions as opposed to increased cloudiness, which could lead to decreased resistance. The study emphasizes the importance of changes in nutrient availability in the Subarctic, which can interact with climate warming and increased cloudiness effects.
Annals of Botany arrow_drop_down Copenhagen University Research Information SystemArticle . 2022Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Annals of BotanyArticle . 2022add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/aob/mcac004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Annals of Botany arrow_drop_down Copenhagen University Research Information SystemArticle . 2022Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Annals of BotanyArticle . 2022add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/aob/mcac004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu