- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2020 CanadaPublisher:Springer Science and Business Media LLC Funded by:NSERCNSERCGeonhui Lee; Yuguang C. Li; Ji-Yong Kim; Tao Peng; Dae-Hyun Nam; Armin Sedighian Rasouli; Fengwang Li; Mingchuan Luo; Alexander H. Ip; Young-Chang Joo; Edward H. Sargent;handle: 1807/104801
CO2 capture technologies based on chemisorption present the potential to lower net emissions of CO2 into the atmosphere. The electrochemical upgrade of captured CO2 to value-added products would be particularly convenient. Here we find that this goal is curtailed when the adduct of the capture molecule with CO2 fails to place the CO2 sufficiently close to the site of the heterogeneous reaction. We investigate tailoring the electrochemical double layer to achieve the valorization of chemisorbed CO2 in an aqueous monoethanolamine electrolyte. We reveal, using electrochemical studies and in situ surface-enhanced Raman spectroscopy, that a smaller double layer distance correlates with improved activity for CO2 to CO from amine solutions. With the aid of an alkali cation and accelerated mass transport by system design—temperature and concentration—we demonstrate amine–CO2 conversion to CO with 72% Faradaic efficiency at 50 mA cm–2. Electrochemical conversion of CO2 into high-value products is attractive for lowering net carbon emissions. Lee et al. present the valorization of chemisorbed CO2 to CO in an aqueous monoethanolamine electrolyte via tailoring of the electrochemical double layer, with 72% Faradaic efficiency at 50 mA cm–2.
Nature Energy arrow_drop_down University of Toronto: Research Repository T-SpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-020-00735-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu189 citations 189 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Nature Energy arrow_drop_down University of Toronto: Research Repository T-SpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-020-00735-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 CanadaPublisher:Springer Science and Business Media LLC Funded by:NSERCNSERCGeonhui Lee; Yuguang C. Li; Ji-Yong Kim; Tao Peng; Dae-Hyun Nam; Armin Sedighian Rasouli; Fengwang Li; Mingchuan Luo; Alexander H. Ip; Young-Chang Joo; Edward H. Sargent;handle: 1807/104801
CO2 capture technologies based on chemisorption present the potential to lower net emissions of CO2 into the atmosphere. The electrochemical upgrade of captured CO2 to value-added products would be particularly convenient. Here we find that this goal is curtailed when the adduct of the capture molecule with CO2 fails to place the CO2 sufficiently close to the site of the heterogeneous reaction. We investigate tailoring the electrochemical double layer to achieve the valorization of chemisorbed CO2 in an aqueous monoethanolamine electrolyte. We reveal, using electrochemical studies and in situ surface-enhanced Raman spectroscopy, that a smaller double layer distance correlates with improved activity for CO2 to CO from amine solutions. With the aid of an alkali cation and accelerated mass transport by system design—temperature and concentration—we demonstrate amine–CO2 conversion to CO with 72% Faradaic efficiency at 50 mA cm–2. Electrochemical conversion of CO2 into high-value products is attractive for lowering net carbon emissions. Lee et al. present the valorization of chemisorbed CO2 to CO in an aqueous monoethanolamine electrolyte via tailoring of the electrochemical double layer, with 72% Faradaic efficiency at 50 mA cm–2.
Nature Energy arrow_drop_down University of Toronto: Research Repository T-SpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-020-00735-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu189 citations 189 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Nature Energy arrow_drop_down University of Toronto: Research Repository T-SpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-020-00735-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Springer Science and Business Media LLC Zhanyou Xu; Ruihu Lu; Zih-Yi Lin; Weixing Wu; Hsin-Jung Tsai; Qian Lu; Yuguang C. Li; Sung-Fu Hung; Chunshan Song; Jimmy C. Yu; Ziyun Wang; Ying Wang;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-024-01645-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-024-01645-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Springer Science and Business Media LLC Zhanyou Xu; Ruihu Lu; Zih-Yi Lin; Weixing Wu; Hsin-Jung Tsai; Qian Lu; Yuguang C. Li; Sung-Fu Hung; Chunshan Song; Jimmy C. Yu; Ziyun Wang; Ying Wang;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-024-01645-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-024-01645-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Springer Science and Business Media LLC Funded by:NSERCNSERCDae-Hyun Nam; Christine M. Gabardo; Shana O. Kelley; Shana O. Kelley; Adnan Ozden; Andrew H. Proppe; David Sinton; Jun Li; Colin P. O’Brien; Yimeng Min; Fengwang Li; Sung Fu Hung; Christopher McCallum; Joshua Wicks; Lee J. Richter; Yuguang C. Li; Alexander H. Ip; Jason Tam; Bin Chen; Aoni Xu; Tao Tao Zhuang; Yi-Sheng Liu; Cao-Thang Dinh; Ying Wang; Zitao Chen; Bello Stephen; Miaofang Chi; Xue Wang; Bin Sun; Petar Todorović; Ziyun Wang; Edward H. Sargent; Yanwei Lum; F. Pelayo García de Arquer; Mingchuan Luo; Ahmad R. Kirmani; Jane Y. Howe;The carbon dioxide electroreduction reaction (CO2RR) provides ways to produce ethanol but its Faradaic efficiency could be further improved, especially in CO2RR studies reported at a total current density exceeding 10 mA cm−2. Here we report a class of catalysts that achieve an ethanol Faradaic efficiency of (52 ± 1)% and an ethanol cathodic energy efficiency of 31%. We exploit the fact that suppression of the deoxygenation of the intermediate HOCCH* to ethylene promotes ethanol production, and hence that confinement using capping layers having strong electron-donating ability on active catalysts promotes C–C coupling and increases the reaction energy of HOCCH* deoxygenation. Thus, we have developed an electrocatalyst with confined reaction volume by coating Cu catalysts with nitrogen-doped carbon. Spectroscopy suggests that the strong electron-donating ability and confinement of the nitrogen-doped carbon layers leads to the observed pronounced selectivity towards ethanol. The electroreduction of CO2 to ethanol could enable the clean production of fuels using renewable power. This study shows how confinement effects from nitrogen-doped carbon layers on copper catalysts enable selective ethanol production from CO2 with a Faradaic efficiency of up to 52%.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-020-0607-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu481 citations 481 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-020-0607-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Springer Science and Business Media LLC Funded by:NSERCNSERCDae-Hyun Nam; Christine M. Gabardo; Shana O. Kelley; Shana O. Kelley; Adnan Ozden; Andrew H. Proppe; David Sinton; Jun Li; Colin P. O’Brien; Yimeng Min; Fengwang Li; Sung Fu Hung; Christopher McCallum; Joshua Wicks; Lee J. Richter; Yuguang C. Li; Alexander H. Ip; Jason Tam; Bin Chen; Aoni Xu; Tao Tao Zhuang; Yi-Sheng Liu; Cao-Thang Dinh; Ying Wang; Zitao Chen; Bello Stephen; Miaofang Chi; Xue Wang; Bin Sun; Petar Todorović; Ziyun Wang; Edward H. Sargent; Yanwei Lum; F. Pelayo García de Arquer; Mingchuan Luo; Ahmad R. Kirmani; Jane Y. Howe;The carbon dioxide electroreduction reaction (CO2RR) provides ways to produce ethanol but its Faradaic efficiency could be further improved, especially in CO2RR studies reported at a total current density exceeding 10 mA cm−2. Here we report a class of catalysts that achieve an ethanol Faradaic efficiency of (52 ± 1)% and an ethanol cathodic energy efficiency of 31%. We exploit the fact that suppression of the deoxygenation of the intermediate HOCCH* to ethylene promotes ethanol production, and hence that confinement using capping layers having strong electron-donating ability on active catalysts promotes C–C coupling and increases the reaction energy of HOCCH* deoxygenation. Thus, we have developed an electrocatalyst with confined reaction volume by coating Cu catalysts with nitrogen-doped carbon. Spectroscopy suggests that the strong electron-donating ability and confinement of the nitrogen-doped carbon layers leads to the observed pronounced selectivity towards ethanol. The electroreduction of CO2 to ethanol could enable the clean production of fuels using renewable power. This study shows how confinement effects from nitrogen-doped carbon layers on copper catalysts enable selective ethanol production from CO2 with a Faradaic efficiency of up to 52%.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-020-0607-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu481 citations 481 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-020-0607-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Royal Society of Chemistry (RSC) Zhifei Yan; Liang Zhu; Yuguang C. Li; Ryszard J. Wycisk; Peter N. Pintauro; Michael A. Hickner; Thomas E. Mallouk;doi: 10.1039/c8ee01192c
Bipolar membranes maintain a steady pH in electrolytic cells through water autodissociation at the interface between their cation- and anion-exchange layers. We analyze the balance of electric field and catalysis in accelerating this reaction.
Energy & Environment... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c8ee01192c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu115 citations 115 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c8ee01192c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Royal Society of Chemistry (RSC) Zhifei Yan; Liang Zhu; Yuguang C. Li; Ryszard J. Wycisk; Peter N. Pintauro; Michael A. Hickner; Thomas E. Mallouk;doi: 10.1039/c8ee01192c
Bipolar membranes maintain a steady pH in electrolytic cells through water autodissociation at the interface between their cation- and anion-exchange layers. We analyze the balance of electric field and catalysis in accelerating this reaction.
Energy & Environment... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c8ee01192c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu115 citations 115 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c8ee01192c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020 CanadaPublisher:Springer Science and Business Media LLC Funded by:NSERCNSERCGeonhui Lee; Yuguang C. Li; Ji-Yong Kim; Tao Peng; Dae-Hyun Nam; Armin Sedighian Rasouli; Fengwang Li; Mingchuan Luo; Alexander H. Ip; Young-Chang Joo; Edward H. Sargent;handle: 1807/104801
CO2 capture technologies based on chemisorption present the potential to lower net emissions of CO2 into the atmosphere. The electrochemical upgrade of captured CO2 to value-added products would be particularly convenient. Here we find that this goal is curtailed when the adduct of the capture molecule with CO2 fails to place the CO2 sufficiently close to the site of the heterogeneous reaction. We investigate tailoring the electrochemical double layer to achieve the valorization of chemisorbed CO2 in an aqueous monoethanolamine electrolyte. We reveal, using electrochemical studies and in situ surface-enhanced Raman spectroscopy, that a smaller double layer distance correlates with improved activity for CO2 to CO from amine solutions. With the aid of an alkali cation and accelerated mass transport by system design—temperature and concentration—we demonstrate amine–CO2 conversion to CO with 72% Faradaic efficiency at 50 mA cm–2. Electrochemical conversion of CO2 into high-value products is attractive for lowering net carbon emissions. Lee et al. present the valorization of chemisorbed CO2 to CO in an aqueous monoethanolamine electrolyte via tailoring of the electrochemical double layer, with 72% Faradaic efficiency at 50 mA cm–2.
Nature Energy arrow_drop_down University of Toronto: Research Repository T-SpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-020-00735-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu189 citations 189 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Nature Energy arrow_drop_down University of Toronto: Research Repository T-SpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-020-00735-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 CanadaPublisher:Springer Science and Business Media LLC Funded by:NSERCNSERCGeonhui Lee; Yuguang C. Li; Ji-Yong Kim; Tao Peng; Dae-Hyun Nam; Armin Sedighian Rasouli; Fengwang Li; Mingchuan Luo; Alexander H. Ip; Young-Chang Joo; Edward H. Sargent;handle: 1807/104801
CO2 capture technologies based on chemisorption present the potential to lower net emissions of CO2 into the atmosphere. The electrochemical upgrade of captured CO2 to value-added products would be particularly convenient. Here we find that this goal is curtailed when the adduct of the capture molecule with CO2 fails to place the CO2 sufficiently close to the site of the heterogeneous reaction. We investigate tailoring the electrochemical double layer to achieve the valorization of chemisorbed CO2 in an aqueous monoethanolamine electrolyte. We reveal, using electrochemical studies and in situ surface-enhanced Raman spectroscopy, that a smaller double layer distance correlates with improved activity for CO2 to CO from amine solutions. With the aid of an alkali cation and accelerated mass transport by system design—temperature and concentration—we demonstrate amine–CO2 conversion to CO with 72% Faradaic efficiency at 50 mA cm–2. Electrochemical conversion of CO2 into high-value products is attractive for lowering net carbon emissions. Lee et al. present the valorization of chemisorbed CO2 to CO in an aqueous monoethanolamine electrolyte via tailoring of the electrochemical double layer, with 72% Faradaic efficiency at 50 mA cm–2.
Nature Energy arrow_drop_down University of Toronto: Research Repository T-SpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-020-00735-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu189 citations 189 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Nature Energy arrow_drop_down University of Toronto: Research Repository T-SpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-020-00735-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Springer Science and Business Media LLC Zhanyou Xu; Ruihu Lu; Zih-Yi Lin; Weixing Wu; Hsin-Jung Tsai; Qian Lu; Yuguang C. Li; Sung-Fu Hung; Chunshan Song; Jimmy C. Yu; Ziyun Wang; Ying Wang;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-024-01645-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-024-01645-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Springer Science and Business Media LLC Zhanyou Xu; Ruihu Lu; Zih-Yi Lin; Weixing Wu; Hsin-Jung Tsai; Qian Lu; Yuguang C. Li; Sung-Fu Hung; Chunshan Song; Jimmy C. Yu; Ziyun Wang; Ying Wang;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-024-01645-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-024-01645-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Springer Science and Business Media LLC Funded by:NSERCNSERCDae-Hyun Nam; Christine M. Gabardo; Shana O. Kelley; Shana O. Kelley; Adnan Ozden; Andrew H. Proppe; David Sinton; Jun Li; Colin P. O’Brien; Yimeng Min; Fengwang Li; Sung Fu Hung; Christopher McCallum; Joshua Wicks; Lee J. Richter; Yuguang C. Li; Alexander H. Ip; Jason Tam; Bin Chen; Aoni Xu; Tao Tao Zhuang; Yi-Sheng Liu; Cao-Thang Dinh; Ying Wang; Zitao Chen; Bello Stephen; Miaofang Chi; Xue Wang; Bin Sun; Petar Todorović; Ziyun Wang; Edward H. Sargent; Yanwei Lum; F. Pelayo García de Arquer; Mingchuan Luo; Ahmad R. Kirmani; Jane Y. Howe;The carbon dioxide electroreduction reaction (CO2RR) provides ways to produce ethanol but its Faradaic efficiency could be further improved, especially in CO2RR studies reported at a total current density exceeding 10 mA cm−2. Here we report a class of catalysts that achieve an ethanol Faradaic efficiency of (52 ± 1)% and an ethanol cathodic energy efficiency of 31%. We exploit the fact that suppression of the deoxygenation of the intermediate HOCCH* to ethylene promotes ethanol production, and hence that confinement using capping layers having strong electron-donating ability on active catalysts promotes C–C coupling and increases the reaction energy of HOCCH* deoxygenation. Thus, we have developed an electrocatalyst with confined reaction volume by coating Cu catalysts with nitrogen-doped carbon. Spectroscopy suggests that the strong electron-donating ability and confinement of the nitrogen-doped carbon layers leads to the observed pronounced selectivity towards ethanol. The electroreduction of CO2 to ethanol could enable the clean production of fuels using renewable power. This study shows how confinement effects from nitrogen-doped carbon layers on copper catalysts enable selective ethanol production from CO2 with a Faradaic efficiency of up to 52%.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-020-0607-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu481 citations 481 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-020-0607-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Springer Science and Business Media LLC Funded by:NSERCNSERCDae-Hyun Nam; Christine M. Gabardo; Shana O. Kelley; Shana O. Kelley; Adnan Ozden; Andrew H. Proppe; David Sinton; Jun Li; Colin P. O’Brien; Yimeng Min; Fengwang Li; Sung Fu Hung; Christopher McCallum; Joshua Wicks; Lee J. Richter; Yuguang C. Li; Alexander H. Ip; Jason Tam; Bin Chen; Aoni Xu; Tao Tao Zhuang; Yi-Sheng Liu; Cao-Thang Dinh; Ying Wang; Zitao Chen; Bello Stephen; Miaofang Chi; Xue Wang; Bin Sun; Petar Todorović; Ziyun Wang; Edward H. Sargent; Yanwei Lum; F. Pelayo García de Arquer; Mingchuan Luo; Ahmad R. Kirmani; Jane Y. Howe;The carbon dioxide electroreduction reaction (CO2RR) provides ways to produce ethanol but its Faradaic efficiency could be further improved, especially in CO2RR studies reported at a total current density exceeding 10 mA cm−2. Here we report a class of catalysts that achieve an ethanol Faradaic efficiency of (52 ± 1)% and an ethanol cathodic energy efficiency of 31%. We exploit the fact that suppression of the deoxygenation of the intermediate HOCCH* to ethylene promotes ethanol production, and hence that confinement using capping layers having strong electron-donating ability on active catalysts promotes C–C coupling and increases the reaction energy of HOCCH* deoxygenation. Thus, we have developed an electrocatalyst with confined reaction volume by coating Cu catalysts with nitrogen-doped carbon. Spectroscopy suggests that the strong electron-donating ability and confinement of the nitrogen-doped carbon layers leads to the observed pronounced selectivity towards ethanol. The electroreduction of CO2 to ethanol could enable the clean production of fuels using renewable power. This study shows how confinement effects from nitrogen-doped carbon layers on copper catalysts enable selective ethanol production from CO2 with a Faradaic efficiency of up to 52%.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-020-0607-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu481 citations 481 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-020-0607-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Royal Society of Chemistry (RSC) Zhifei Yan; Liang Zhu; Yuguang C. Li; Ryszard J. Wycisk; Peter N. Pintauro; Michael A. Hickner; Thomas E. Mallouk;doi: 10.1039/c8ee01192c
Bipolar membranes maintain a steady pH in electrolytic cells through water autodissociation at the interface between their cation- and anion-exchange layers. We analyze the balance of electric field and catalysis in accelerating this reaction.
Energy & Environment... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c8ee01192c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu115 citations 115 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c8ee01192c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Royal Society of Chemistry (RSC) Zhifei Yan; Liang Zhu; Yuguang C. Li; Ryszard J. Wycisk; Peter N. Pintauro; Michael A. Hickner; Thomas E. Mallouk;doi: 10.1039/c8ee01192c
Bipolar membranes maintain a steady pH in electrolytic cells through water autodissociation at the interface between their cation- and anion-exchange layers. We analyze the balance of electric field and catalysis in accelerating this reaction.
Energy & Environment... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c8ee01192c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu115 citations 115 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c8ee01192c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu